GUEMAS Virginie

Virginie GUEMAS

CNRS research scientist

Email :

Research interests

 Parameterization of surface turbulent fluxes between the sea ice and the atmosphere
 Representation of snow cover and melt ponds on top of sea ice and their impact on the surface albedo
 Arctic amplification and teleconnections between polar and non-polar climates


On-going projects

 I am currently PI (2018-2024) of the ASET (Atmosphere - Sea ice Exchanges and Teleconnections) project funded by the French “Make Our Planet Great Again” program, on improving parameterizations of the turbulent heat exchanges between the sea ice and the atmosphere

 I am WP2 leader and CT1 leader in the H2020-funded CRiceS project on advancing our understanding of polar processes in the global climate system.

Past projects

 Co-coordinator (2017-2018) of the ERA4CS MEDSCOPE project on enhancing climate prediction capability with a focus on Western Europe.

 PI (2016-2018) of the H2020-funded APPLICATE project focusing on the linkages between the Arctic and mid-latitude regions.

 PI (2016-2018) of the H2020-funded INTAROS project focusing on documenting the Arctic climate.

 PI (2017-2018) of the PRACE HighResMIP_BSC project on high resolution climate simulations

 PI (2016-2018) of the Copernicus C3S-MAGIC project aiming at developing a web interface for an easy evaluation of CMIP-class models and their climate change projections

 PI (2015-2018) of the H2020-funded IMPREX project focusing on forecasting and attributing hydro-meteorological extremes.

 PI (2016-2018) of the national HIATUS project aiming at understanding the mechanisms behind periods of reduced warming or cooling under climate change.

 co-WP2 leader (2015-2018) of the H2020-funded PRIMAVERA on high resolution climate simulations.

 PI (2015-2018) of the FP7-funded PREFACE project on improving the representation of climate processes in the Tropical Atlantic region.

 PI (2017-2018) of the PRACE HiResSR project, funded by PRACE, on high resolution sea ice reanalysis.

 PI (2015-2017) of the ESA CMUG2 project focusing on exploiting high-resolution high-quality satellite observations for initialization and verification of climate predictions.

 PI of the PRACE LSHIP (2016-2017) project on the role of land surface initialization in seasonal prediction.

 PI of the FP7-funded EU-funded EUCLEIA (2014-2017) project focusing on attribution of climate extreme events.

 PI of the national PICA-ICE (2013-2015) project focusing on improving seasonal predictions of the Arctic sea ice conditions and their impact on the Northern mid-latitudes.

 Participants to the FP7-funded SPECS, EUPORIAS, ENSEMBLES, CLIMRUN, QWeCI, DENFREE, IS-ENES2, to the Copernicus QA4Seas projects and to the French MORDICUS, MISTERRE and CHAMPION projects

Past positions

 Head of the climate prediction group (2015-2018) in the Earth Sciences department at Barcelona Supercomputing Center, Spain.

 Polar climate prediction team leader (2012-2015) in the Climate Forecasting Unit at Institut Català de Ciences del Clima, Barcelona, Spain.

 Climate scientist on climate prediction (2010-2011) in the Climate Forecasting Unit at Institut Català de Ciences del Clima, Barcelona, Spain.

 Postdoctoral research assistant on atmospheric dynamics (2009-2010) at the Laboratoire de Météorologie Dynamique, Paris, France

 PhD student on ocean-atmosphere interactions (2006-2009) at CNRM

Peer-reviewed Publications


[64] Bushuk, M., and Coauthors, 2024, Predicting September Arctic Sea Ice : A Multi-Model Seasonal Skill Comparison. Bull. Amer. Meteor. Soc., 105 (7), E1170–E1203, doi : 10.1175/BAMS-D-23-0163.1.

[63] Blein S, Guemas V, Brooks IM, Elvidge AD, Renfrew IA, 2024, Uncertainties of Drag Coefficient Estimates Above Sea Ice from Field Data. Boundary-Layer Meteorol 190, 11. doi : 10.1007/s10546-023-00851-9

[62] Cummins DP, Guemas V, Blein S, Brooks IM, Renfrew IA, Elvidge AD, Prytherch J, 2024, Reducing Parametrization Errors for Polar Surface Turbulent Fluxes Using Machine Learning. Boundary-Layer Meteorol 190, 13. doi:10.1007/s10546-023-00852-8.


