
SICE
in

SURFEX 8.1
details of implementation and recent developments

Yurii Batrak (MET-Norway)

XVIII·MAR·MMXIX

ALADIN-HIRLAM NWP system cy43h2 uses SURFEX 8.1

• New SURFEX code misses some components that are in use in some
operational NWP systems run within the HIRLAM consortium

• One of them is the thermodynamic sea ice scheme SICE

Default SICE configuration

SICE scheme provides the prognostic ice
surface temperature

• ice covered areas are defined by the
ice concentration field

• ice thickness is uniform and fixed
• snow-free configuration

α

Fo
rc

in
g

Fo
rc

in
g

D
ia

g.

D
ia

g.

Gi Gi+1

F = (1−α) ·Fw +α ·Fi

Upper air

SEA ICE: Ti

ISBA ES

Sea ice as seen by SICE

Extended SICE configuration

SICE scheme provides the prognostic ice
surface temperature, ice thickness and
snow on ice state

• ice covered areas are defined by the
ice concentration field

• ice thickness is prognostic
• snow on ice is resolved by ISBA-ES

α

Fo
rc

in
g

Fo
rc

in
g

D
ia

g.

D
ia

g.

Gi Gi+1

F = (1−α) ·Fw +α ·Fi

Upper air

SEA ICE: Ti

ISBA ES

Sea ice as seen by SICE

How to put SICE in SURFEX 8.1?

• SURFEX 8 provides it own sea ice model GELATO
• Both SICE and GELATO should be available for users
• It is preferable to have two schemes to provide a similar interface
• But schemes should not interfere with each other

How to put SICE in SURFEX 8.1? Classic approach.

! coupling_seafluxn.F90

IF (S%CSEAICE_SCHEME==’GELATO’) THEN
CALL SEAICE_GELATO1D_n(S, HPROGRAM,PTIMEC, PTSTEP)

END IF
! ...

IF (S%LHANDLE_SIC) THEN
IF (S%CSEAICE_SCHEME/=’GELATO’) THEN
S%XTICE = S%XSST

S%XSIC = S%XFSIC

S%XICE_ALB = XALBSEAICE

END IF
! ...

• Traditionally in SURFEX used
string-based selectors to identify
the scheme in use

• They allow fine-grained control
over the code but have drawbacks

schemes are not enforced to follow the same interface

adding a new scheme requires to update all these IF-statements

but if one of the is missed compiler would not complain

How to put SICE in SURFEX 8.1? Classic approach.

! coupling_seafluxn.F90

IF (S%CSEAICE_SCHEME==’GELATO’) THEN
CALL SEAICE_GELATO1D_n(S, HPROGRAM,PTIMEC, PTSTEP)

END IF
! ...

IF (S%LHANDLE_SIC) THEN
IF (S%CSEAICE_SCHEME/=’GELATO’) THEN
S%XTICE = S%XSST

S%XSIC = S%XFSIC

S%XICE_ALB = XALBSEAICE

END IF
! ...

• Traditionally in SURFEX used
string-based selectors to identify
the scheme in use

• They allow fine-grained control
over the code but have drawbacks

schemes are not enforced to follow the same interface

adding a new scheme requires to update all these IF-statements

but if one of the is missed compiler would not complain

How to put SICE in SURFEX 8.1? Classic approach.

! coupling_seafluxn.F90

IF (S%CSEAICE_SCHEME==’GELATO’) THEN
CALL SEAICE_GELATO1D_n(S, HPROGRAM,PTIMEC, PTSTEP)

END IF
! ...

IF (S%LHANDLE_SIC) THEN
IF (S%CSEAICE_SCHEME/=’GELATO’) THEN
S%XTICE = S%XSST

S%XSIC = S%XFSIC

S%XICE_ALB = XALBSEAICE

END IF
! ...

• Traditionally in SURFEX used
string-based selectors to identify
the scheme in use

• They allow fine-grained control
over the code but have drawbacks

schemes are not enforced to follow the same interface

adding a new scheme requires to update all these IF-statements

but if one of the is missed compiler would not complain

How to put SICE in SURFEX 8.1? Classic approach.

! coupling_seafluxn.F90

IF (S%CSEAICE_SCHEME==’GELATO’) THEN
CALL SEAICE_GELATO1D_n(S, HPROGRAM,PTIMEC, PTSTEP)

END IF
! ...

