HIRLAM NWP activities connected to use and development of SURFEX

Patrick Samuelsson SMHI

with contributions as acknowledged

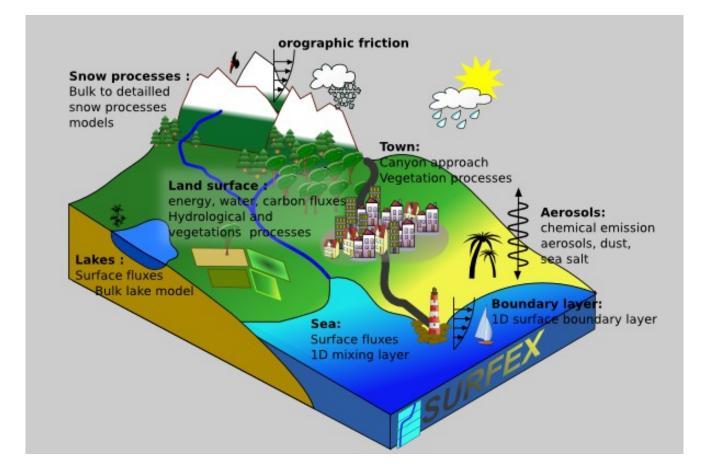
Toulouse, February 27, 2017

General surface comments

Surface physics in SURFEX is in many aspects well beyond the needs in NWP applications but plenty of non-utilized potential exist! SURFEX includes more processes, implemented in a more consistent way, than HIRLAM surface ever did.

At the same time, our latest operational version, cy40h1.1, of the ALADIN-HIRLAM NWP system (HARMONIE-AROME model configuration) is in some important aspects less "advanced" over land than latest HIRLAM (still running at some centres):

	c y40h1.1	HIRLAM
Land		
Patches	1	1-3 (incl. expl. canopy)
Soil	Force-restore	Diffusion
Snow	Composite	Bulk-1L
Glacier	-	soil with ice properties
Assimilation	CANARI-OI	OI
Sea Lake Town	SICE Deep soil temp TEB	2-layer ice scheme Deep soil temp/FLake No (open land)
Physiog.	ECOCLIMAP	FAO


General surface comments

Surface physics in SURFEX is in many aspects well beyond the needs in NWP applications but plenty of non-utilized potential exist! SURFEX includes more processes, implemented in a more consistent way, than HIRLAM surface ever did.

At the same time, our latest operational version, cy40h1.1, of the ALADIN-HIRLAM NWP system (HARMONIE-AROME model configuration) is in some important aspects less "advanced" over land than latest HIRLAM (still running at some centres):

Land	c y40h1.1	HIRLAM	cyxxh
Patches Soil Snow Glacier	1 Force-restore Composite - CANARI-OI	1-3 (incl. expl. canopy) Diffusion Bulk-1L soil with ice properties OI	2 patches with excl. canopy Diffusion (14 layers) Explicit snow (12 layers) Explicit snow as glacier MESCAN-EKF/EnKF
Sea Lake Town	SICE Deep soil temp TEB	2-layer ice scheme Deep soil temp/FLake No (open land)	Sea ice FLake (later with EKF) TEB (more options)
Physiog.	ECOCLIMAP	FAO	Utilize high res. dấ ta i r_iạm ፣

Lake, Sea, Town, Nature

Presentations at the Workshop from HIRLAM institutes

- Ekaterina Kurzeneva (FMI): Details around lake model FLake in SURFEX and HARMONIE
- Yurii Batrak (MetNorway): SICE: simple sea ice scheme. Possibilities and limitations
- Hanneke Luijting (MetNorway): Regional Snow Modeling in Norway with SURFEX/Crocus
- Mariken Homleid and Trygve Aspelien (MetNorway): From D95 to Explicit snow scheme- experiences from offline and plans for NWP
- Emily Gleeson (Met Éireann): Modelling Glaciers in the ALADIN-HIRLAM NWP System.
- Juan Carlos Sanchez Perrino (AEMET): Implementation of water table dynamics in SURFEX based on explicit diffusion equations.

