ALADIN
High Resolution Numerical Weather Prediction Project
Website of the ALADIN Consortium

The concept of the ALADIN project was proposed by Météo-France in 1990, with the aim of building a mutually beneficial collaboration with the National Meteorological Services of Central and Eastern Europe. This collaboration was to be in the field of Numerical Weather Prediction (NWP), which provides the basis for the forecasting tools of modern meteorology. The easy to translate acronym (Aire Limitée Adaptation dynamique Développement InterNational) clearly indicates the major axes of this project at its beginnings.

20 years later, as defined in the 4th Memorandum of Understanding,

The goal of the ALADIN Collaboration is to improve the value of the meteorological, hydrological and environmental warning and forecast services delivered by all Members to their users, through the operational implementation of a NWP system capable of resolving horizontal scales from the meso-beta to the meso-gamma scale and improving the prediction of severe weather phenomena such as heavy precipitation, intensive convection and strong winds.

This objective will be fulfilled through continuation and expansion of the activities of the ALADIN Consortium in the field of High Resolution Short Range Weather Forecast, including:

  • Maintenance of an ALADIN System (...);
  • Joint research and development activities, on the basis of the common Strategic Plan and related Work Plans, with the aim of maintaining the ALADIN System at scientific and technical state of the art level within the NWP community;
  • Sharing scientific results, numerical codes, operational environments, related expertise and know-how, as necessary for all ALADIN Consortium members to conduct operational and research activities with the same tools.

About one hundred scientists, from sixteen countries, each with its own specificity in resources and knowledge base, are permanently contributing to the progress of ALADIN NWP system. They are working together on a modern code of the atmosphere that definitely deserves its proper place between the European state-of-the-art NWP models: 80 Full-Time Equivalent persons in the last years of the project’s life. This code is now operated every day in fifteen Euro-Mediterranean countries, on a huge variety of computing platforms ranging from a PC Cluster under Linux to Vector Computers.

ALADIN consortium had a number of unique successes in the past : for instance, the pluging of an existing physics parameterization in the existing code, leading to the AROME model; ALADIN is at the forefront of the gray-zone problematics with the ALARO physics; ALADIN dynamical core is remarkably stable; ...

ALADIN also allowed to build a high-level scientific team, distributed in sixteen countries that managed to reach the level of the best research centres, as witnessed by the PhD theses and publications in international journals. The General Assembly of Partners, the workshops, the meetings, the newsletters regularly offer opportunity of various exchanges within the ALADIN community.

ALADIN is preparing for the serious evolutions expected within the NWP landscape in the coming five to ten years. There is the ever-lasting question where to draw the line between resolved vs. parameterized processes. There is the question of the efficiency and the scalability of ALADIN dynamical core. There are the external drivers, such as the demands of the end users, and the evolution of the high-performance computing machines. Additionally a serious reorganization of the code is now at hand, in particular within the OOPS project. Besides that, the international meteorological context is steadily changing, specifically with the merger of the ALADIN and the HIRLAM consortia.

Section : ALADIN annual workshops (joint with HIRLAM ASM from 2007)
WK24: Participants

Table of contents Practical information on (...) Agenda and list of participant On-line presentations of (...) Posters HMG/CSSI meeting On-line registration for (...) List of registered participant

The National Meteorological Administration of Romania will host (...)


Read more ...
Section : Internal contacts
Table of contents List of ALADIN Directors (...) You may use aladinga@meteo.fr List of ALADIN Directors or usual representatives to the General Assembly, updated on August 21, 2014 COUNTRYNMSFORENAMEFAMILY NAMEEMAIL ALGERIA ONM Brahim IHADADENE (...)
Read more ...
Section : Documentation on cycles and coordination meetings
IFS/ARPEGE coordination meeting, Reading, June 15, 2015 IFS/ARPEGE coordination video-conf, February ??, 2015 (date to be discussed later) Minutes of IFS/ARPEGE coordination video-conf, November 13, 2014 Minutes of IFS/ARPEGE coordination meeting, Toulouse, June 2, 2014 Minutes of IFS/ARPEGE (...)
Read more ...
Section : Newsletters
ALADIN-HIRLAM Newsletter : number 2
During the HMG/CSSI meeting in April 2013, ALADIN and HIRLAM consortia decided to join their effort and produce a commun newsletter, twice a year. NewsletterEditoDownload N°4, due in March 2015 N°3, published on 26-09-2014 The third edition of the combined Newsletter of the HIRLAM and ALADIN (...)
Read more ...
Section : ALADIN People : who, where, how to contact

When planning your next visit to Toulouse/CNRM/GMAP, please pay attention to French public holidays and Meteo-France closing days (RTTi) !..