[61] Cummins DP, Guemas V, Cox CJ, Gallaher MR, Shupe MD, 2023, Surface turbulent fluxes from the MOSAiC campaign predicted by machine learning, Geophysical Research Letters, 50, e2023GL105698. doi:10.1029/2023GL105698.

[60] Volpi D, Meccia VL, Guemas V, Ortega P, Bilbao R, Doblas-Reyes FJ, Amaral A, Echevarria P, Mahmood R, Corti S, 2021, A Novel Initialization Technique for Decadal Climate Predictions, Frontiers in Climate, 3:681127. doi : 10.3389/fclim.2021.681127.

[59] Prodhomme C, Materia S, Ardilouze C, White R, Batté L, Guemas V, Fragkoulidis G, García-Serrano J, 2021, Seasonal prediction of European summer heatwaves, Climate Dynamics,

[58] Cruz-García R, Ortega P, Guemas V, Acosta-Navarro JC, Massonnet F, Doblas-Reyes FJ, 2021, An anatomy of Arctic sea ice forecast biases in the seasonal prediction system with EC-Earth, Climate Dynanmics, doi:10.1007/s00382-020-05560-4.


[57] Acosta-Navarro JC, Ortega P, Batté L, Smith D, Bretonnière PA, Guemas V, Massonnet F, Sicardi V, Torralba V, Tourigny E, Doblas‐Reyes FJ, 2020, Link Between Autumnal Arctic Sea Ice and Northern Hemisphere Winter Forecast Skill, Geophysical Research Letters, doi:10.1029/2019GL086753.

[56] Carréric A, Dewitte B, Cai W, Capotondi A, Takahashi K, Yeh SW, Wang G, Guemas V, 2020, Change in strong Eastern Pacific El Niño events dynamics in the warming climate, Climate Dynamics, 54, 901–918. doi :10.1007/s00382-019-05036-0.


[55] Bellprat O, Guemas V, Doblas-Reyes FJ, Donat M, 2019, Towards reliable extreme weather and climate event attribution. Nature Communications 10, 1732, doi:10.1038/s41467-019-09729-2.

[54] Fuckar N, Guemas V, Johnson NC, Doblas-Reyes FJ, 2019, Dynamical prediction of Arctic sea ice modes of variability. Clim Dyn 52, 3157–3173, doi:10.1007/s00382-018-4318-9.

[53] Prodhomme C, Voldoire A, Exarchou E, Deppenmeier AL, García‐Serrano J, Guemas V, 2019, How Does the Seasonal Cycle Control Equatorial Atlantic Interannual Variability ? Geophysical Research Letters, doi:10.1029/2018GL080837.

[52] Cruz-Garcia R, Guemas V, Chevallier M, Massonnet F, 2019, An assessment of regional sea ice predictability in the Arctic Ocean, Climate Dynamics, 53, 427-440. doi:10.1007/s00382-018-4592-6.

[51]Acosta-Navarro JC, Ortega P, Garcìa-Serrano J, Guemas V, Tourigny E, Cruz-Garcia R, Massonnet F, Doblas-Reyes FJ, 2019, December 2016 : linking the lowest arctic sea ice extent on record with the lowest European precipitation event on record. Bull. Amer. Meteor. Soc, 100 (9), S43-S48, doi:10.1175/BAMS-D-18-0097.

[50] Mishra N, Prodhomme C, Guemas V, 2019, Multi-model skill assessment of seasonal temperature and precipitation forecasts over Europe. Climate Dynamics, 52, 4207-4225, doi:10.1007/s00382-018-4404-z.


[49] Ménégoz M, Bilbao R, Bellprat O, Guemas V, Doblas-Reyes FJ, 2018, Forecasting the climate response to volcanic eruptions : prediction skill related to stratospheric aerosol forcing. Environmental Research Letters, 13(6), 064022, doi:10.1088/1748-9326/aac4db.