Activities I include but not mentioned by others at the Workshop:

- David Segersson & Jorge H. Amorim (SMHI): Urban SIS: high resolution climate data for cities
- Magnus Lindskog & Patrick Samuelsson (SMHI): Replacing OI with EKF for Forcerestore/D95 snow setup.
- FMI group: Snow analysis by the
- Mariken: Moving from CANARI to MESCAN
- Patrick, Trygve, Mariken et al.: 2 patches
- Bolli (IMO): Improvements over Iceland with new physiography

2006-2007 2012-2014

Urban SIS: high resolution climate data for cities

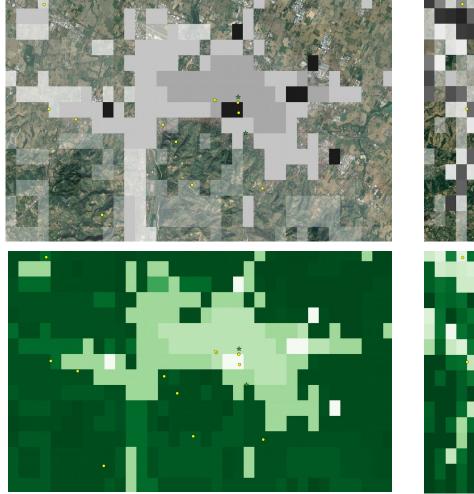
A database for end-users working with infrastructure & health in the urban environment

David Segersson & Jorge H. Amorim

On behalf of

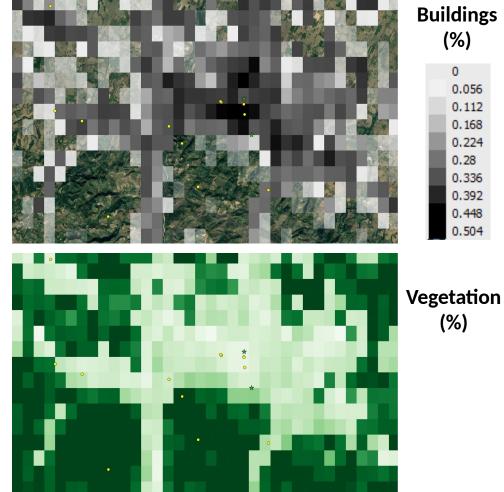
ECMWF for the European Commission

UrbanSIS - Refining the urban surface


Data category	Product	Spatial resolution (m)	Source data type	Webpage	
European physiography	ECOCLIMAP II (default HARMONIE)	1000	ECOCLIMAP-I, GLC2000, MODIS	https://opensource .cnrm-game-meteo.f r/	
Enriched with:					
Spatial coverage of land cover types	Copernicus Land Monitoring Services: Urban Atlas 2012	100	Satellite data PROBAV v1.4	http://land.coperni cus.eu/local/urban- atlas	
Building polygons	OpenStreetMap	nd	Various sources	https://www.opens treetmap.org	
Time-series of LAI	Copernicus Global Land Service	1000	Satellite data	http://land.coperni cus.eu/global/theme s/vegetation	
Building+tree heights (exclusively for Stockholm case)	Swedish Forest Agency	12.5	Lidar measurements	http://www.skogss tyrelsen.se/Myndi gheten/Om-oss/Opp na-data	

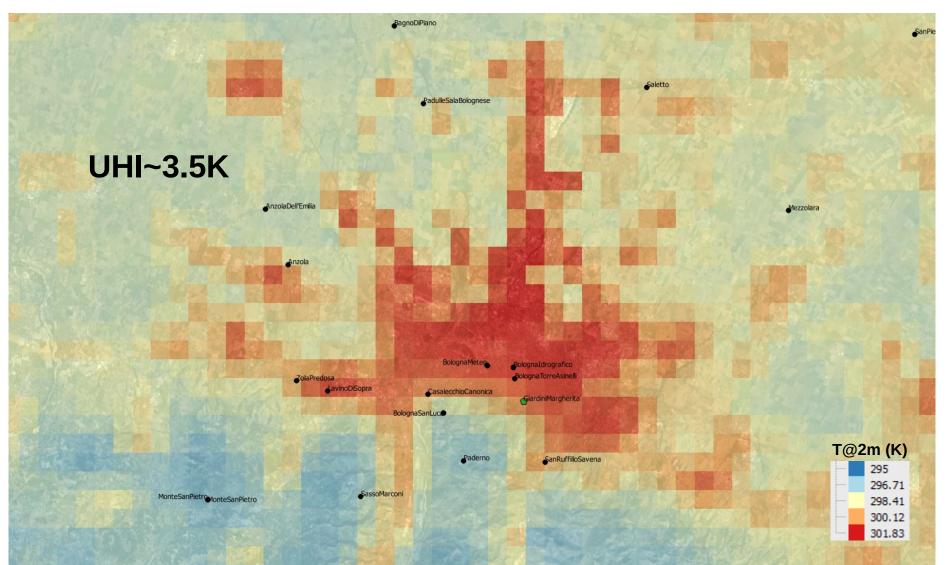
Selection criteria for data sources: *Accuracy/reliability *Spatial (& time) resolution