IF (S%LHANDLE_SIC) THEN
IF (S%CSEAICE_SCHEME/=’GELATO’) THEN
S%XTICE = S%XSST

S%XSIC = S%XFSIC

S%XICE_ALB = XALBSEAICE

END IF
! ...

• Traditionally in SURFEX used
string-based selectors to identify
the scheme in use

• They allow fine-grained control
over the code but have drawbacks

schemes are not enforced to follow the same interface

adding a new scheme requires to update all these IF-statements

but if one of the is missed compiler would not complain

How to put SICE in SURFEX 8.1? New approach.

• Fortran 2003 adds extensive OOP capabilities to the language
• They could be used to enforce the common interface for SICE and GELATO
• The calling side would operate the schemes via this interface
• As result it does not need any knowledge about the ice scheme in use

A drawback of this solution is that the both schemes should fully
implement the common interface

Adding a new method requires support from both SICE and GELATO

Calling side should not use any scheme-specific variables

How to put SICE in SURFEX 8.1? New approach.

• Fortran 2003 adds extensive OOP capabilities to the language
• They could be used to enforce the common interface for SICE and GELATO
• The calling side would operate the schemes via this interface
• As result it does not need any knowledge about the ice scheme in use

A drawback of this solution is that the both schemes should fully
implement the common interface

Adding a new method requires support from both SICE and GELATO

Calling side should not use any scheme-specific variables

How to put SICE in SURFEX 8.1? New approach.

• Fortran 2003 adds extensive OOP capabilities to the language
• They could be used to enforce the common interface for SICE and GELATO
• The calling side would operate the schemes via this interface
• As result it does not need any knowledge about the ice scheme in use

A drawback of this solution is that the both schemes should fully
implement the common interface

Adding a new method requires support from both SICE and GELATO

Calling side should not use any scheme-specific variables

Common interface of a sea ice scheme in SURFEX

TYPE, PUBLIC, ABSTRACT :: SEA_ICE_t
REAL, POINTER :: XSEABATHY(:) !< bathymetry
REAL, POINTER :: XSST(:) !< sea surface temperature [K]
REAL, POINTER :: XSSS(:) !< se surface salinity [K]

LOGICAL :: LINTERPOL_SIC
LOGICAL :: LINTERPOL_SIT

CONTAINS
PROCEDURE(IINIT), DEFERRED, PASS :: INIT
PROCEDURE(IPREP), DEFERRED, PASS :: PREP
PROCEDURE(IASSIM), DEFERRED, PASS :: ASSIM
PROCEDURE(IRUN), DEFERRED, PASS :: RUN
PROCEDURE(IDEALLOC), DEFERRED, PASS :: DEALLOC

PROCEDURE(IIO_READ), DEFERRED, PASS :: READSURF
PROCEDURE(IIO_WRITE), DEFERRED, PASS :: WRITESURF
PROCEDURE(IIO_WRITE), DEFERRED, PASS :: WRITE_DIAG

PROCEDURE(IRESPONSE), DEFERRED, PASS :: GET_RESPONSE
PROCEDURE(IDIAG), DEFERRED, PASS :: DIAG_MISC

PROCEDURE, PASS :: BIND_INPUTS
PROCEDURE, PASS :: COUPLING_ICEFLUX

END TYPE SEA_ICE_t

ABSTRACT INTERFACE
SUBROUTINE IINIT(THIS, HPROGRAM)
IMPORT :: SEA_ICE_t
CLASS(SEA_ICE_t) :: THIS
CHARACTER(LEN=6), INTENT(IN) :: HPROGRAM

END SUBROUTINE IINIT

SUBROUTINE IPREP(THIS, <...>)
! ...

END SUBROUTINE IPREP

SUBROUTINE IASSIM(THIS, <...>)
END SUBROUTINE IASSIM

! ...

! The rest of deferred procedures

! ...