[48] Manubens N, Caron LP, Hunter A, Bellprat O, Exarchou E, Fuckar NS, Garcia-Serrano J, Massonnet F, Ménégoz M, Sicardi V, Batté L, Prodhomme C, Torralba V, Cortesi N, Mula-Valls O, Serradell K, Guemas V, Doblas-Reyes FJ, 2018, An R Package for Climate Forecast Verification. Environmental Modelling & Software, 103, 29-42, doi:10.1016/j.envsoft.2018.01.018

[47] Exarchou E, Prodhomme C, Brodeau L, Guemas V, Doblas‐Reyes F, 2018, Origin of the warm eastern tropical Atlantic SST bias in a climate model. Climate Dynamics, 51 (5-6), 1819-1840, doi : 10.1007/s00382-017-3984-3.


[46] Bellprat O, Massonnet F, Siegert S, Prodhomme C, Macias-Gomez Daniel, Guemas V. Doblas-Reyes F, 2017, Uncertainty propagation in observational references to climate model scales. Remote Sensing of Environment, 203, 101-108, doi:10.1016/j.rse.2017.06.034.

[45] Ardilouze C, Batte L, Bunzel F, Decremer D, Deque M, Doblas-Reyes F, Douville H, Fereday D, Guemas V, MacLachlan C, Muller W, Prodhomme C, 2017, Multi-model assessment of the impact of soil moisture initialization on mid-latitude summer predictability. Climate Dynamics, 49 (11-12), 3959-3974, 10.1007/s00382-017-3555-7.

[44] García-Serrano J, Frankignoul C, King MP, Arribas A, Gao Y, Guemas V, Matei D, Msadek R, Park W, Sanchez-Gomez E, 2017, Multi-model assessment of linkages between eastern Arctic sea-ice variability and the Euro-Atlantic atmospheric circulation in current climate, Climate Dynamics, 49 (7-8), 2407-2429, doi:10.1007/s00382-016-3454-3.

[43] Volpi D, Guemas V, Doblas-Reyes F, 2017, Comparison of full field and anomaly initialisation for decadal climate prediction : towards an optimal consistency between the ocean and sea-ice anomaly initialisation state. Climate Dynamics, 49 (4), 1181-1195, doi:10.1007/s00382-016-3373-3.

[42] Volpi D, Guemas V, Doblas-Reyes F, Hawkins E, Nichols N, 2017, Decadal climate prediction with a refined anomaly initialisation approach. Climate Dynamics, 48 (5), 1841–1853, doi:10.1007/s00382-016-3176-6.

[41] Krikken F, Hazeleger W, Vlot W, Schmeits M, Guemas V, 2017, Skill improvement of dynamical seasonal Arctic sea ice forecasts. Geophysical Research Letters, 43, 5124-5132, doi:10.1002/2016GL068462.


[40] Prodhomme C, Batte L, Massonnet F, Guemas V, Davini P, Doblas-Reyes F, 2016, Benefits of increasing the model resolution for the seasonal forecast quality in EC-Earth. Journal of Climate, 29 (24), 9141-9161, doi/10.1175/JCLI-D-16-0117.1.

[39] Massonnet F, Bellprat O, Guemas V, Doblas-Reyes F, 2016, Using climate models to estimate the quality of global observational data sets. Sciences, 354 (6311), 452-455, doi : 10.1126/science.aaf6369.

[38] Bellprat O, Massonnet F, García-Serrano J, Fuckar N, Guemas V, Doblas-Reyes F, 2016, The role of Arctic sea ice and sea surface temperatures on the cold 2015 February over North America. Bulletin of the American Meteorological Society, 97, S36-S41, doi:10.1175/BAMS-D-16-0159.1.

[37] Fuckar N, Massonnet C, Guemas V, Garcia-Serrano J, Bellprat O, Doblas-Reyes F, Acosta M, 2016, Record low northern hemisphere sea ice extent in March 2015. Bulletin of American Meteorological Society, 97, S136-S140, doi:10.1175/BAMS-D-16-0153.1.