*Availability


UrbanSIS - Refining the urban surface for Bologna

Default ECOCLIMAPII:

New refined physiography:


0 0.056 0.112 0.168 0.224 0.28 0.336 0.392 0.448 0.504

The intra-city gradients of building density and vegetation fraction are more refined with inclusion of the enriched data sets.

UrbanSIS - Urban Heat Island (UHI) effect over Bologna

Monthly mean temperature@2m - July 2012

General surface comments

Surface physics in SURFEX is in many aspects well beyond the needs in NWP applications but plenty of non-utilized potential exist! SURFEX includes more processes, implemented in a more consistent way, than HIRLAM surface ever did.

At the same time, our latest operational version, cy40h1.1, of the ALADIN-HIRLAM NWP system (HARMONIE-AROME model configuration) is in some important aspects less "advanced" over land than latest HIRLAM (still running at some centres):

Land	c y40h1.1	HIRLAM	cyxxh
Patches Soil Snow Glacier Assimilation	1 Force-restore Composite - CANARI-OI	1-3 (incl. expl. canopy) Diffusion Bulk-1L soil with ice properties OI	Diffusion (14 layers) Explicit snow (12 layers)
Sea Lake Town	SICE Deep soil temp TEB	2-layer ice scheme Deep soil temp/FLake No (open land)	Sea ice FLake (later with EKF) TEB (more options)
Physiog.	ECOCLIMAP	FAO	Utilize high res. date ir la m

Is it necessary to increase the land process complexity?

Yes!

With current Force-restore scheme we have a memory in the soil energy/ temperature of roughly 1 day. This is not enough to give reasonable conditions for e.g. evapotranspiration.

The current composite soil/snow/vegetation (one single energy budget) gives e.g. wrong Bowen ratio (= SHF/LHF) and wrong ground heat flux.

Thus, these simplified parametrisations cause biases (in e.g. T2m, Rh2m) which we now try to correct for with surface data assimilation. But, we should not rely (so much) on data assimilation to fix biases.

We have plenty of examples where duty forecasters complain on the performance of the current operational system for near-surface conditions (supported by continuous verification) and where some of these complains can be attributed to lack of proper process descriptions. E.g. excess Rh2m over Scandinavia in spring time.

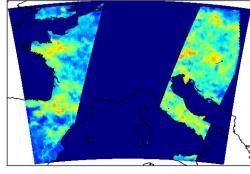
Utilisation of satellite radiances (in combination with observation operators) in surface data assimilation requires more relevant model variables (e.g. snow surface conditions).

Surface data assimilation

Two main reasons why we must leave current OI (Optimal Interpolation) behind:

- Increased process complexity (increase in prognostic variables from ~10 to ~100).
- Utilisation of remote sensing products/radiances.

In near future the current OI (Optimal Interpolation) will be replaced by EKF (Extended Kalman Filter) methods but the longer term plan is to go for EnKF (Ensemble Kalman Filter) methods.

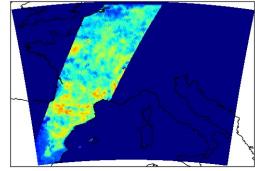

Two main reasons why EnKF should be better than EKF:

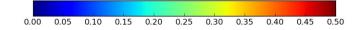
- Easier because one avoids the assumption that the system is required to behave linearly and one avoids the sensitive choice of size of perturbations.
- Fits better with EPS activities where atmosphere and surface can be perturbed simultaneously in a consistent way.