END INTERFACE

This interface defines all actions that could be taken over a sea ice scheme

Generic code on the calling side. Initialization

• Sea ice variable is defined as a generic pointer:
! modd_seafluxn.F90

CLASS(SEA_ICE_t), POINTER :: ICE ! Sea-ice state

• The only place where the sea ice scheme should be checked in the classic
way is allocation of the pointer with correct type:
! init_seafluxn.F90

SELECT CASE(SM%S%CSEAICE_SCHEME)
CASE(’GELATO’)
ALLOCATE(GELATO_t :: SM%S%ICE)

CASE(’SICE ’)

ALLOCATE(SICE_t :: SM%S%ICE)
CASE(’NONE ’)

ALLOCATE(ICE_NONE_t :: SM%S%ICE)
CASE DEFAULT
CALL ABOR1_SFX(’Unknown sea ice scheme: ’ // TRIM(SM%S%CSEAICE_SCHEME))

END SELECT

• After this stage all interactions with the sea ice scheme should be done
through the generic interface

Generic code on the calling side. Interaction with a scheme
through the generic interface

Classic SURFEX approach
! coupling_seafluxn.F90

IF (S%CSEAICE_SCHEME==’GELATO’) THEN
CALL SEAICE_GELATO1D_n(S, HPROGRAM,PTIMEC, PTSTEP)

END IF

Object-oriented approach
! coupling_seafluxn.F90

CALL S%ICE%RUN(<...>)

! diag_inline_seafluxn.F90

IF (DGMSI%LDIAG_MISC_SEAICE) THEN
IF (TRIM(S%CSEAICE_SCHEME) == ’GELATO’) THEN
GELATO_DIM=SIZE(PTA)

DGMSI%XSIT = RESHAPE(&

glt_avhicem(S%TGLT%dom,S%TGLT%sit), &

(/GELATO_DIM/))

DGMSI%XSND = RESHAPE(&

glt_avhsnwm(S%TGLT%dom,S%TGLT%sit), &

(/GELATO_DIM/))

DGMSI%XMLT = S%TGLT%oce_all(:,1)%tml

ELSE
! Placeholder for an alternate seaice scheme

END IF
END IF

! diag_inline_seafluxn.F90

! GELATO-specific code has been moved to the

! source file implementing the common interface

! for GELATO model

IF (DGMSI%LDIAG_MISC_SEAICE) &
CALL S%ICE%DIAG_MISC(DGMSI)

! writesurf_seaicen.F90

IF (S%CSEAICE_SCHEME == ’GELATO’) THEN
YCOMMENT=’Number of sea-ice layers’

CALL WRITE_SURF(HSELECT,HPROGRAM,’ICENL’,nl,IRESP,YCOMMENT)
! ... and the rest of GELATO-specific calls...

END IF

! writesurf_seaicen.F90

CALL S%ICE%WRITESURF(HSELECT, HPROGRAM)

Note on the CSEAICE_SCHEME==NONE option

• Originally in SURFEX ’NONE’ indicates no prognostic sea ice scheme
• As result only the common diagnostic routine is called
• But when introducing a generic interface it is called unconditionally

As a consequence the ’NONE’ scheme should also fully implement the
generic interface

Since this scheme is purely diagnostic most of the routines are just
empty stubs

These unnecessary calls introduce some overhead compared to the
original SURFEX code

Note on the CSEAICE_SCHEME==NONE option

• Originally in SURFEX ’NONE’ indicates no prognostic sea ice scheme
• As result only the common diagnostic routine is called
• But when introducing a generic interface it is called unconditionally

As a consequence the ’NONE’ scheme should also fully implement the
generic interface

Since this scheme is purely diagnostic most of the routines are just
empty stubs

These unnecessary calls introduce some overhead compared to the
original SURFEX code

Note on the CSEAICE_SCHEME==NONE option

• Originally in SURFEX ’NONE’ indicates no prognostic sea ice scheme
• As result only the common diagnostic routine is called
• But when introducing a generic interface it is called unconditionally

As a consequence the ’NONE’ scheme should also fully implement the
generic interface

Since this scheme is purely diagnostic most of the routines are just
empty stubs

These unnecessary calls introduce some overhead compared to the
original SURFEX code

Note on the CSEAICE_SCHEME==NONE option

• Originally in SURFEX ’NONE’ indicates no prognostic sea ice scheme
• As result only the common diagnostic routine is called
• But when introducing a generic interface it is called unconditionally

As a consequence the ’NONE’ scheme should also fully implement the
generic interface

Since this scheme is purely diagnostic most of the routines are just
empty stubs

These unnecessary calls introduce some overhead compared to the
original SURFEX code