[36] Haarsma RJ, Roberts M, Vidale PL, Senior CA, Bellucci A, Corti S, Fučkar NS, Guemas V, von Hardenberg J, Hazeleger W, Kodama C, Koenigk T, Leung LR, Lu J, Luo JJ, Mao J, Mizielinski MS, Mizuta R, Nobre P, Satoh M, Scoccimarro E, Semmler T, Small J, von Storch JS, 2016, High Resolution Model Intercomparison Project (HighResMIP). Geosci. Model Dev. Discuss., 9, 4185-4208, doi:10.5194/gmd-9-4185-2016.

[35] Guemas V, Chevallier M, Deque M, Bellprat O, Doblas-Reyes F J, 2016, Impact of sea ice initialisation on sea ice and atmosphere prediction skill on seasonal timescales. Geophysical Research Letters, 43 (8), 3889-3896, doi:10.1002/2015GL066626.

[34] Carrassi A,Guemas V, Doblas-Reyes F J, Volpi D, Asif M, 2016, Sources of skill in near-term climate prediction : generating initial conditions. Climate Dynamics, 47 (12), 3693–3712, doi:10.1007/s00382-016-3036-4.

[33] Fuckar N S, Guemas V, Johnson N C, Massonnet F, Doblas-Reyes F J, 2016, Clusters of interannual sea ice variability in the Northern Hemisphere. Climate Dynamics, 45, 1-17, doi:10.​1007/​s00382-015-2917-2.

[32] Day J, Tietsche S, Collins M, Goessling H, Guemas V, Guillory A, Hurlin W, Ishii M, Keeley S, Matei D, Msadek R, Sigmond M, Tatebe H, Hawkins E, 2016, The Arctic Predictability and Prediction on Seasonal-to-Interannual TimEscales (APPOSITE) data set version 1. Geosci. Model Dev. Discuss., 9, 2255-2270, doi:10.5194/gmdd-9-2255-2016.

[31] Guemas V, Blanchard-Wrigglesworth E, Chevallier M, Day J J, Déqué M, Doblas-Reyes F J, Fučkar N, Germe A, Hawkins E, Keeley S, Koenigk T, Salas y Mélia D, Tietsche S, 2016, A review on Arctic sea ice predictability and prediction on seasonal-to-decadal timescales, Quarterly Journal of the Royal Meteorology Society, 142, 546-561, doi:10.1002/qj.2401.


[30] Massonnet F, Guemas V, Fuckar N S, Doblas-Reyes, F J, 2015, The 2014 high record of Antarctic sea ice extent [in "Explaining Extreme Events of 2014 from a Climate Perspective"]. Bull. Amer. Meteor. Soc., 96 (12), S163-S167, doi:10.1175/BAMS-D-15-00093.1.

[29] Stroeve J, Blanchard-Wrigglesworth E, Guemas V, Howell S, Massonnet F, Tietsche S, 2015, Improving Predictions of Arctic Sea Ice Extent. EOS, 96, doi:10.1029/2015EO031431.

[28] Jung T, Doblas-Reyes FJ, Goessling H, Guemas V, Bitz C, Buontempo C, Caballero R, Jokobsen E, Karcher M, Koenigk T, Matei D, Overland J, Spengler T, Yang S, 2015, Polar-lower latitude linkages and their role in weather and climate prediction. Bull. Amer. Meteor. Soc., 96, ES197-ES200, doi:10.1175/BAMS-D-15-00121.1.

[27] García-Serrano J, Guemas V, Doblas-Reyes F, 2015, Added-value from initialization in predictions of Atlantic multi-decadal variability. Climate Dynamics, 44 (9-10), 2539-2555, doi:10.1007/s00382-014-2370-7.

[26] Guemas V, García-Serrano J, Mariotti A, Doblas-Reyes F, Caron L-P, 2015, Prospects for decadal climate prediction in the Mediterranean region. Quarterly Journal of the Royal Meteorological Society, 141, 580-597, doi:10.1002/qj.2379.


