

Towards a satellite driven Land Surface Model using SURFEX Offline Data Assimilation (SODA)

Albergel C., Munier S., Leroux D., Dewaele H., Fairbairn D., Barbu A. L., Mahfouf, J.-F., Faroux S., Le Moigne P., Decharme B. and Calvet J.-C.

clement.albergel@meteo.fr

SURFEX USER WORKSHOP Toulouse Meteopole campus (CIC) February 27 – March 1st 2017

 Modelling platforms including land surface models (LSMs), forced by gridded atmospheric variables, coupled to river routing models

(Dirmeyer et al., 2006)

LSMs simulated biophysical variables

- Fully consistent with surface flux and river discharge simulations
- Initialized using remotely sensed observations through Land Data Assimilation System

SURFEX-CTRIP satellite-driven hydrological system

SURFEX-CTRIP satellite-driven hydrological system

 ISBA-A-gs : simulates the diurnal cycle of water and carbon fluxes, plant growth and key vegetation variables on a daily basis
 (Calvet et al., 1998, 2007, Gibelin et al., 2006)

SURFEX-CTRIP satellite-driven hydrological system

 CTRIP : TRIP based river routing system with CNRM developments for global hydrological applications

 \rightarrow variable flow rate, flooding by overflowing rivers, aquifers

(Oki and Sud, 1998, Decharme et al., 2008, 2010)

- Open-loop & Analysis experiments over 2000-2012
- Spin-up (20 times 1990 + 1990-1999)

Model	Domaine	Atm. Forcing	DA Method	Assimilated Obs.	Observation Operator	Control Variables	Additional Option
ISBA-DF CO ₂ -responsive version (Interactive veg.)	Europe and the Mediterranean basin (0.5°)	Earth2Observe WRR1 (Schellekens et al., 2017)	SEKF	SSM (ESA-CCI) LAI	Second layer of soil (1-4cm) LAI	Layers of soil 2 to 8 (1-100cm) LAI	Coupling with CTRIP (0.5°)

ISBA daily coupling with CTRIP

ISBA to CTRIP : runoff, drainage, groundwater and floodplain recharges

CTRIP to ISBA : water table depth/rise, floodplain fraction, flood potential infiltration

- Open-loop & Analysis experiments over 2000-2012
- Spin-up (20 times 1990 + 1990-1999)

Model	Domaine	Atm. Forcing	DA Method	Assimilated Obs.	Observation Operator	Control Variables	Additional Option
ISBA-DF CO ₂ -responsive version (Interactive veg.)	Europe and the Mediterranean basin (0.5°)	Earth2Observe WRR1 (Schellekens et al., 2017)	SEKF	SSM (ESA-CCI) LAI	Second layer of soil (1-4cm) LAI	Layers of soil 2 to 8 (1-100cm) LAI	Coupling with CTRIP (0.5°)

ESA-CCI SSM v03.0

- SEKF : uses finite differences in the observation operator Jacobians (H) to relate the observations to the model variables
- → Model sensitivity to the observations over 24h assimilation window

- SEKF : uses finite differences in the observation operator Jacobians
 (H) to relate the observations to the model variables
- Model sensitivity to the observations over 24h assimilation window

2000-2012	∂LAI	∂w_2	∂w_3	∂W_4	∂w_5	∂w_6	∂w ₇	∂W_8
Median								
	<u>al Al</u>	<u>aw</u>	<u> </u>	<u>aw.</u>	<u> </u>	<u>aw</u>	<u> </u>	<u> </u>
Median	ULAI	0 <i>W</i> ₂	0 113	0 114	0 115	<i>c w</i> ₆	0 117	0 118
INICUIAIT								

Adapted from Decharme et al., 2013, only the first 8 layers of soil (over 14) are represented

- SEKF : uses finite differences in the observation operator Jacobians (H) to relate the observations to the model variables
- Model sensitivity to the observations over 24h assimilation window

2000-2012	∂SSM ∂LAI	$\frac{\partial SSM}{\partial w_2}$	$\frac{\partial SSM}{\partial w_3}$	$\frac{\partial SSM}{\partial w_4}$	$\frac{\partial SSM}{\partial w_5}$	$\frac{\partial SSM}{\partial w_6}$	$\frac{\partial SSM}{\partial w_7}$	$\frac{\partial SSM}{\partial w_8}$
Median								
	∂ LAI ∂ LAI	$\frac{\partial LAI}{\partial w_2}$	$\frac{\partial LAI}{\partial W_3}$	$\frac{\partial LAI}{\partial w_4}$	$\frac{\partial LAI}{\partial w_5}$	$\frac{\partial LAI}{\partial w_6}$	$\frac{\partial LAI}{\partial W_7}$	$\frac{\partial LAI}{\partial w_8}$
Median								

