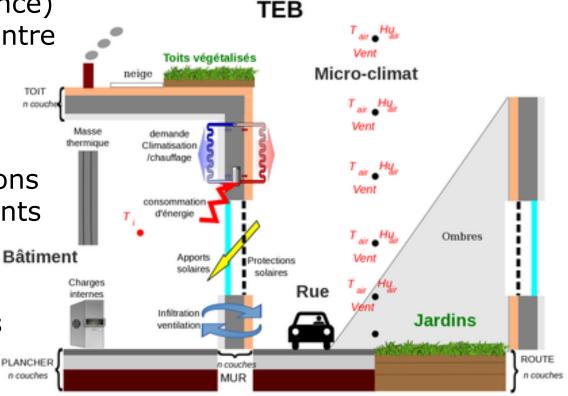


Modèles de consommation d'énergie et micro-climat

Colloque de fin de projet 13 décembre 2013


Modèle de climat urbain (local) : TEB

n couches

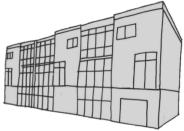
TEB (Town Energy Balance) modélise les échanges entre ville et atmosphère

Il a été amélioré afin de simuler les consommations d'énergie par les bâtiments

Prise en compte de la végétation : jardin, toits végétalisés

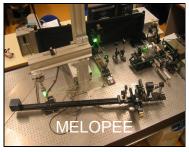
Modèle de climat urbain (local) : TEB

Besoin de données pour les nouveaux matériaux urbains



Lien des cartes d'îlot de GENIUS vers TEB

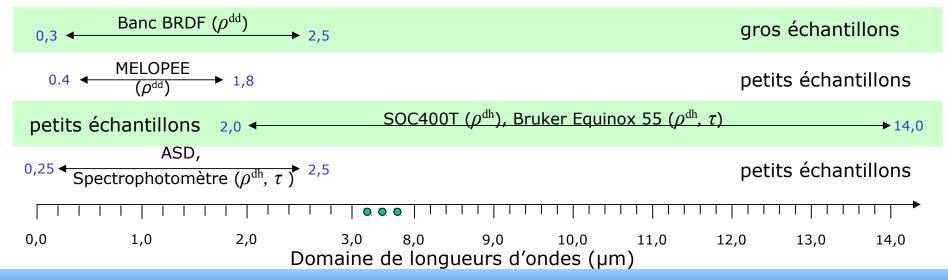
Validation vis à vis de la consommation d'énergie



Mesures ACCLIMAT de propriétés optiques : méthode

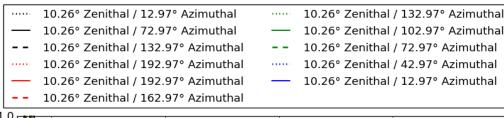
Réflectivité solaire pour les échanges courtes longueurs d'ondes

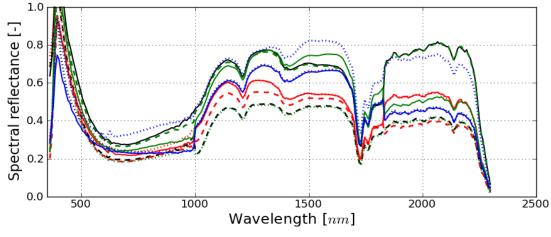
Emissivité thermique pour les échanges IR grandes longueurs d'ondes



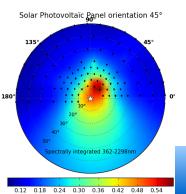
16 septembre 2013

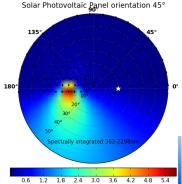

4

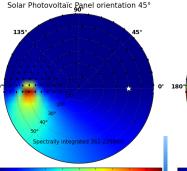


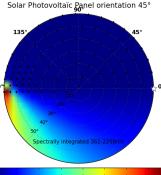


Mesures ACCLIMAT de propriétés optiques : exemple : panneaux photovoltaïques








Albedo : entre 0.11 et 0.16

Emissivité: 0.93 180

Modèle de climat urbain (local) : lien avec GENIUS

- Lien des cartes d'îlot de GENIUS vers les bâtiments de TEB
- On défini 5 types de bâtiments (caractéristiques architecturales)
- Rôle de l'usage

