Banner
ALADIN
High Resolution Numerical Weather Prediction Project
Website of the ALADIN Consortium
References and bibliography
Article published on 3 July 2009

by JFM
  • ALADIN
    • Best, M.J., A. Beljaars, J. Polcher, and P. Viterbo (2004) : A Proposed Structure for Coupling Tiled Surfaces with the Planetary Boundary Layer. J. Hydrometeor., 5, 1271–1278, 2004.
    • Boone, A., J.-C. Calvet, and J. Noilhan (1999) : Inclusion of a third soi layer in a land surface scheme using the force-restor method. J. Appl. Meteor., 38, 1611-1630
    • Boone, A. (2000) : Modélisation des processus hydrologiques dans le schéma de surface ISBA : inclusion d’un réservoir hydrologique, du gel et de la modélisation de la neige (modeling hydrological processes in the land surface scheme ISBA: inclusion of a hydrological reservoir, ice and a snow model). PhD Thesis, Paul Sabatier Univ., Toulouse, France, 236 pp.
    • Bourras, D., G. Reverdin, G. Caniaux, and S. Belamari (2007) : A non-linear statistical model of turbulent air-sea fluxes. Mon. Wea. Rev., 135, 1077-1089
    • Champeaux, J.-L., D. Arcos, E. Bazile, D. Giard, J.-P. Goutorbe, F. Habets, J. Noilhan and J.-L. Roujean (2000): AVHRR-derived vegetation mapping over Western Europe for use in Numerical Weather Prediction models. Int. J. Remote Sensing, 21, 1183-1199
    • Cedilnik, J., D. Carrer, J.-L. Roujean, and J.-F. Mahfouf (2009): Analysis of satellite derived surface albedo for Numerical Weather Prediction. J. Appl. Meterolo. Clim. (in preparation)
    • Deardorff, J. W. (1977) : A parameterization of ground surface moisture for use in atmospheric prediction models. J. Applied Meteor., 16, 1182-1185
    • Deardorff, J. W. (1978) : Efficient prediction of ground surface temperature and moisture with inclusion of a vegetation layer. J. Geophys. Res., 20, 1889-1903
    • FAO, 1988, Unesco Soil Map of the World. Report No 60, World Soil Resources, Rome
    • Geleyn, J.-F. (1988) : Interpolation of wind, temperature, humidity values from model levels to the height of measurement. Tellus, 40A, 347-351
    • Giard, D., and E. Bazile (2000) : Implementation of a new assimilation scheme for soil and surface variables in a global NWP model. Mon. Wea. Rev., 128, 997-1015
    • Lebeaupin-Brossier, C., V. Ducrocq, and H. Giordani (2009): High-resolution air-sea coupled modelling applied to Mediterranean heavy rainy events. Quart. J. Roy. Meteor. Soc. (to appear)
    • Mahfouf, J.-F., A.O. Manzi, J. Noilhan, H. Giordani, and M. Déqué (1995): The nad surface scheme ISBA within the Météo-France climate model ARPEGE. Part I: Implementation and preliminary results. J. Climate, 8, 2039-2057
    • Mahfouf, J.-F., K. Bergaoui, C. Draper, F. Bouyssel, F. Taillefer, and L. Taseva (2009): A comparison of two off-line soil analysis schemes for assimilation of screen-level observations. J. Geophys. Res., 114, D08105, doi:10.1029/2008JD011077
    • Masson, V. (2000) : A physically-based scheme for the urban energy budget in atmospheric models. Bound. Layer Meteorol., 94, 357-397
    • Masson, V., J.-L. Champeaux, F. Chauvin, C. Meriguet, and R. Lacaze (2003) : A global database of land surface parameters at 1-km resolution for meteorological and climate models. J. Climate, 16, 1261-1282
    • Masson, V. ,and Y. Seity (2009) : Including atmospheric layers in vegetation and urban off-line surface schemes. J. Applied Meteorol. Clim. (in press)
    • Mironov, D. , 2008: Parameterization of lakes in numerical weather prediction. Description of a lake model. COSMO Technical Report, No. 11, Deutscher Wetterdienst, Offenbach am Main, Germany.