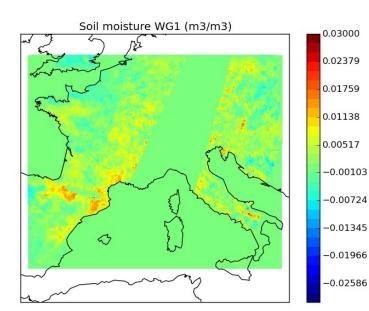
Surface Data Assimilation of ASCAT data using EKF

0.50

ASCAT PROCESSED METOP-A 20160612 09 UTC (0-0.5 m3/m3)

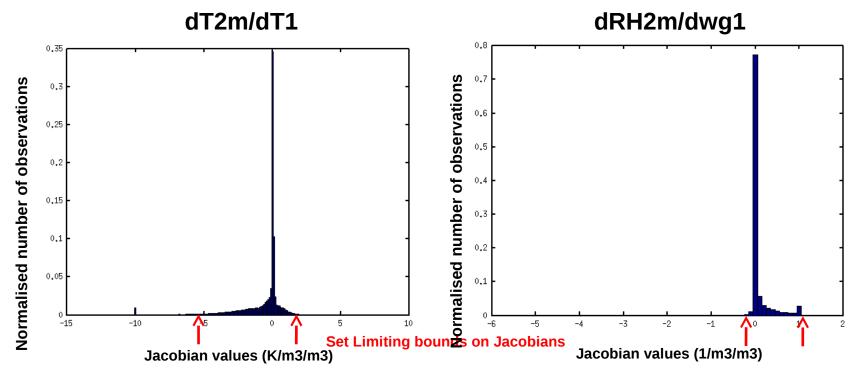

0.10


0.00


0.05

ASCAT A & B 2016-06-12 09 UTC

0.15 0.20 0.25 0.30 0.35 0.40 0.45


EKF based surface data assimilation WG1 increments 2016-06-12 09 UTC

EU-IMPREX work by Magnus Lindskog (SMHI)

Surface Data Assimilation of ASCAT data using EKF

Tuning of the EKF system needed

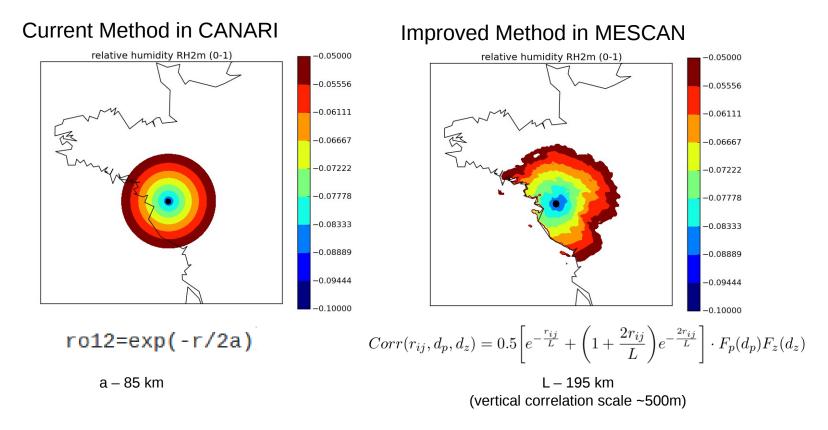
- Error specification
- Handling of large and noisy Jacobians

 $\mathbf{H}_{ij} \simeq \frac{\mathbf{y}_i(\mathbf{x} + \delta x_j) - \mathbf{y}_i(\mathbf{x})}{\delta x_i}$

Consider the treatment of oscillations discussed by Annelies Duerinckx: oscillations occurring at critical values of the Richardson number when changing from an unstable to a stable boundary layer. She shows that the impact of these oscillations can easily be cured with a simple numerical temporal filter.

Snow analysis

A visiting student at FMI, Maxime Quenon, has published a report on "Visual and Statistical Analysis of Snow Cover" where snow extent (SE) and Snow-Water Equivalent (SWE) simulated by cy38h1.2 HARMONIE-AROME-SURFEX has been compared with SYNOP snow depth, MetOp and MSG SE and Globsnow SWE. Report available via hirlam.org.

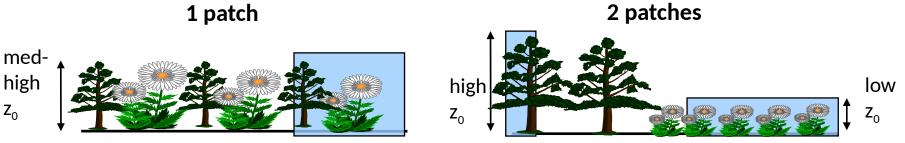

Next step is to utilize the satellite SE product H-SAF. Other possible sources of satellite snow-related information are H-SAF SWE, based on microwave data (similar to Globsnow), and L-SAF albedo.