[25] Guemas V, Auger L, Doblas-Reyes FJ, Rust H, Ribes A, 2014, Dependencies in Statistical Hypothesis Tests for Climate Time Series. Bulletin of the American Meteorological Society, 95 (11), 1666-1667.

[24] Fučkar N, Volpi D, Guemas V, Doblas-Reyes F, 2014, A posteriori adjustment of near-term climate predictions : Accounting for the drift dependence on the initial conditions. Geophysical Research Letters, 41 (14), 5200–5207, doi:10.1002/2014GL060815.

[23] Carrassi A, Weber R, Guemas V, Doblas-Reyes F, Asif M, Volpi D, 2014, Full-Field and Anomaly Initialization using a low-order climate model : a comparison and proposals for advanced formulations. Non linear processes in geophysics, 21, 521-537, doi:10.5194/npg-21-521-2014.

[22] Guemas V, Doblas-Reyes F J, Mogensen K, Keeley S. , Tang Y., 2014, Ensemble of sea ice initial conditions for interannual climate predictions. Climate Dynamics, 43(9-10), 2813-2829, doi:10.1007/s00382-014-2095-7.

[21] Tietsche S, Day JJ, Guemas V, Hurlin WJ, Keeley S, Matei D, Msadek R, Collins M, Hawkins E, 2014, Seasonal to interannual Arctic sea-ice predictability in current GCMs. Geophysical Research Letters, 41(3), 1035-1043, doi:10.1002/2013GL058755.

[20] Guemas V, Auger L, Doblas-Reyes F., 2014, Hypothesis testing for auto-correlated short climate time series. Journal of Applied Meteorology and Climatology, 53(3), 637-651, doi:10.1175/JAMC-D-13-064.1.


[19] Guemas V, Doblas-Reyes F., Germe A., Chevallier M., Salas y Mélia D., 2013, September 2012 Arctic sea ice minimum : Discriminating between sea ice memory, the August 2012 extreme storm and prevailing warm conditions [in "Explaining Extreme Events of 2012 from a Climate Perspective"], Bull. Amer. Meteor. Soc., 94 (9), S20-S22.

[18] Wouters B, Hazeleger W, Drijfhout S, van Oldenborgh G, Guemas V, 2013, Multiyear predictability of the North Atlantic subpolare gyre. Geophysical Research Letters, 40(12), 3080-3084, doi:10.1002/grl.50585.

[17] Volpi D, Doblas-Reyes FJ, García-Serrano J, Guemas V, 2013, Dependence of the climate prediction skill on spatio-temporal scales : internal versus radiatively-forced contribution. Geophysical Research Letters, 40(12), 3213-3219, doi:10.1002/grl.50557.

[16] Guemas V, Doblas-Reyes FJ, Andreu-Burillo I, Asif M, 2013, Retrospective prediction of the global warming slowdown in the past decade. Nature Climate Change, 3, 649-653, doi : 10.1038/nclimate1863.

[15] Doblas-Reyes FJ, Andreu-Burillo I, Chikamoto Y, García-Serrano J, Guemas V, Kimoto M, Mochizuki T, Rodrigues LRL and van Oldenborgh GJ, 2013, Initialized near-term regional climate change prediction. Nature Communications, 4, 1715, doi:10.1038/ncomms2704.

[14] Hazeleger W, Guemas V, Wouters B, Corti S, Andreu-Burillo I, Doblas-Reyes FJ, Wyser K, Caian M, 2013, Multiyear climate predictions using two initialisation strategies. Geophysical Research Letters, 40(9), 1794-1798, doi:10.1002/grl.50355.

[13] Guemas V, Corti S, Garcìa-Serrano J, Doblas-Reyes F, Balmaseda M, Magnusson L, 2013, The Indian Ocean : the region of highest skill worldwide in decadal climate prediction, Journal of Climate, 26(3), 726-739 doi:10.1175/JCLI-D-12-00049.1.

[12] Guemas V, Salas-Melia D, Kageyama M, Giordani H, Voldoire A, 2013, Impact of the ocean diurnal cycle on the North Atlantic European mean climate in a regionally coupled model, Dynamics of Atmospheres and Oceans, 60, 28-45, doi:10.1016/j.dynatmoce.2013.01.001.