Adapted from Decharme et al., 2013, only the first 8 layers of soil (over 14) are represented

- SEKF : uses finite differences in the observation operator Jacobians (H) to relate the observations to the model variables
- Model sensitivity to the observations over 24h assimilation window

2000-2012	∂SSM ∂LAI	$\frac{\partial SSM}{\partial w_2}$	$\frac{\partial SSM}{\partial W_3}$	$\frac{\partial SSM}{\partial W_4}$	$\frac{\partial SSM}{\partial w_5}$	$\frac{\partial SSM}{\partial w_6}$	$\frac{\partial SSM}{\partial w_7}$	$\frac{\partial SSM}{\partial w_8}$
Median	-0.0010	0.1719	0.1543	0.0694	0.0275	0.0043	0.0006	0.0001
	∂ LAI ∂ LAI	$\frac{\partial LAI}{\partial w_2}$	$\frac{\partial LAI}{\partial W_3}$	$\frac{\partial LAI}{\partial w_4}$	$\frac{\partial LAI}{\partial w_5}$	$\frac{\partial LAI}{\partial w_6}$	$\frac{\partial LAI}{\partial W_7}$	$\frac{\partial LAI}{\partial w_8}$
Median	0.2220	0.0006	0.0015	0.0032	0.0068	0.0038	0.0011	0.0006

- Assimilation of SSM
 - LDAS will be more effective in modifying SM from the first layers of soil as model sensitivity to SSM decreases with depth
- Assimilation of LAI
 - LDAS will be more effective in modifying SM from layers four to six where most of the roots are present

- SEKF : uses finite differences in the observation operator Jacobians (H) to relate the observations to the model variables
- Model sensitivity to the observations over 24h assimilation window

2000-2012	∂SSM ∂LAI	$\frac{\partial SSM}{\partial w_2}$	$\frac{\partial SSM}{\partial w_3}$	$\frac{\partial SSM}{\partial W_4}$	$\frac{\partial SSM}{\partial w_5}$	$\frac{\partial SSM}{\partial w_6}$	$\frac{\partial SSM}{\partial w_7}$	$\frac{\partial SSM}{\partial w_8}$
Median	-0.0010	0.1719	0.1543	0.0694	0.0275	0.0043	0.0006	0.0001
	∂ LAI ∂ LAI	$\frac{\partial LAI}{\partial w_2}$	$\frac{\partial LAI}{\partial W_3}$	$\frac{\partial LAI}{\partial w_4}$	$\frac{\partial LAI}{\partial w_5}$	$\frac{\partial LAI}{\partial w_6}$	$\frac{\partial LAI}{\partial W_7}$	$\frac{\partial LAI}{\partial w_8}$
Median	0.2220	0.0006	0.0015	0.0032	0.0068	0.0038	0.0011	0.0006

Sensitivity of LAI to changes in SM weaker than that of SSM

control variables related to SM would be more impacted by the assimilation of SSM than LAI

- **Type_A [~0] :** Model dynamic is almost not sensitive to the observations
- **Type_B [0.2-0.8] :** Final offset is only a fraction of the initial perturbation indicating that the model dynamic is strongly dissipative
- Type_C [~1]: Perturbation of the initial state results in a very similar offset at the end of the assimilation window, the model dynamic is close to the identity

- Type_A [~0] : Model dynamic is almost not sensitive to the observations
- **Type_B [0.2-0.8] :** Final offset is only a fraction of the initial perturbation indicating that the model dynamic is strongly dissipative
- Type_C [~1]: Perturbation of the initial state results in a very similar offset at the end of the assimilation window, the model dynamic is close to the identity

SURFEX User Workshop Feb.27-Mar.1 2017

- **Type_A [~0] :** Model dynamic is almost not sensitive to the observations
- **Type_B [0.2-0.8] :** Final offset is only a fraction of the initial perturbation indicating that the model dynamic is strongly dissipative
- **Type_C** [~1] : Perturbation of the initial state results in a very similar offset at the end of the assimilation window, the model dynamic is close to the identity

SURFEX User Workshop Feb.27-Mar.1 2017

- **Type_A [~0] :** Model dynamic is almost not sensitive to the observations
- **Type_B [0.2-0.8] :** Final offset is only a fraction of the initial perturbation indicating that the model dynamic is strongly dissipative
- Type_C [~1]: Perturbation of the initial state results in a very similar offset at the end of the assimilation window, the model dynamic is close to the identity

Analysis Increments, 2000-2012

• Analysis impact on LAI (RMSD), 2000-2012

SURFEX User Workshop Feb.27-Mar.1 2017

Ø

METEO FRANCE

Analysis impact, 'indirectly' impacted variables 2000-2012

 Evaluation of analysis impact 2000-2012: evapotranspiration vs. GLEAM dataset (Global Land Evaporation Amsterdam Model, <u>www.gleam.eu</u>)

Evaluation of analysis impact 2000-2010: River discharge (Q)
 Q is scale to the drainage area, sub-basin > 10000km², 4-yr of data
 83 stations, 8 with Eff. Increase > 0.05 (3 < 0.05)

→ Neutral to positive (far of being impressive!)

