

Simulating aquifers and floodplains in a global climate model: evaluation and impact

<u>Jeanne Colin</u>⁽¹⁾, Bertrand Decharme⁽¹⁾, Jean-Pierre Vergnes⁽²⁾, Marie Minvielle ⁽¹⁾

(1): CNRM-Météo-France; (2): BRGM-ORléans

SURFEX users Workshop 2017, Toulouse, March 1st 2017

jeanne.colin@meteo.fr

Motivations

- Why modeling aquifers and floodplains in a climate model ?
 - Because it is more realistic...
 - To take into account their possible impact on the simulated climate
 - Evolution of groundwater ressources in the future ?

- How accurately do we simulate aquifers and floodplains?
- Does it improve the SURFEX-CTRIP hydrology (river discharges) ?
- What is the impact on the simulated (present-day) climate?

Outline

1. Presentation of the model

- CNRM-CM6 climate model
- Aquifer scheme and floodplains model
- Simulations
- 2. Evaluation
- 3. Impact on the simulated climate

Summary and outlook

The CNRM-CM 6 (CMIP6) climate model

Hydrology in ISBA-CTRIP and aquifer scheme New version (CNRM-CM6)

- 14-Layers explicit soil scheme (*Boone et al., 2000 Decharme et al., 2011 & 2013*)
- 12-Layers explicit snow scheme (mass and heat) & Soil Organic Carbon effects on soil properties (*Boone and Etchevers, 2001*, *Decharme et al., 2016*)
- Variable flow velocity and river network at 0.5° (Decharme et al., 2011)
- Two-dimensional diffusive aquifer allowing upward capillarity fluxes to the subsoil (*Vergnes et al., 2012a,b & 2014*)
- Floodplains dynamics with direct re-evaporation, precipitation interception and soil re-infiltration

 Decharme et al.. 2008 & 2012

$$\omega \frac{\partial H}{\partial t} = \frac{1}{r^{2} \cos{(\phi)}} \left[\frac{\partial}{\partial \theta} \left(\frac{T_{\theta}}{\cos{(\phi)}} \frac{\partial H}{\partial \theta} \right) + \frac{\partial}{\partial \phi} \left(T_{\phi} \cos{(\phi)} \frac{\partial H}{\partial t} \right) \right] + Q_{sb} - Q_{riv}$$

H: water table head (m)

 ω : effective porosity

T: transmissivity (m²/s)

(Vergnes et al. 2012, 2014)

Aquifer scheme: coupling with the ISBA soil column

$$F_N=k_N$$

$$F_T = k_N \left[\frac{(\psi_N - \psi_{\text{sat}})}{\Delta \overline{z}_N} + 1 \right]$$

f : fraction of the grid-cell affected by capillary rises

$$F = f_{\text{wtd}}F_T + (1 - f_{\text{wtd}})F_N$$

Floodplains model

Addition of a flood reservoir in TRIP

$$\partial F/\partial t = Qin - Qout + (Pf - If - Ef)$$

Qin (kg.s⁻¹): Inflow from the river

Qout (kg.s⁻¹)): Outflow into the river

Pf (kg.s⁻¹): Precipitation intercepted by the floodplain

If (kg.s⁻¹): Inflitration of the flooded fraction of the ISBA grid cell

Ef (kg.s⁻¹)): Direct (open-water) Evaporation

(Decharme et al., 2008 & 2012)

Simulations

Inline (coupling with the atmosphere)

TRIP 0.5° SURFEX

ARPEGE-Climat

T127 – 150 km

1979-2010 (5-year spin-up)

Coupling with ARPEGE-Climate

CTL: Control

GW : Aquifers

GW+FLD: Aquifers + Flood

Cers

Offline (SURFEX-CTRIP stand-alone)

TRIP 0.5° SURFEX 1°

1979-2010

Forcing: PGF

CTL

GW

GW+FLD

2. Validation and evaluation Water Table Depths (WTD)

River discharges

3. Impact of aquifers on the simulated climate 2-meter temperature

Warming in winter (DJF) – 2-meter temperature

Not necessarily an improvement in this case...

Warming in DJF: processes involved?

Warming in DJF: processes involved?

Energy budget

Energy budget

Energy budget

Feedback loop

Feedback loop

=> Run ensemble simulations

3. Impact of the floodplains on the simulated climate

3. Impact of floodplains on the simulated climate 2-meter daily max. temperature and precipitation (JJA)

Floodplains effect in JJA Infiltration or open water evaporation?

Evapotranspiration differences (GWFLD – GW)

Mean annual water cycles in some basins

Summary

- An 2D-diffusive aquifer model and a floodplain scheme were added to the new version of the Land Surface Model ISBA-CTRIP.
- A first set of global climate simulations were performed with it.
- The simulated water table depths seem reasonnable.
- Offline (Land only) and inline evaluation show an improvement of river discharge with aquifers and floodplains.
- The aquifers lead to a warming of eastern Europe in winter (through an increase of liquid water in the soil column, leading to an warming of the soil temperature and a decrease of the snow cover in this region).
- The floodplains scheme leads to a cooling of maximum temperatures in summer (through an enhanced evapotranspiration)

Outlook

- Further analyse the results
- Run ensembles
- Assess the impact of aquifers and floodplains at higher resolutions (either globally or regionally)
- Assess the impact of aquifers and floodplains in scenarios of climate change

QUESTIONS?

Aquifer basins and parameters development at a regional scale

Aquifer basins and parameters extension at global scale

2. Validation and evaluation Water Table Depths (WTD)

River discharge Seasonal cycle

Observation CTRL-Offline GW-Offline

GW+FLD-Offline

GW: generally improves the cycle

GW + FLD : even better

Inline simulations River discharge

Obs
CTL-Inline
GW-Inline
GW+FLD-Inline

Inline discharge integrates error on the simulated precipitation

Improvement in almost every basin with GW, and sometimes even more so with GW+FLD.