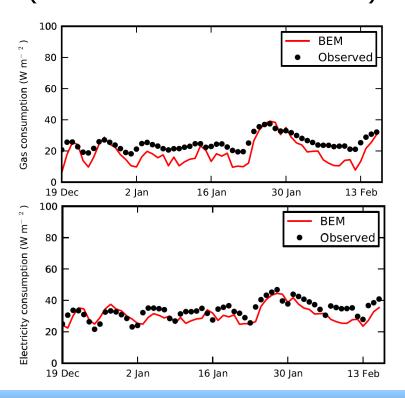
Îlots	Résidentiel	Bureau	Industriel et agricole	Commercial
1 Pavillon continu 2 Pavillon discontinu	Bâtiment individuel			
3 Immeuble continu 4 Immeuble discontinu 5 Immeuble Grande hauteur	Bâtiment collectif	Tour de bureaux		
6 Centre dense	Bâtiment Ou Bâtiment Collectif	Bâtiment Ancien		
7 Activités			Han	gar

Modèle de climat urbain (local) : lien avec GENIUS

Ensuite pour chaque type de bâti (et d'usage)

On lui associe, en fonction de son âge, des caractéristiques :

- de structure bâtie,
- d'équipement,
- d'usage de ces équipements
- Par exemple les bâtiments anciens
 à Toulouse sont construits en brique
 avec des toits en tuile et mal isolés.



Modèle de climat urbain (local) : Validation des consommations d'énergie

 A partir d'observations : Campagne CAPITOUL (2004-2005 sur Toulouse)

Modèle de climat urbain (local) : Validation des consommations d'énergie

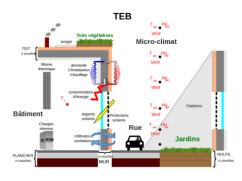
En comparant TEB et Energy+ :

Pour 2 climat (en Paris et à Cordoue)

Pour 5 types de bâtiments, d'âges différents

→ 5 % d'écart

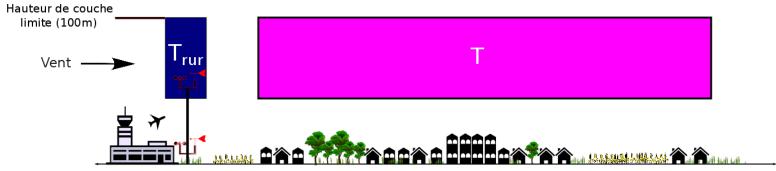
(sauf pour la maison de ville ancienne : 20 %)


Energy+ Maquette détaillée

Energy+ TEB-like

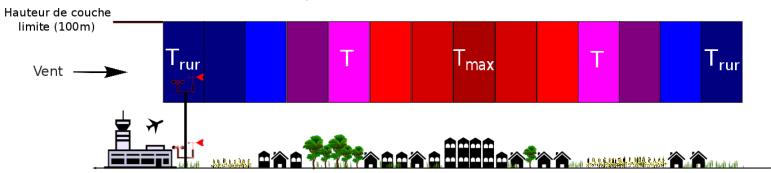
TEB

- Influence à l'échelle de l'agglomération
- Nécessite une représentation de l'atmosphère au dessus et autour de la ville
- 2 approches dans ACCLIMAT :
 - Modèle atmosphérique à haute résolution (MesoNH)
 - Un modèle conceptuel (pour des simulations longues)



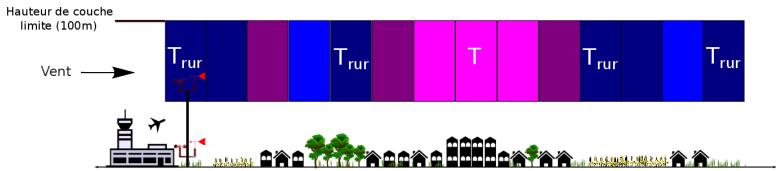
- Influence à l'échelle de l'agglomération
- Nécessite une représentation de l'atmosphère au dessus et autour de la ville
- 2 approches dans ACCLIMAT :
 - Modèle atmosphérique à haute résolution (MesoNH)
 - Un modèle conceptuel (pour des simulations longues)

