

Numerical simulations of snow on ski slopes using SURFEX/ISBA-Crocus-RESORT

P. Spandre^{1,2}, S. Morin¹, <u>D. Verfaillie</u>¹, H. François², M. Lafaysse¹, E. George-Marcelpoil²

¹Météo-France – CNRS, CNRM UMR 3589, CEN, Grenoble, France ²Irstea Grenoble, France

SURFEX Workshop, 2017, Toulouse

Context

- Snow conditions on ski slopes differ markedly from natural snow conditions because of grooming and snowmaking
- Critical socio-economic issues related to the sustainability of winter tourism in the context of climate variability and long term change

Spandre et al., 2016

3

- Developed in SURFEX within **Crocus** (one of the snowpack schemes of ISBA), on the basis of official V8 release. Not yet implemented in official version.
- Full description and evaluation : Spandre, P., S. Morin, M. Lafaysse, Y. Lejeune, H. François and E. George-Marcelpoil, Integration of snow management processes into a detailed snowpack model, *Cold Reg. Sci. Technol.*, 125, 48-64,doi :<u>10.1016/j.coldregions.2016.01.002</u>, 2016.

Atmosphere

- Developed in SURFEX within **Crocus** (one of the snowpack schemes of ISBA), on the basis of official V8 release. Not yet implemented in official version.
- Full description and evaluation : Spandre, P., S. Morin, M. Lafaysse, Y. Lejeune, H. François and E. George-Marcelpoil, Integration of snow management processes into a detailed snowpack model, *Cold Reg. Sci. Technol.*, 125, 48-64, doi :<u>10.1016/j.coldregions.2016.01.002</u>, 2016.

Grooming

Grooming

• Operational rules and parameters based on literature and panel assessment involving ski resort managers

Grooming

 Impact and evaluation based on observations in 4 ski resorts near Grenoble during one full season, comparing natural snow and groomed snow in terms of depth, density, SWE and vertical profiles (not shown)

Seasonal evolution

Spandre et al., 2016

Snowmaking

- Initial properties specified
 - \Rightarrow Density (600 kg/m³)
 - \Rightarrow Specific Surface Area (25 m² kg⁻¹)
 - \Rightarrow Sphericity (90%)

- Production flow rate specified
- · Wet-bulb temperature threshold specified
- Maximum wind speed (4.2 m s⁻¹)

Snowmaking

- Operational rules and parameters based on panel assessment involving ski resort managers
- Production can be driven by production targets, or related to snow depth/SWE thresholds at various times of the season
- Typically:
 - Early season production « as much as possible » before opening of resorts, typically December 15.
 - Wintertime production to sustain sufficient snow conditions if possible
 - Stop of production around March 1st.

Snowmaking

METEO FRANCE

Seasonal evolution

- Impact and evaluation based on observations in 4 ski resorts near Grenoble during one full comparing natural season. groomed snow snow, and groomed machine made snow in terms of depth, density, SWE and vertical profiles (not shown)
- Identification of significant losses of water used for snowmaking, up to 50%.
- Water losses issues refined in a follow-up publication. Still the highest uncertainty factor.

Spandre, P., François, H., Thibert, E., Morin, S., and George-Marcelpoil, E. : Seasonal evolution of a ski slope under natural and artificial snow : detailed observations and modelling, *The Cryosphere Discuss.*, doi :<u>10.5194/tc-</u> 2016-194, in review, 2016.

Applications driven by Cmrs SAFRAN

Use of massifs within which meteorological conditions vary by steps of 300m

Observations : in-situ, remotely-sensed, radiosondes

NWP model guess

ERA40 1958-2002 ARPEGE 2002 - ... Durand et al., 1999, 2009

11

Resorts spatial representation

• Use of ski-lifts catalogue

Computation of snow indicators

 Representation of snowmaking envelope in ski resorts (depend on spatial structure and assigned % coverage)

Computation of snow indicators

- Explicit representation of snow coverage in a ski resort
- Computation of resort-level **viability indicator** based on thresholds and critical dates (Christmas, winter holidays etc.)

Large-scale reanalysis

FRANCE

 Snow reliability of ski resorts in the French Alps, based on past winter conditions

Large-scale reanalysis

Relationship between snow conditions and socio-economic turnover (ski pass sales)

Future plans

 Apply the model in reanalysis mode for the **Pyrenees** (France / Spain / Andorra) and **lower lying** French mountain regions with ski resorts (Jura, Vosges, Massif Central, Corsica)

Future plans

- Apply the model in reanalysis mode for the **Pyrenees** (France / Spain / Andorra) and **lower lying** French mountain regions with ski resorts (Jura, Vosges, Massif Central, Corsica)
- Apply the model using adjusted EUROCORDEX climate projections over French mountain regions (ADAMONT method, Verfaillie et al.)

Future plans : ADAMONT

- quantile mapping & weather regimes

- vs. a meteorological reanalysis (SAFRAN)
- multi-variable and hourly

Alps & Pyrenees

Future plans : ADAMONT

- quantile mapping & weather regimes - vs. a meteorological reanalysis (SAFRAN)

- multi-variable and hourly

Future plans

- Apply the model in reanalysis mode for the **Pyrenees** (France / Spain / Andorra) and **lower lying** French mountain regions with ski resorts (Jura, Vosges, Massif Central, Corsica)
- Apply the model using adjusted EUROCORDEX climate projections over French mountain regions (ADAMONT method, Verfaillie et al.)
- Apply the model for real-time prediction and optimization of ski resorts operations (H2020 PROSNOW 2017-2020, PI S. Morin, 13 European partners including Irstea and TEC in France)

Future plans

- Apply the model in reanalysis mode for the **Pyrenees** (France / Spain / Andorra) and **lower lying** French mountain regions with ski resorts (Jura, Vosges, Massif Central, Corsica)
- Apply the model using adjusted EUROCORDEX climate projections over French mountain regions (ADAMONT method, Verfaillie et al.)
- Apply the model for real-time prediction and optimization of ski resorts operations (H2020 PROSNOW 2017-2020, PI S. Morin, 13 European partners including Irstea and TEC in France)
- Apply the model at European scale using UERRA 5.5 km reanalysis (Szczypta et al.) or EUROCORDEX climate projections adjusted using UERRA reanalysis

Future plans

- Apply the model in reanalysis mode for the **Pyrenees** (France / Spain / Andorra) and **lower lying** French mountain regions with ski resorts (Jura, Vosges, Massif Central, Corsica)
- Apply the model using adjusted EUROCORDEX climate projections over French mountain regions (ADAMONT method, Verfaillie et al.)
- Apply the model for real-time prediction and optimization of ski resorts operations (H2020 PROSNOW 2017-2020, PI S. Morin, 13 European partners including Irstea and TEC in France)
- Apply the model at European scale using UERRA 5.5 km reanalysis (Szczypta et al.) or EUROCORDEX climate projections adjusted using UERRA reanalysis
- Any SURFEX FORCING file can be used to drive the model !

Thank you !

- IPSL-CM5A-MR/RCA4 RCP8.5
- MPI-ESM-LR/RCA4 RCP8.5

Example of results

Example of results

First results – Meteorological variables

METEO FRANCE

First results ΛΕΤΕΟ irstea Meteorological variables

First results – Constant Meteorological variables

First results – Meteorological variables

IETEO

First results – Cors Cors Meteorological variables

First results – Cors Cors Meteorological variables