    • Noilhan J. and S. Planton (1989) : A simple parameterization of land surface processes for meteorological models. Mon. Wea. Rev., 117, 536-549
    • Noilhan J., and J.-F. Mahfouf (1996) : The ISBA land surface paramterization scheme. Global Planet. Change, 13, 145-159
    • Sellers, PJ. and collaborators (1996) : The ISLSCP initiative I global datasets: surface boundary conditions and atmospheric forcings for land-atmospheric studies. Bulletin of the American Meteorological Society, 77, 1987-2005
    • Webb, R.S., C.E. Rosenzweig, and E.R. Levine (1991) : A global dataset for soil particle size properties. Tech. Rep. 4286, NASA, GISS, New-York, 34 pp.
    • Wilson, M.F. and A. Henderson-Sellers (1985) : Cover and soil datasets for use in general circulation models. Journal of Climatology, 20, 119-143
  • COSMO
    • Ament, F. and Simmer, C., 2006: Improved Representation of Land-Surface Heterogeneity in a Non-Hydrostatic Numerical Weather Prediction Model, Boundary-Layer Meteorology, 121, 153-174
    • Heise E., Schrodin R. Aspects of snow and soil modelling in the operational short range weather prediction models of the German weather service // Computational technologies. 2002. V. 7. Special issue. P. 121-140
    • Martilli, A., Clappier, A., Rotach, M. W.: 2002, ’An urban surfaces exchange
      parameterisation for mesoscale models’, Bound.-Layer Meteor., 104, 261-304.
    • Mironov D. and Matthias Raschendorfer (2001): Evaluation of Empirical Parameters of the New LM Surface-Layer Parameterization. Scheme. COSMO Technical Report, No. 1, Deutscher Wetterdienst, Offenbach am Main, Germany
    • Mironov, D., and B. Ritter, 2003: A first version of the ice model for the global NWP system GME of the German Weather Service. Research Activities in Atmospheric and Oceanic Modelling, J. Cote, Ed., Report No. 33, April 2003, WMO/TD, 4.13-4.14.
    • Mironov, D. , 2008: Parameterization of lakes in numerical weather prediction. Description of a lake model. COSMO Technical Report, No. 11, Deutscher Wetterdienst, Offenbach am Main, Germany.
    • Raschendorfer, M. (1999): The new turbulence parameterization of LM, Quarterly Report of the. Operational NWP-Models of the DWD, No 19, 3-12, May 1999
    • Schraff, C. and R. Hess (2002): Datenassimilation für das LM, Promet Jahrgang 27, Heft 3/4, p 156-163.
    • Schraff, C. and R. Hess (2003): A Description of the Nonhydrostatic Regional Model LM Part III : Data Assimilation. Available from DWD.
    • Vogel, H., Pauling, A., Vogel, B. (2008), Numerical simulation of birch pollen dispersion with an operational weather forecast system, Int J Biometeorol. 2008 Nov;52(8):805-814, doi:10.1007/s00484-008-0174-3.
    • Wergen, W. and M. Buchhold (2002): Datenassimilation für das Globalmodell GME, Promet Jahrgang 27, Heft 3/4, p 149-155.