[11] Smith D. M., Scaife A. A., Boer G. J., Caian M., Doblas-Reyes F. J., Guemas V., Hawkins E., Hazeleger W., Hermanson L., Ho C. K., Ishii M., Kharin V., Kimoto M., Kirtman B., Lean J., Matei D., Merryfield W. J., Müller W. A., Pohlmann H., Rosati A., Wouters B., Wyser K., 2013, Real-time multi-model decadal climate predictions, Climate Dynamics, 41(11-12), 2875-2888, doi:10.1007/s00382-012-1600-0.

[10] Hourdin F., Foujols M.A., Codron F., Guemas, V., Dufresne J.L., Bony S., Denvil S., Guez L., Lott F., Gatas J., Braconnot P., Marti O., Meurdesoif Y. Bopp, L., 2013, Impact of the LMDZ atmospheric grid configuration on the climate and sensitivity of the IPSL-CM5A coupled model, Climate Dynamics, 40(9-10), 2167-2192, doi : 10.1007/s00382-012-1411-3.


[9] Guemas, V., Doblas-Reyes F., Lienert F., Du H., Soufflet Y., 2012, Identifying the causes for the poor decadal climate prediction skill over the North Pacific, Journal of Geophysical Research, 117(D20), 2156-2202, D20111, doi:10.1029/2012JD018004.

[8] Du H., Doblas-Reyes F., Garcìa-Serrano J., Guemas V., Soufflet Y., Wouters B., 2012, Sensitivity of decadal predictions to the initial atmospheric and oceanic perturbations, Climate Dynamics, 39 (7-8), 2013-2023. doi : 10.1007/s00382-011-1285-9.


[7] Guemas, V., Codron F., 2011, Differing impacts of resolution changes in latitude and longitude on the mid-latitudes in the LMDZ GCM. Journal of Climate, 24 (22), 5831-5849. doi : 10.1175/2011JCLI4093.1.

[6] Guemas, V., Salas-Melia D., Kageyama M., Giordani H., Voldoire A., 2011, Impact of the ocean mixed layer diurnal variations on the intraseasonal variability of Sea Surface Temperatures in the Atlantic Ocean. Journal of Climate, 24 (12), 2889-2914. doi : 10.1175/2010JCLI3660.1.


[5] Ménégoz, M., Guemas, V., Salas-Melia D., Voldoire A., 2010, Winter interactions between aerosols and weather regimes in the North-Atlantic European region. Journal of Geophysical Research, 115, D09201. doi : 10.1029/2009JD012480.

[4] Guemas, V., Salas-Melia D., Kageyama M., Giordani H., Voldoire A., Sanchez-Gomez E., 2010, Summer interactions between weather regimes and surface ocean in the North-Atlantic region. Climate Dynamics, 34 (4), 527-546. doi : 10.1007/s00382-008-0491-6. Also see the Erratum.


[3] Guemas, V., Salas-Melia D., Kageyama M., Giordani H., Voldoire A., Sanchez-Gomez E., 2009, Winter interactions between weather regimes and marine surface in the North-Atlantic European region. Geophysical Research Letters, 36(9), L09816. doi : 10.1029/2009GL037551. Also see the Erratum.


[2] Guemas, V., Salas-Melia, D., 2008, Simulation of the Atlantic Meridional Overturning Circulation in an Atmosphere-Ocean Global Coupled Model. Part II : A weakening in a climate change experiment : a feedback mechanism. Climate Dynamics, 30 (7-8), 831-844. doi : 10.1007/s00382-007-0328-8.

[1] Guemas, V., Salas-Melia, D., 2008, Simulation of the Atlantic Meridional Overturning Circulation in an Atmosphere-Ocean Global Coupled Model. Part I : A mechanism governing the variability of ocean convection in a preindustrial experiment. Climate Dynamics, 31 (1), 29-48. doi : 10.1007/s00382-007-0336-8.

Le contenu de cette page n’engage que son auteur et en aucune manière la responsabilité du CNRM-GAME.