From January 1st, 2014, for security reasons, the access to GMAP offices is only allowed between 7:00 and 21:00 on working days. On Saturdays and on (...)


Read more ...
Section : ALADIN People : who, where, how to contact
Here are a few information for future or present visitors in Toulouse : Useful links : Public transport : Schedules of the Toulouse buses About Toulouse (official page of "Mairie de Toulouse") How to reach Météo-France http://www.meteo.fr/cic/meetings/venue.html Computer resources : for computer (...)
Read more ...
Section : OOPS
Technical video-conference : meeting number 3 towards CY42 : January 22, 2015 Technical video-conference : meeting number 2 towards CY42 : October 16, 2014 Technical video-conference : meeting number 1 towards CY42 : August 26, 2014 OOPS Steering Committee : June 3, 2014 in Toulouse Technical (...)
Read more ...
Section : EWGLAM/SRNWP meetings and workshops
List of European Working Group on Limited Area Modelling and Short Range Numerical Weather Prediction network [1] meetings YearDatesEWGLAM meetingSRNW meetingWhereCountryWebsite [2] 1979 8-11 October 1st Norrköping Sweden 1980 7-10 October 2nd Dublin Ireland 1981 24-27 August 3th (...)
Read more ...
Section : ALADIN Local Team Managers (LTM) meetings
LTM meetingDatePlaceMinutes 19th LTM meeting 6 October 2015 Serbia (besides EWGLAM/SRNWP meetings) 18th LTM meeting 14 April 2015 Copenhagen, Danemark (besides ALADIN workshop) 17th LTM meeting 30 September 2014 Offenbach, Germany (besides EWGLAM/SRNWP (...)
Read more ...
by JAM
Section : Stay reports
Bochenek B.: Latest developments in ARPEGE/IFSSmerkol P..: Latest developments in ARPEGE/IFSKhalfaoui W.: Latest developments in ARPEGE/IFSSassi M.Z.: Latest developments in ARPEGE/IFSBorderies M.: Étude des prévisions de systèmes précipitant tropicaux simulés par les AROME Outre-mer grâce aux (...)
Read more ...
Section : Governance

Table of contents General Assembly Program Manager, full-time Policy Advisory Committee ALADIN Local Teams Managers CSSI : Committee for Scientifi Support Team Task forces

The governance and the management of the ALADIN Consortium is defined by the 4th MoU and (...)


Read more ...
Section : (General) Assembly of ALADIN Partners

Table of contents 19th ALADIN General Assembly 1st joint ALADIN General (...)

For the first time, the ALADIN General Assembly and the HIRLAM Council will held a joint meeting.

Taking advantage of the opportunity of many of their Directors gathering in Reading (...)


Read more ...