- Le micro-climat urbain est calculé avec le modèle conceptuel
- Pour des impacts sur une année et plusieurs scénarios
- L'îlot de chaleur urbain est calculé à partir des travaux de B. Bueno, J. Hidalgo et J. Le Bras



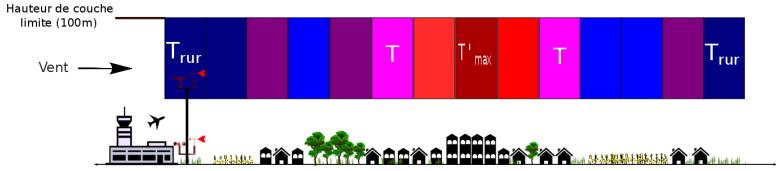
1. Bilan énergétique sur la surface complète de la ville

- Le micro-climat urbain est calculé avec le modèle conceptuel
- Pour des impacts sur une année et plusieurs scénarios
- L'îlot de chaleur urbain est calculé à partir des travaux de B. Bueno, J. Hidalgo et J. Le Bras



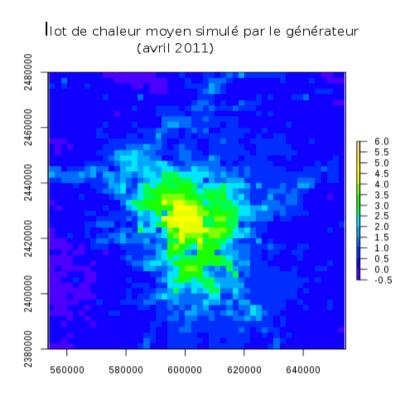
2.a Spatialisation en fonction de la distance au centre-ville

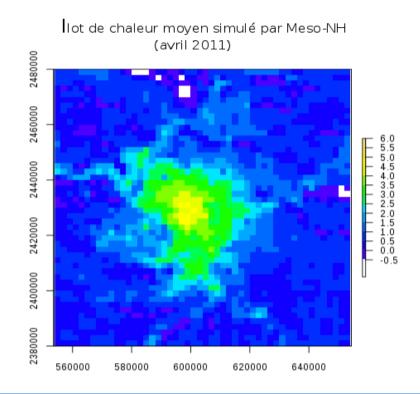
- Le micro-climat urbain est calculé avec le modèle conceptuel
- Pour des impacts sur une année et plusieurs scénarios
- L'îlot de chaleur urbain est calculé à partir des travaux de B. Bueno, J. Hidalgo et J. Le Bras



2.b Spatialisation en fonction de la fraction de ville

- Le micro-climat urbain est calculé avec le modèle conceptuel
- Pour des impacts sur une année et plusieurs scénarios
- L'îlot de chaleur urbain est calculé à partir des travaux de B. Bueno, J. Hidalgo et J. Le Bras