Please talk to Ekaterina Kourzeneva (FMI) if you are interested in details and plans.

Move from CANARI to MESCAN

Horizontally varying background error statistics in MESCAN.

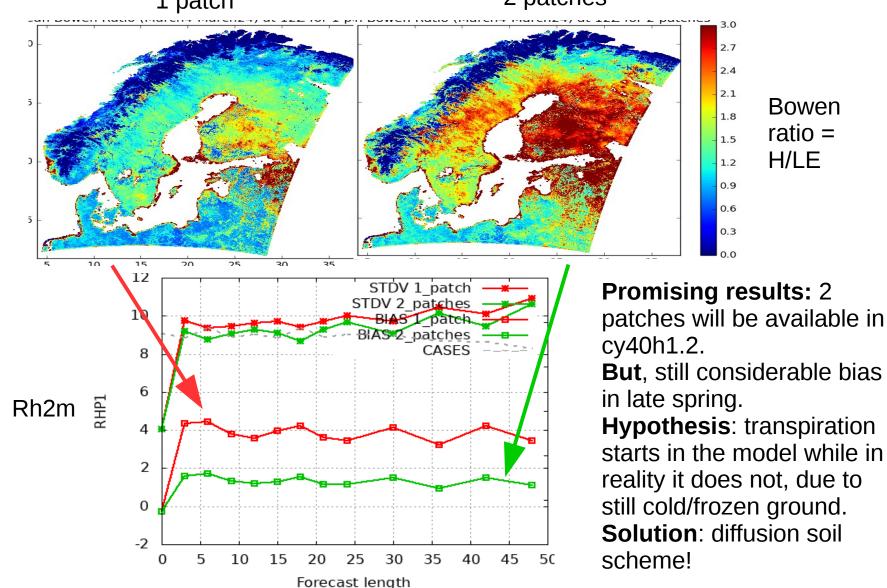
Impact of one single SYNOP Relative Humidity observation at Rh2m (%). The observation is located close to the west coast of France and the observed Rh2m is approximately 15 % less than the corresponding model value.


Magnus Lindskog, Tomas Landelius (SMHI) Mariken Homleid (MetNorway)

Problem with too cold/moist spring conditions in cy38h1.2

Over Scandinavia HARMONIE-AROME (cy38h1.2) and HIRLAM (E05 at SMHI) differ in dividing available net radiation at surface into sensible and latent heat fluxes during spring situations leading to too cold/moist near-surface conditions in cy38h1.2.

Similar problem is reported over the Netherlands...

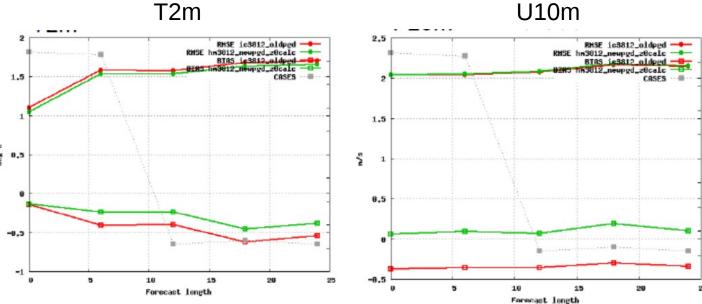

One hypothesis is that using 2 patches in SURFEX instead of 1 can help this problem (similar to HIRLAM 7.4). A test branch of cy40h has been setup by MetCoOp with modified OI for 2 patches:

Note: The atmospheric surface-boundary layer (SBL) (also known as the Canopy model) needs to be switched off when 2 patches are used.

People involved: Trygve Aspelien, Patrick Samuelsson, Mariken Homleid, Karl-Ivar Ivarsson, Javier Calvo Sanchez

Problem with too cold/moist spring conditions in cy40h1.1March 20161 patch2 patches

Improvements over Iceland with new physiography


Bolli Palmason et al (IMO, Icelandic Met Office)

Modified ECOCLIMAP for Iceland based on four databases:

- Corine 2006
- Agricultural Univ. of Iceland (AUI) soil map
- AUI vegetation map
- MODIS LAI

Experiments for July 2012 with OLD PGD and NEW PGD Biases decrease for

THANKS!

LA

Wallpaper Web any