References and bibliography
Article published on 3 July 2009
by JFM

  • ALADIN
    • Best, M.J., A. Beljaars, J. Polcher, and P. Viterbo (2004) : A Proposed Structure for Coupling Tiled Surfaces with the Planetary Boundary Layer. J. Hydrometeor., 5, 1271–1278, 2004.
    • Boone, A., J.-C. Calvet, and J. Noilhan (1999) : Inclusion of a third soi layer in a land surface scheme using the force-restor method. J. Appl. Meteor., 38, 1611-1630
    • Boone, A. (2000) : Modélisation des processus hydrologiques dans le schéma de surface ISBA : inclusion d’un réservoir hydrologique, du gel et de la modélisation de la neige (modeling hydrological processes in the land surface scheme ISBA: inclusion of a hydrological reservoir, ice and a snow model). PhD Thesis, Paul Sabatier Univ., Toulouse, France, 236 pp.
    • Bourras, D., G. Reverdin, G. Caniaux, and S. Belamari (2007) : A non-linear statistical model of turbulent air-sea fluxes. Mon. Wea. Rev., 135, 1077-1089
    • Champeaux, J.-L., D. Arcos, E. Bazile, D. Giard, J.-P. Goutorbe, F. Habets, J. Noilhan and J.-L. Roujean (2000): AVHRR-derived vegetation mapping over Western Europe for use in Numerical Weather Prediction models. Int. J. Remote Sensing, 21, 1183-1199
    • Cedilnik, J., D. Carrer, J.-L. Roujean, and J.-F. Mahfouf (2009): Analysis of satellite derived surface albedo for Numerical Weather Prediction. J. Appl. Meterolo. Clim. (in preparation)
    • Deardorff, J. W. (1977) : A parameterization of ground surface moisture for use in atmospheric prediction models. J. Applied Meteor., 16, 1182-1185
    • Deardorff, J. W. (1978) : Efficient prediction of ground surface temperature and moisture with inclusion of a vegetation layer. J. Geophys. Res., 20, 1889-1903
    • FAO, 1988, Unesco Soil Map of the World. Report No 60, World Soil Resources, Rome
    • Geleyn, J.-F. (1988) : Interpolation of wind, temperature, humidity values from model levels to the height of measurement. Tellus, 40A, 347-351
    • Giard, D., and E. Bazile (2000) : Implementation of a new assimilation scheme for soil and surface variables in a global NWP model. Mon. Wea. Rev., 128, 997-1015
    • Lebeaupin-Brossier, C., V. Ducrocq, and H. Giordani (2009): High-resolution air-sea coupled modelling applied to Mediterranean heavy rainy events. Quart. J. Roy. Meteor. Soc. (to appear)
    • Mahfouf, J.-F., A.O. Manzi, J. Noilhan, H. Giordani, and M. Déqué (1995): The nad surface scheme ISBA within the Météo-France climate model ARPEGE. Part I: Implementation and preliminary results. J. Climate, 8, 2039-2057
    • Mahfouf, J.-F., K. Bergaoui, C. Draper, F. Bouyssel, F. Taillefer, and L. Taseva (2009): A comparison of two off-line soil analysis schemes for assimilation of screen-level observations. J. Geophys. Res., 114, D08105, doi:10.1029/2008JD011077
    • Masson, V. (2000) : A physically-based scheme for the urban energy budget in atmospheric models. Bound. Layer Meteorol., 94, 357-397
    • Masson, V., J.-L. Champeaux, F. Chauvin, C. Meriguet, and R. Lacaze (2003) : A global database of land surface parameters at 1-km resolution for meteorological and climate models. J. Climate, 16, 1261-1282
    • Masson, V. ,and Y. Seity (2009) : Including atmospheric layers in vegetation and urban off-line surface schemes. J. Applied Meteorol. Clim. (in press)
    • Mironov, D. , 2008: Parameterization of lakes in numerical weather prediction. Description of a lake model. COSMO Technical Report, No. 11, Deutscher Wetterdienst, Offenbach am Main, Germany.
    • Noilhan J. and S. Planton (1989) : A simple parameterization of land surface processes for meteorological models. Mon. Wea. Rev., 117, 536-549
    • Noilhan J., and J.-F. Mahfouf (1996) : The ISBA land surface paramterization scheme. Global Planet. Change, 13, 145-159
    • Sellers, PJ. and collaborators (1996) : The ISLSCP initiative I global datasets: surface boundary conditions and atmospheric forcings for land-atmospheric studies. Bulletin of the American Meteorological Society, 77, 1987-2005
    • Webb, R.S., C.E. Rosenzweig, and E.R. Levine (1991) : A global dataset for soil particle size properties. Tech. Rep. 4286, NASA, GISS, New-York, 34 pp.
    • Wilson, M.F. and A. Henderson-Sellers (1985) : Cover and soil datasets for use in general circulation models. Journal of Climatology, 20, 119-143
  • COSMO
    • Ament, F. and Simmer, C., 2006: Improved Representation of Land-Surface Heterogeneity in a Non-Hydrostatic Numerical Weather Prediction Model, Boundary-Layer Meteorology, 121, 153-174
