

 Challenges for using PREP
and PGD operationally

Tayfun Dalkılıç, Daan Degrauwe, Piet Termonia

Contents

Technical information
● cy39_t1.03, including Surfex 7.2

● SGI-UV2000: 256-core 2.4 Ghz 1TB shared memory
machine

● PREP
 memory consumption
 cpu time

● PGD

PREP: CPU time

● Using PREP to interpolate from operational Turkish domain
(709 x 439) to domains of different dimensions

● Oper@4.5km
● 250@4km
● 500@1.5km
● 1000@0.5km
● 1500@0.5km

*** 1500 domain coincides with 500 domain

mailto:Oper@4.5km
mailto:250@4km
mailto:500@1.5km
mailto:1000@0.5km
mailto:1500@0.5km

PREP: CPU time

● Profiling with Dr Hook for 1500 x 1500 domain:

Profiling information for program='./PREP', proc#1:

Memory usage : 27314 MBytes (heap), 27311 MBytes (rss)
Wall-time is 1790.10 sec on proc#1 (1 procs, 1 threads)

 # % Time (s) # of calls Routine@<thread-id>
 1 52.91 947.087 19 MODI_AV_PGD:AV_PATCH_PGD_1D:PART2@1
 2 38.59 690.852 924 BILIN@1
 3 3.41 61.109 63 MODI_AV_PGD:AV_PGD_1D@1
 ...

● So 3 routines take about 95% of CPU time!

PREP: CPU time
source code optimizations (1)

● AV_PGD_1D and AV_PATCH_PGD_1D: loop over gridpoints
inside loop over all covers. The number of covers is 573,
i.e. all covers that exist globally. But inside a LAM
domain, only a limited number of covers will actually be
present (e.g. 30 over Belgium, 100 over Turkey)

→ Solution: we added an extra argument to these
subroutines to indicate which covers are present, and
only perform the loop over these covers.

 This also reduces memory consumption.

PREP: CPU time
source code optimizations (2)

● Number of calls to BILIN seems quite large (924)
● A majority of these calls is related to different vegetation types (12).
● However, in our setup, we only have 1 patch type, meaning that the

fields being interpolated are the same for all 12 vegetation types.
[Concretely, in the routine PREP_HOR_ISBA_FIELD, the array ZFIELDIN
is dimensioned as (NGP x 20 x 12), but it contains 12 copies of the
same NGP x 20 array.]

→ Solution: We replace the loop over the vegetation types (12) by a
loop over the patch types (1) in PREP_HOR_ISBA_FIELD. This reduces the
number of calls to BILIN from 924 to 242.

*** The results remain exactly the same after these source code
optimizations.

PREP: CPU time
Use of OpenMP

● The 3 most expensive routines contain easy-to-
parallelize loops over the gridpoints.

● Introducing OpenMP directives allows to run PREP on
multiprocessor (shared-memory) machines.

PREP: CPU time

● Results: CPU time (s)

Target Geometry ORIG OPT OPT + OpenMP

250 x 250 98 47 25

500 x 500 219 64 32

1000 x 1000 909 148 56

1500 x 1500 1790 323 106

ORIG : Original PREP
OPT : Source code optimizations
OpenMP : optimal number of threads between 1 and 32

PREP: memory consumption

● We consider the “Scientific Upper Bound”, i.e. the most
demanding scenario from the scientific point of view: all
573 covers present; 12 patches.

● We determine the relationship between number of
gridpoints (target and departure) and memory usage.

● We consider 50GB shared memory as the reference
(ECMWF machine)

PREP: memory consumption

Departure Geometry

Target Geometry

250 x 250 500 x 500 1000 x 1000

500 x 500

1000 x 1000

1500 x 1500

2000 x 2000

3000 x 3000

3.1
137

12.5
694

26.7
1420

12.7
1027

27.1
2230

Memory usage (GB)
CPU time (s)

47.2 47.7

105.7

Measured with
Dr. Hook

Extrapolated

106.1

49.4

107.9

29.0

50GB LIMIT

PREP: memory consumption

● Remark: we discovered large memory leaks in PREP
due to the use of pointers, which can be reallocated
without deallocating.

Remarks on PGD

We experienced problems with creating PGD files for
large domains (e.g. 2000 x 2000)

● CPU time: routine INTERPOL_NPTS seems to contain a
double loop over the gridpoints!

● Memory consumption: ~3 times as much as for PREP,
so this may become problematic in the near future!

*** But we didn't have a look at possible optimizations yet ...

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12