SURFEX User Workshop Feb.27-Mar.1 2017

- Evaluation of analysis impact 2000-2010: grain yield over France vs. aboveground biomass 45 sites (Agreste portal, <u>http://agreste.agriculture.gouv.fr</u>)
- Inter-annual variability

Analysed Biomass shows better R and RMSD than that of the open-loop

Courtesy H. Dewaele

- Evaluation of analysis impact 2000-2010: grain yield over France vs. aboveground biomass 45 sites (Agreste portal, <u>http://agreste.agriculture.gouv.fr</u>)
- ➔ Inter-annual variability

Conclusions :

SODA implementation offers great perspectives!

(see presentations from Munier S., Calvet J.-C. & Leroux D.)

Model	Domaine	Atm. Forcing	DA Method	Assimilated Obs.	Observation Operator	Control Variables	Additional Option
ISBA-3L ISBA-DF	France (8km) SAFRAN (8km) Monde (1°) Select zone (0.5°/0.25°)	SAFRAN ERA-Interim Earth2Observe	SEKF EnKF*	SSM (ASCAT-SWI, ESA-CCI) LAI	WG1 (0-1cm) WG2 (1-4cm)* * LAI	WG2 WG1, XX, 8** LAI	FAPAR, SA, LST, SIF, GLEAM MODCOU*** CTRIP (0.5°)

* work in progress

** Only if ISBA-DF

*** Only over SAFRAN domain

- Positive impact on biomass, evapotranspiration, neutral to positive on river discharge
- Better use of satellite derived LAI should prove efficient improving e.g. river discharge

Towards a satellite driven Land Surface Model using SURFEX Offline Data Assimilation (SODA)

Albergel C., Munier S., Leroux D., Dewaele, H., Fairbairn D., Barbu, A. L., Mahfouf, J.-F., Faroux, S., Le Moigne, P., Decharme B., Calvet J.-C.

clement.albergel@meteo.fr

SURFEX USER WORKSHOP Toulouse Meteopole campus (CIC) February 27 – March 1st 2017

Model	Domaine	Atm. Forcing	DA Method	Assimilated Obs.	Observation Operator	Control Variables	Additional Option
ISBA-3L ISBA-DF	France (8km) SAFRAN (8km) Monde (1°) Select zone (0.5°/0.25°)	SAFRAN ERA-Interim Earth2Observe	SEKF EnKF*	SSM (ASCAT-SWI, ESA-CCI) LAI	WG1 (0-1cm) WG2 (1-4cm)* * LAI	WG2 WG1, XX, 8** LAI	FAPAR, SA, LST, SIF Modcou*** CTRIP (0.5°)

* work in progress

** Only if ISBA-DF

*** Only over SAFRAN domain

ESA-CCI SSM v03.0

- SEKF : uses finite differences in the observation operator Jacobians (H) to relate the observations to the model variables
- Model sensitivity to the observations over 24h assimilation window

2000-2012	∂SSM ∂LAI	$\frac{\partial SSM}{\partial w_2}$	$\frac{\partial SSM}{\partial w_3}$	$\frac{\partial SSM}{\partial w_4}$	$\frac{\partial SSM}{\partial w_5}$	$\frac{\partial SSM}{\partial w_6}$	$\frac{\partial SSM}{\partial w_7}$	$\frac{\partial SSM}{\partial w_8}$
Median	-0.0010	0.1719	0.1543	0.0694	0.0275	0.0043	0.0006	0.0001
	∂LAI ∂LAI	$\frac{\partial LAI}{\partial w_2}$	$\frac{\partial LAI}{\partial W_3}$	$\frac{\partial LAI}{\partial w_4}$	$\frac{\partial LAI}{\partial W_5}$	$\frac{\partial LAI}{\partial w_6}$	$\frac{\partial LAI}{\partial W_7}$	$\frac{\partial LAI}{\partial w_8}$
Median	0.2220	0.0006	0.0015	0.0032	0.0068	0.0038	0.0011	0.0006

Adapted from Decharme et al., 2013, only the first 8 layers of soil (over 14) are represented