Example of SICE and GELATO performance

Test SURFEX off-line single point experiment

2016-02 2016-06 2016-10 2017-02 2017-06 2017-10 2018-02 2018-06 2018-10 2019-02

0.0

0.2

0.4

0.6

0.8

1.0

1.2

2016-02 2016-06 2016-10 2017-02 2017-06 2017-10 2018-02 2018-06 2018-10 2019-02

−2.0

−1.5

−1.0

−0.5

GELATO SICE

Performance of SICE in the operational system, February 14th

70◦N

80◦N

80◦N

0◦ 10◦E10◦W

0.0 0.2 0.4 0.6 0.8 1.0 1.2 1.4

70◦N

80◦N

0◦ 10◦E10◦W

0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7

Sea ice Snow on sea ice

Developments towards the data assimilation in SICE

• SICE is utilized in operational environment but runs freely
• Sea ice cover is defined by SIC from an external source
• But lack of ice dynamics affects the performance

Some of the problems could be overcome by using data assimilation

But available data mainly consist of remote sensing products

Developments towards the data assimilation in SICE

• SICE is utilized in operational environment but runs freely
• Sea ice cover is defined by SIC from an external source
• But lack of ice dynamics affects the performance

Some of the problems could be overcome by using data assimilation

But available data mainly consist of remote sensing products

Possible sea ice variables to be assimilated

• Sea ice thickness and snow water equivalent over sea ice
Assimilating these variables could help to improve the sea ice state in
absence of ice dynamics. But most of the products are highly uncertain.

• Sea ice temperature
Would help to improve the sea ice surface temperatures for a first few
hours of forecast. Though, generally less beneficial than the above-mentioned.

The ALERTNESS project has a task that aims to improve representation
of the sea ice cover by assimilating an ice surface temperature product.

Possible sea ice variables to be assimilated

• Sea ice thickness and snow water equivalent over sea ice
Assimilating these variables could help to improve the sea ice state in
absence of ice dynamics. But most of the products are highly uncertain.

• Sea ice temperature
Would help to improve the sea ice surface temperatures for a first few
hours of forecast. Though, generally less beneficial than the above-mentioned.

The ALERTNESS project has a task that aims to improve representation
of the sea ice cover by assimilating an ice surface temperature product.

But to add a new DA scheme to SURFEX is not an easy task

• The original idea is to use EKF within the SODA framework
• But SODA is highly tied to the ISBA DA
• Same holds for the (S)EKF source code except some auxiliary routines

SICE data assimilation framework

Data assimilation code for SICE is fully encapsulated within the SICE
source code

Calling side does not interact with SICE-specific components

! assim_sean.F90

ZSIC(:) = PSIC_IN(:)

! Consistency check

WHERE(ABS(ZSIC(:)) > 0)
WHERE(ZSIC(:) < 0.01) ZSIC(:) = 0.0

ENDWHERE

! Main generic driver for the sea ice DA code

CALL S%ICE%ASSIM(HPROGRAM, ZSIC, PLON_IN, PLAT_IN)

IF(S%LHANDLE_SIC .AND. (S%CSEAICE_SCHEME == ’SICE ’)) THEN
S%XSIC(:) = ZSIC(:)

END IF

All DA-related IO is performed by the SICE DA routine (unlike the
standard approach when IO is handled on the higher level)

Bias-aware Kalman filter

Classic Kalman filter is designed for unbiased control variables

B = MAMT + Q

K = BHT(HBHT + R)−1

Xa = Xb + K(Y −ℋ (Xb))

A = (I−KH)B(I−KH)T + KRKT

But ice surface temperature in SICE (esp. in the snow-free
configuration) is liable to systematic model errors

Bias-aware Kalman filter

Model bias could be accounted by extending Kalman filter formulations

B = MAMT + Q

Kb = BbHT(HBbHT + HBHT + R)−1

K = BHT(HBHT + R)−1

ba = bb−Kb (Y −ℋ (Xb−bb))

Xa = (Xb−ba) + K(Y −ℋ (Xb−ba))

A = (I−KH)B(I−KH)T + KRKT

Development status of EKF for SICE

The main framework is implemented for snow-free and snow-covered
states of the ice surface

Initial tests with idealized data to study the behaviour of the DA scheme

Off-line experiments suggest that bias correction should be applied as a
correction term during the forecast

Questions?