  • HIRLAM
    • Noilhan J. and S. Planton (1989) : A simple parameterization of land surface processes for meteorological models. Mon. Wea. Rev., 117, 536-549
    • Peters-Lidard, C.D, Blackburn, E., Liang, X., Wood, E.F. (1998): The effect of soil thermal conductivity parameterization on surface energy fluxws and temperature. Journal of Atm. Sci., vol. 55 , nr 7, 1209-1224
    • Samuelsson, P., Gollvik, S., Ullerstig, A. (2006): The land-surface scheme of the Rossby Centre regional atmospheric climate model (RCA3). SMHI, Meteorologi 122,25 pp. Available at: SMHI, 601 76 Norrköping, Sweden
    • Sellers, PJ. and collaborators (1996) : The ISLSCP initiative I global datasets: surface boundary conditions and atmospheric forcings for land-atmospheric studies. Bulletin of the American Meteorological Society, 77, 1987-2005
    • Wilson, M.F. and A. Henderson-Sellers (1985) : Cover and soil datasets for use in general circulation models. Journal of Climatology, 20, 119-143
    • Viterbo, P., Beljaars, A., Teixeira, J., (1999): The representation of soil moisture freezing and its impact on the stable boundary layer. Quart. J. Roy. Met. Soc. 125, 2401-2426
  • UM/JULES
    • [1] Wilson, M. F. and A. Henderson-Sellers, 1985. A global archive of land cover and soils data
      for use in general circulation models. Journal of Climatology 5: 119-143.
    • [2] Global Soil Data Task Group, 2000. Global gridded surfaces of selected soil characteristics
      (IGBP-DIS). Data set. available on-line from Oak Ridge National Laboratory Distributed Active
      Archive Center, Oak Ridge, Tennessee, U.S.A. doi:10.3334/ORNLDAAC/569.
    • [3] FAO/IIASA/ISRIC/ISS-CAS/JRC, 2008. Harmonised world soil database (version 1.0). FAO,
      Rome, Italy and IIASA, Laxenburg, Austria.
    • [4] Miller D. A. and R. A. White, 1998. A conterminous United States multilayer soil
      characteristics dataset for regional climate and hydrology modelling. Earth interactions 2:
      paper no 2, 1-26.
    • [5] Best, M. J. and P. E. Maisey, 2002. A physically based soil moisture nudging scheme. Hadley
      centre technical note 35.
    • [6] Smith R. N. B., E. M. Blyth, J. W. Finch, S. Goodchild, R. L. Hall and S. Madry,
      2006. Soil state and surface hydrology diagnosis based on MOSES in the Met Office
      Nimrod nowcasting system. Meteorol. Appl. 13, 89-109.
    • [7] Stark, J. D., C. J. Donlon, M. Martin and M. McCulloch, 2007, OSTIA: An
      operational, high resolution, real time, global sea surface temperature
      analysis system, in Proc. Oceans ‘O7, Aberdeen, Scotland, 18-21st June
      2007.
    • [8] GLOBE Task Team and others (Hastings, David A., Paula K. Dunbar, Gerald M. Elphingstone, Mark Bootz, Hiroshi Murakami, Hiroshi Maruyama, Hiroshi Masaharu, Peter Holland, John Payne, Nevin A. Bryant, Thomas L. Logan, J.-P. Muller, Gunter Schreier, and John S. MacDonald), eds., 1999. The Global Land One-kilometer Base Elevation (GLOBE) Digital Elevation Model, Version 1.0. National Oceanic and Atmospheric Administration, National Geophysical Data Center, 325 Broadway, Boulder, Colorado 80303, U.S.A. Digital data base on the World Wide Web (URL: http://www.ngdc.noaa.gov/mgg/topo/globe.html) and CD-ROMs.
    • [12] Implementation of a Northern Hemisphere snow analysis in the global model
      S Pullen, C Jones and G Rooney. Met R&D Technical Report 526
    • [13] R. L. H. Essery, M. J. Best, R. A. Betts, P. M. Cox, C. M. Taylor, 2003,
      Explicit Representation of Subgrid Heterogeneity in a GCM Land Surface
      Scheme, Journal of Hydrometeorology
      4(3) 530–543
    • [14] Best et al, 2004 : A proposed structure for coupling tiled surfaces with the planetary boundary layer, J. of Hydrometeor.,5, 1271-1278
    • [15] Mironov, D. V., 2008: Parameterization of lakes in numerical weather prediction. Description of a lake model. COSMO Technical Report, No. 11, Deutscher Wetterdienst, Offenbach am Main, Germany, 41 pp.