3. = 0.5*2a+0.5*2b Bilan global sur toute la ville



Modèle de climat urbain (agglomération) : Validation

- Validation : comparaison avec MesoNH
- Sur Paris : un an de simulations MesoNH

Les scénarios technologies et usages

Scénarios implémentés au sein des scénarios systémiques

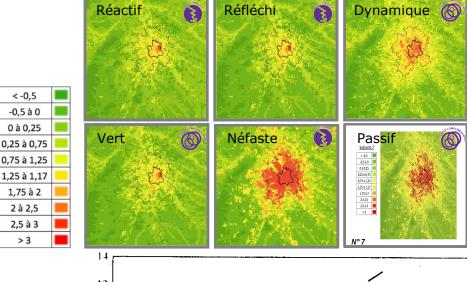
Utilisés par SURFEX

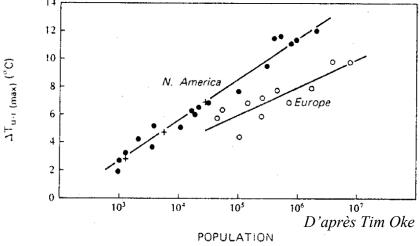
ADAPTATION TECHNOLOGIQUE	SURFEX_ Usages_Clim	SURFEX_ Usages_ Chauffage	SURFEX_ Réglementations	SURFEX_ Protections_ solaires
TECH1 : Ville énergétiquement vertueuse & volontariste	Usage économe de la clim	Usage économe du chauffage	Introduction rapide des réglementations	Protections solaires dans le résidentiel et les bureaux
TECH2 : Ville Individualisme	Usage économe de la clim	Usage économe du chauffage	Introduction lente des réglementations	Protections solaires dans le résidentiel et les bureaux
TECH3 : Ville Fil de l'eau	Usage intensif de la clim	Usage intensif du chauffage	Introduction lente des réglementations	Protections solaires dans le résidentiel
TECH5 : Ville Climatiquement néfaste	Usage intensif de la clim	Usage intensif du chauffage	Pas de rénovation	Protections solaires dans le résidentiel

Îlots de chaleur Urbain (nocturne, estival)

Résultats micro-climat

Population :

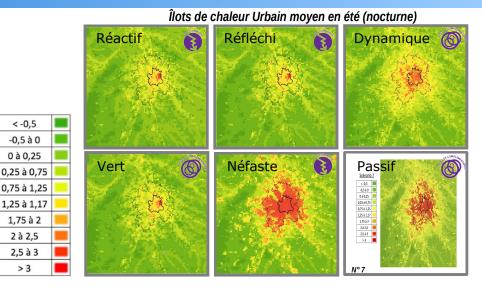

1 400 000 hab



2 000 000 hab

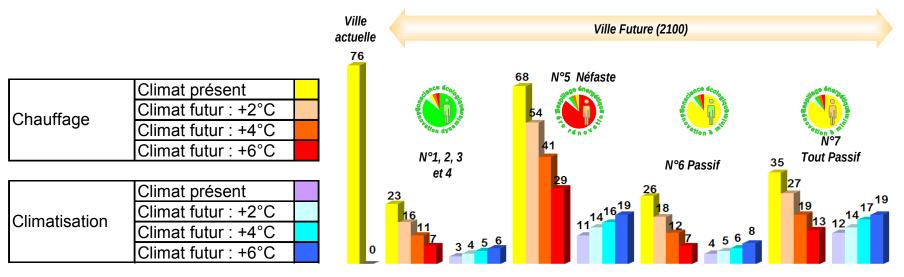
 L'îlot de chaleur dépend en général de la population

• Qu'en est-il ici ?


18

Conclusions micro-climat

- Des leviers autre que la population permettent de moduler l'îlot de chaleur urbain.
- Une ville minérale, compacte avec des tours conduit à un îlot de chaleur relativement fort en été.
- La ville verte semble un bon compromis du point de vue de l'îlot de chaleur.


16 septembre 2013

19

Résultats conso. d'énergie (kWh/m²/an)

- Les consommations d'énergie ne sont sensibles au premier ordre qu'au scénario technologie/usage
- Le réchauffement climatique diminue la demande d'énergie en chauffage (de -50% à -75% environ) et augmente la climatisation.
- Le réchauffement climatique diminue la demande en énergie d'un point de vue global (chauffage + clim). On pourrait climatiser plus qu'on ne chauffe.

Conclusions micro-climat / énergie

- Il est possible de moduler l'îlot de chaleur urbain.
- Un impact couplé de la rénovation et de l'usage pour le chauffage. Fort effet d'inertie potentiel du parc existant.
- Pour la clim, la température de consigne qui est le levier principal.
- Attention à la période proche! La conso. liée au chauffage peut varier de -50 % à +10 % entre 2010 et 2040 A ces échelles de temps, l'impact le plus immédiat semble être sur les usages.