    • Heise E., Schrodin R. Aspects of snow and soil modelling in the operational short range weather prediction models of the German weather service // Computational technologies. 2002. V. 7. Special issue. P. 121-140
    • Martilli, A., Clappier, A., Rotach, M. W.: 2002, ’An urban surfaces exchange parameterisation for mesoscale models’, Bound.-Layer Meteor., 104, 261-304.
    • Mironov D. and Matthias Raschendorfer (2001): Evaluation of Empirical Parameters of the New LM Surface-Layer Parameterization. Scheme. COSMO Technical Report, No. 1, Deutscher Wetterdienst, Offenbach am Main, Germany
    • Mironov, D., and B. Ritter, 2003: A first version of the ice model for the global NWP system GME of the German Weather Service. Research Activities in Atmospheric and Oceanic Modelling, J. Cote, Ed., Report No. 33, April 2003, WMO/TD, 4.13-4.14.
    • Mironov, D. , 2008: Parameterization of lakes in numerical weather prediction. Description of a lake model. COSMO Technical Report, No. 11, Deutscher Wetterdienst, Offenbach am Main, Germany.
    • Raschendorfer, M. (1999): The new turbulence parameterization of LM, Quarterly Report of the. Operational NWP-Models of the DWD, No 19, 3-12, May 1999
    • Schraff, C. and R. Hess (2002): Datenassimilation für das LM, Promet Jahrgang 27, Heft 3/4, p 156-163.
    • Schraff, C. and R. Hess (2003): A Description of the Nonhydrostatic Regional Model LM Part III : Data Assimilation. Available from DWD.
    • Vogel, H., Pauling, A., Vogel, B. (2008), Numerical simulation of birch pollen dispersion with an operational weather forecast system, Int J Biometeorol. 2008 Nov;52(8):805-814, doi:10.1007/s00484-008-0174-3.
    • Wergen, W. and M. Buchhold (2002): Datenassimilation für das Globalmodell GME, Promet Jahrgang 27, Heft 3/4, p 149-155.
  • HIRLAM
    • Noilhan J. and S. Planton (1989) : A simple parameterization of land surface processes for meteorological models. Mon. Wea. Rev., 117, 536-549
    • Peters-Lidard, C.D, Blackburn, E., Liang, X., Wood, E.F. (1998): The effect of soil thermal conductivity parameterization on surface energy fluxws and temperature. Journal of Atm. Sci., vol. 55 , nr 7, 1209-1224
    • Samuelsson, P., Gollvik, S., Ullerstig, A. (2006): The land-surface scheme of the Rossby Centre regional atmospheric climate model (RCA3). SMHI, Meteorologi 122,25 pp. Available at: SMHI, 601 76 Norrköping, Sweden
    • Sellers, PJ. and collaborators (1996) : The ISLSCP initiative I global datasets: surface boundary conditions and atmospheric forcings for land-atmospheric studies. Bulletin of the American Meteorological Society, 77, 1987-2005
    • Wilson, M.F. and A. Henderson-Sellers (1985) : Cover and soil datasets for use in general circulation models. Journal of Climatology, 20, 119-143
    • Viterbo, P., Beljaars, A., Teixeira, J., (1999): The representation of soil moisture freezing and its impact on the stable boundary layer. Quart. J. Roy. Met. Soc. 125, 2401-2426
  • UM/JULES
    • [1] Wilson, M. F. and A. Henderson-Sellers, 1985. A global archive of land cover and soils data for use in general circulation models. Journal of Climatology 5: 119-143.
    • [2] Global Soil Data Task Group, 2000. Global gridded surfaces of selected soil characteristics (IGBP-DIS). Data set. available on-line from Oak Ridge National Laboratory Distributed Active Archive Center, Oak Ridge, Tennessee, U.S.A. doi:10.3334/ORNLDAAC/569.
    • [3] FAO/IIASA/ISRIC/ISS-CAS/JRC, 2008. Harmonised world soil database (version 1.0). FAO, Rome, Italy and IIASA, Laxenburg, Austria.
    • [4] Miller D. A. and R. A. White, 1998. A conterminous United States multilayer soil characteristics dataset for regional climate and hydrology modelling. Earth interactions 2: paper no 2, 1-26.
    • [5] Best, M. J. and P. E. Maisey, 2002. A physically based soil moisture nudging scheme. Hadley centre technical note 35.
    • [6] Smith R. N. B., E. M. Blyth, J. W. Finch, S. Goodchild, R. L. Hall and S. Madry, 2006. Soil state and surface hydrology diagnosis based on MOSES in the Met Office Nimrod nowcasting system. Meteorol. Appl. 13, 89-109.
    • [7] Stark, J. D., C. J. Donlon, M. Martin and M. McCulloch, 2007, OSTIA: An operational, high resolution, real time, global sea surface temperature analysis system, in Proc. Oceans ‘O7, Aberdeen, Scotland, 18-21st June 2007.
