

SURFEX Users Workshop

CIC meetings

Centre International de Conférences - Météo-France - Toulouse - France

February 27th - March 1st 2017

Integration of satellite data into SURFEX for better monitoring agricultural droughts

Calvet J.-C, Albergel C., Barbu A., Carrer D., Dewaele H., Fairbairn D., Leroux D., Mahfouf J.-F., Munier S.

CNRM, Toulouse, France

Heritage

- 1990's: Meteo-France implements sequential assimilation of in situ T2m, HU2m observations to analyze soil moisture in weather forecast models
- 2000's: SMOSREX field experiment (L-band radiometry, sequential assimilation of surface soil moisture and LAI)
- 2010's: Land Data Assimilation System contributing to Copernicus Global Land Service (cross-cutting monitoring)

Sequential assimilation

- Model trajectory is driven by observations
- Better than model calibration:
 - all kinds of errors can be accounted for
 - near real-time operation is possible
 - key parameters can be efficiently tuned minimizing analysis increments

SURFEX modeling platform of Meteo-France

Operational applications: weather forecast, hydrology, IPCC simulations (CNRM-ARPEGE)
Open-source. Used by many meteorological services in Europe and North Africa

ISBA land surface model

- LAI, FAPAR, SA, LST, SSM are modeled
- Evapotranspiration, CO₂ fluxes
- Implicit representation of N cycle
- Simulates the impact on vegetation of long-term changes of atmospheric CO₂
- A-gs approach (not the Farquhar model)
- Photosynthesis-driven phenology (no GDD model):
 LAI is flexible and can be analyzed at a given time

Data assimilation in SURFEX

LDAS-France (Barbu et al. HESS 2014)

- ISBA model forced by SAFRAN
- 8 km x 8 km

LDAS-Monde

- ISBA model forced by ERA-Interim
- **-** 0.5° x 0.5°

Assimilation (active monitoring) of

- Copernicus GLS LAI
- Copernicus GLS surface soil moisture

Passive monitoring of

- FAPAR
- SA
- LST

Assimilating LAI or FAPAR ?

$$\sigma_{LAI}^{b} = 0.2, \sigma_{LAI}^{o} = 0.2, \sigma_{FAPAR}^{o} = 0.02$$

Explicit FAPAR (Carrer et al. 2013, JGR-B)

LAI (mean monthly values for France)

Surface soil moisture (mean monthly values for France)

Enhanced representation of agricultural droughts: spring 2011 Soil moisture and photosynthesis: 10-day changes in 2011 (spring drought)

Enhanced representation of agricultural droughts: spring 2011 Agricultural drought indicators, example of Puy de Dôme (France)

LAI and biomass anomalies are less erratic than SWI anomalies Complementary information content

10-day scaled anomalies:

Enhanced representation of agricultural droughts: summer 2015

SURFEX User Workshop - 2017 – Toulouse

Validation: wheat yields in France Disaggregated Copernicus GLS LAI correlates with wheat yield

Dewaele et al. 2017

Validation: wheat yields in France

WITHOUT ASSIMILATION OF LAI

LAI

Validation: wheat yields in France

WITH ASSIMILATION OF LAI

LAI

LAI ISBA

Validation: wheat yields in France

Consistency can be improved further tuning a key model parameter: MaxAWC

(maximum available soil water content for plant transpiration)

Two methods:

- Inverse modeling (parameter tuning minimizing RMSE)
- LDAS tuning (minimizing LAI increments in sequential assimilation)

Validation: wheat yields in France MaxAWC retrieval: LDAS tuning (minimize LAI increments) is better than inverse modeling (minimize LAI RMSE)

	Inverse modeling	LDAS tuning	
Fraction of administrative units with significant correlation (p-value < 0.01)	36 %	53 %	
LAI RMSE	1.2 m ² m ⁻²	1.1 m ² m ⁻²	
Median MawAWC	111 mm	129 mm	More realistic !

Can be applied to any region of the world. E.g. Euro-Mediterranean LAI standard deviation of differences from 2007 to 2015

Conclusion

- Integration of satellite observations into SURFEX
- Fully coupled to hydrology (CTRIP model)
- Now the only system able to sequentially assimilate vegetation products (together with soil moisture observations)
- A powerful tool to monitor droughts
- Validation
 - using agricultural yield statistics
 - using SIF data

Prospects

Observation operator for surface albedo, ASCAT sigma0, LST, ... and SIF

Thank you for your attention !

Contact:

jean-christophe.calvet@meteo.fr

LDAS-Monde: Extra slides

Canopy scale: radiative transfer model (10 layers, sunlit/shaded leaves)

Multilayer photosynthesis model representing the absorption of direct/diffuse solar radiation

Prognostic FAPAR

Explicit FAPAR (Carrer et al. 2013, JGR-B)

LDAS-Monde: Extra slides

Enhanced representation of drought