    • [16] Best, MJ, 2005, Representing urban areas within operational numerical weather prediction models, Boundary-layer Meteorology 114, 91-109
  • ECMWF
    • Balsamo G., P. Viterbo, A. Beljaars, B. van den Hurk, M. Hirschi, A. K. Betts, K. Scipal:
      A revised hydrology for the ECMWF model: Verification from field site to terrestrial water storage and impact in the Integrated Forecast System, Journal of hydrometeorology, in press 2009.
      Also ECMWF Tech. Memo number 563, 2008.
    • Beljaars A.C.M.: The parametrization of surface fluxes in large scale models under free convection, ECMWF Tech. Memo number 215, 1995.
    • Beljaars, A. C. M., A. R. Brown, and N. Wood, 2004: A new parameterization of turbulent orographic from drag: Q. J. R. Meteorol. Soc., 130, 1327–1347, 2004.
    • Best, M.J., A. Beljaars, J. Polcher, and P. Viterbo: A Proposed Structure for Coupling Tiled Surfaces with the Planetary Boundary Layer. J. Hydrometeor., 5, 1271–1278, 2004.
    • Douville, H., J. F. Royer, and J. F. Mahfouf: A New Snow Parameterization for the Meteo-France Climate Model .1. Validation in Stand-Alone Experiments. Climate Dynamics, 12, 21-35, 1995.
    • Dutra E., The strength of Land-Atmosphere feedbacks and implications for global change, PhD interim report (endutra@gmail.com), 2008.
    • Drusch M., T. Holmes, P. de Rosnay, G. Balsamo, “Comparing ERA-40 based L-band brightness temperatures with Skylab observations: a calibration/validation study using the Community Microwave Emission Model†, Journal of Hydrometeorology, Vol 10, pp213-225, DOI: 10.1175/2008JHM964.1, 2009
    • Drusch, M., D. Vasiljevic and P. Viterbo, « ECMWF’s global snow analysis: Assessment and revision based on satellite observations. », ECMWF Tech. Memo number 443, 2004
    • Hersbach H., Adaption of the CY35R1 operational SST and sea-ice analysis over the Great Lakes and the poles, ECMWF Research memo number R60.9/HH/08109, 2008.
    • Jarlan, L., G. Balsamo, S. Lafont, A. Beljaars, J. C. Calvet, and E. Mougin: Analysis of leaf area index in the ECMWF land surface model and impact on latent heat and carbon fluxes: Application to West Africa, J. Geophys. Res., 113, D24117, doi:10.1029/2007JD009370, 2008.
    • Loveland, T. R., B. C. Reed, J. F. Brown, D. O. Ohlen, Z. Zhu, L. Youing, and J. W. Merchant: Development of a global land cover characteristics database and IGBP DISCover from the 1km AVHRR data. Int. J. Remote Sensing, 21, 1303–1330, 2000.
    • Mahfouf J.-F., P. Viterbo, H. Douville, A. Beljaars and S. Saarinen: A Revised land-surface analysis scheme in the Integrated Forecasting System, ECMWF Newsletter, Summer-Autumn, 2000.
    • Mironov, D. V.: Parameterization of lakes in numerical weather prediction. Description of a lake model. COSMO Technical Report, No. 11, Deutscher Wetterdienst, Offenbach am Main, Germany, 41 pp., 2008.
    • Van den Hurk, B.J.J.M. and Viterbo, P. and Beljaars, A.C.M. and Betts, A.K: Offline validation of the ERA40 surface scheme, ECMWF Tech. Memo. number 295, 2000.
    • Viterbo, P. and A. C. M. Beljaars: An improved land surface parametrization scheme in the ECMWF model and its validation. J. Climate, 8, 2716–2748, 1995.
    • Viterbo, P., A. C. M. Beljaars, J.-F. Mahfouf, and J. Teixeira: The representation of soil moisture freezing and its impact on the stable boundary layer. Q. J. R. Meteorol. Soc., 125, 2401–2426, 1999.