    • [8] GLOBE Task Team and others (Hastings, David A., Paula K. Dunbar, Gerald M. Elphingstone, Mark Bootz, Hiroshi Murakami, Hiroshi Maruyama, Hiroshi Masaharu, Peter Holland, John Payne, Nevin A. Bryant, Thomas L. Logan, J.-P. Muller, Gunter Schreier, and John S. MacDonald), eds., 1999. The Global Land One-kilometer Base Elevation (GLOBE) Digital Elevation Model, Version 1.0. National Oceanic and Atmospheric Administration, National Geophysical Data Center, 325 Broadway, Boulder, Colorado 80303, U.S.A. Digital data base on the World Wide Web (URL: http://www.ngdc.noaa.gov/mgg/topo/globe.html) and CD-ROMs.
    • [12] Implementation of a Northern Hemisphere snow analysis in the global model S Pullen, C Jones and G Rooney. Met R&D Technical Report 526
    • [13] R. L. H. Essery, M. J. Best, R. A. Betts, P. M. Cox, C. M. Taylor, 2003, Explicit Representation of Subgrid Heterogeneity in a GCM Land Surface Scheme, Journal of Hydrometeorology 4(3) 530–543
    • [14] Best et al, 2004 : A proposed structure for coupling tiled surfaces with the planetary boundary layer, J. of Hydrometeor.,5, 1271-1278
    • [15] Mironov, D. V., 2008: Parameterization of lakes in numerical weather prediction. Description of a lake model. COSMO Technical Report, No. 11, Deutscher Wetterdienst, Offenbach am Main, Germany, 41 pp.
    • [16] Best, MJ, 2005, Representing urban areas within operational numerical weather prediction models, Boundary-layer Meteorology 114, 91-109
  • ECMWF
    • Balsamo G., P. Viterbo, A. Beljaars, B. van den Hurk, M. Hirschi, A. K. Betts, K. Scipal: A revised hydrology for the ECMWF model: Verification from field site to terrestrial water storage and impact in the Integrated Forecast System, Journal of hydrometeorology, in press 2009. Also ECMWF Tech. Memo number 563, 2008.
    • Beljaars A.C.M.: The parametrization of surface fluxes in large scale models under free convection, ECMWF Tech. Memo number 215, 1995.
    • Beljaars, A. C. M., A. R. Brown, and N. Wood, 2004: A new parameterization of turbulent orographic from drag: Q. J. R. Meteorol. Soc., 130, 1327–1347, 2004.
    • Best, M.J., A. Beljaars, J. Polcher, and P. Viterbo: A Proposed Structure for Coupling Tiled Surfaces with the Planetary Boundary Layer. J. Hydrometeor., 5, 1271–1278, 2004.
    • Douville, H., J. F. Royer, and J. F. Mahfouf: A New Snow Parameterization for the Meteo-France Climate Model .1. Validation in Stand-Alone Experiments. Climate Dynamics, 12, 21-35, 1995.
    • Dutra E., The strength of Land-Atmosphere feedbacks and implications for global change, PhD interim report (endutra@gmail.com), 2008.
    • Drusch M., T. Holmes, P. de Rosnay, G. Balsamo, “Comparing ERA-40 based L-band brightness temperatures with Skylab observations: a calibration/validation study using the Community Microwave Emission Model”, Journal of Hydrometeorology, Vol 10, pp213-225, DOI: 10.1175/2008JHM964.1, 2009
    • Drusch, M., D. Vasiljevic and P. Viterbo, « ECMWF’s global snow analysis: Assessment and revision based on satellite observations. », ECMWF Tech. Memo number 443, 2004
    • Hersbach H., Adaption of the CY35R1 operational SST and sea-ice analysis over the Great Lakes and the poles, ECMWF Research memo number R60.9/HH/08109, 2008.
    • Jarlan, L., G. Balsamo, S. Lafont, A. Beljaars, J. C. Calvet, and E. Mougin: Analysis of leaf area index in the ECMWF land surface model and impact on latent heat and carbon fluxes: Application to West Africa, J. Geophys. Res., 113, D24117, doi:10.1029/2007JD009370, 2008.
    • Loveland, T. R., B. C. Reed, J. F. Brown, D. O. Ohlen, Z. Zhu, L. Youing, and J. W. Merchant: Development of a global land cover characteristics database and IGBP DISCover from the 1km AVHRR data. Int. J. Remote Sensing, 21, 1303–1330, 2000.
    • Mahfouf J.-F., P. Viterbo, H. Douville, A. Beljaars and S. Saarinen: A Revised land-surface analysis scheme in the Integrated Forecasting System, ECMWF Newsletter, Summer-Autumn, 2000.
    • Mironov, D. V.: Parameterization of lakes in numerical weather prediction. Description of a lake model. COSMO Technical Report, No. 11, Deutscher Wetterdienst, Offenbach am Main, Germany, 41 pp., 2008.
    • Van den Hurk, B.J.J.M. and Viterbo, P. and Beljaars, A.C.M. and Betts, A.K: Offline validation of the ERA40 surface scheme, ECMWF Tech. Memo. number 295, 2000.
    • Viterbo, P. and A. C. M. Beljaars: An improved land surface parametrization scheme in the ECMWF model and its validation. J. Climate, 8, 2716–2748, 1995.
    • Viterbo, P., A. C. M. Beljaars, J.-F. Mahfouf, and J. Teixeira: The representation of soil moisture freezing and its impact on the stable boundary layer. Q. J. R. Meteorol. Soc., 125, 2401–2426, 1999.

News

Some photos
at random

Identification Identification





Site created with SPIP
with the template ESCAL-V3