Documentation of a new diagnostic dataflow for

DDH

Olivier Riviere (GMAP/COOPE)

olivier.riviere@meteo.fr

16 décembre 2008

This documentation is valid for cy35t1 only and will be updated for
cy35t2. At the time this documentation is being written some small
bugfixes have being introduced so feel free to contact me if any doubt...
It is complementary to the already existing DDH documentation.

1 Summary

A new coding approach has been proposed for extracting diagnostics from the
Arome/MesoNH physical parametrisations. It can be used in other parts of the IF-
S/ARPEGE software. Physical quantities are recorded into a flexible data structure
in the parametrisations, and readable by higher level routines. The data structure
(a linked list of ad hoc Fortran 90 types) is automatically allocated and indexed as
needed by low-level routines, so that physicists can freely choose which quantities
they want to record, and how they want to process them. This technical approach
greatly simplifies software clarity and maintenance.

Main applications are (1) to provide the ALADIN consortium with easy access
to various Arome/MesoNH physical quantities at the level of the physics calling
interface and (2) to replace existing DDH in Arpege/Aladin/Alaro if satisfying
results are obtained after intensive testing.

This technical document is based on the proposal agreed by Aladin partners.
Since cy35tl, the software is included in the common releases of the code and
replaces the existing Arome’s DDH.

2 Achievements-Future developments

The software is developped progressively and is expected to replace the existing
DDH dataflow in the different models after a period of testing. User’s feedbacks
will be very important to trace potential weaknesses of the present code. Here is
the timetable of foreseen code evolutions :

— cy35t1 : new dataflow available in Arome only for 3D fields. For Arpege/A-

ladin/Alaro, old DDH structures are kept.

— ¢y35t2 : new dataflow can be used in all models but by default old data-
flow is used only in Arpege/Aladin/Alaro. 2D fields are available in the new
dataflow.

— 2009 : intensive testing period whith expected improvements in the code.
Renewing of DDH operators for horizontal averaging may be necessary.

— 2010 : complete switch to new dataflow 7 (Would affect IFS code also...)

3 General basics of the new dataflow

This section describes the content of file xrd /module/ddh_mix.F90 which contains
all the functionalities of the new dataflow. It can be thought as an externalized
functionality of the code.

3.1 Description

The dataflow consists in self allocatable structures similar to GFL but more
flexible. This subsection describes how they are defined, the possible architecture
of the code being discussed in section [l Each extracted quantity (variable, flux,
tendencies...) will be characterized through a Fortran 90 structure type (named
here DDHFLEX) which defines several attributes corresponding to this quantity.

The structure type named DDHFLEX is given here :

TYPE DDHFLEX
CHARACTER(LEN=11) : :CNAME !name of field
CHARACTER(LEN=1) : :CFLUX !’F’ if flux ’V’ if variable ’T’ if tendency
CHARACTER(LEN=3) ::CMOD ! ’ARP’,’ARQ0’: name of model
LOGICAL:: LKDDH !TRUE if to be stored into DDH
I rfield has to be a pointer because allocatable not allowed in structure type
REAL (KIND=JPRB) ,DIMENSION(:,:) ,POINTER:: RFIELD ! value of retrieved field
INTEGER (KIND=JPIM) :: NFIELDIND! position of flux in ddh array

END TYPE DDHFLEX

Following attributes are used :
— CNAME is the name of the field as it will appear in the output file. CNAME
has to respect the following conventions :
— First letter has to be either 'F’ for a flux, "V’ for a variable or T’ for a
tendency.
— Second and third letter describes the conservation equation to which the
budget applies (see DDH documentation for details) : CT (temperature),
QV (water vapour), ...
— CFLUX is a sting that informs about the nature of the quantity stored in
the structure :
— CFLUX="F’ for a flux
— CFLUX="T" for a tendency
— CFLUX="V’ for a variable
— CMOD gives information on the model’s name
— CMOD="ARO’ for AROME
— CMOD='ARP’ for ARPEGE, ALADIN and ALARO (by default but if
you wish other labels can be introduced)

— LKDDH is a flag set to .TRUE. if the field has to be processed by DDH

operators and to .FALSE. otherwise.

— RFIELD is a pointer corresponding to the value of the field (it will be ex-

plained later why it has to be a pointer)

— NFIELDIND is an integer that gives the number of the processed field within

the list of all fields.

These attributes are important because they document the structure content
itself (important for debugging purposes) and they determine which operations the
extracted field will undergo at the place where it is recorded, before being stored
(for instance conversion from potential temperature to temperature...)

The various extracted fields are gathered into an allocatable array of structure
of type DDH, called here RDDH_DESCR and whose last dimension corresponds
to the total number of extracted fields :

TYPE (DDHFLEX) ,ALLOCATABLE,DIMENSION(:):: RDDH_DESCR

The attribute allocatable being forbidden inside a type structure, the field is
not directly stored inside RDDH_DESCR but defined through a pointer to a large
array called RDDH_FIELD :

REAL,DIMENSION(:,:,:),ALLOCATABLE, TARGET: :RDDH_FIELD ! target of RFIELD
I first two dims are the same as PFIELD, the third being the number of stored fields

3.2 Extracting a field from the physics

For adding a field into the diagnostics, you only need to call subroutine ADD_FIELD_3D
and that’s all! The first argument of ADD_FIELD_3D will be the field to store
and the others will correspond to the associated attributes (for instance “call
ADD_FIELD3D(field_to_store, name_of_field’,F’’CT"....)")

Arguments of ADD_FIELD_3D(PMAT,CDNAME CDFLUX,CDMOD,LDINST,LDDH)
are the following :

— PMAT : the array to be stored. It has to be with levels in the same order
than in Arpege part of the code. If you are in a .mnh subroutine just use
subroutine INVERT_VLEV.MNH before calling ADD_FIELD_3D in order
to have levels ordered as in Arpege.

— CDNAME : name of field. It is constructed the following way :

— CDNAME(1) : 'F’ if flux ,"T” if tendency,”V” if variable
— CDNAME(1 :2) : type of variable "CT’QI’,;’QV’,’QR/,...)
— CDNAME(3 :) : name of process

— CDFLUX : "F’ if flux ,"T” if tendency,”V’ if variable

— CDMOD : ’ARO’ if AROME, "ARP’ otherwise (but you may add some other
label if you wish)

— LDINST "TRUE’ if instaneous field

— LDDH TRUEFE’ if field is stored to be in DDH

When using add_field_3D it is extremely important to have the right
attributes in the right order. So be careful! Have a look at xrd/modu-
le/ddh_mix.F90 if any doubt.

Here are some examples :

CALL ADD_FIELD_3D(ZTMPAF,’VQI’,’V’,’ARP’,.TRUE., .TRUE.)
CALL ADD_FIELD_3D(ZTMPAF(:,:),CLNAME,’T’,’ARP’,.TRUE.,.TRUE.)

CALL ADD_FIELD_3D(PFRSO(:,:,1),’FCTRAYSQ’,’F’,’ARP’,.TRUE.,.TRUE.)

ADD_FIELD performs the following tasks :

— when in the code a specific field is supplied as argument for the first time in
the execution, the last dimension of arrays DDH_FIELD and DDH_DESCR
is incremented in order to add space for the new field to store. The code de-
termines if a field is encountered for the first time by testing the field’s name.
This reallocation of arrays may slow the code and fragment memory during
the first time step, but it avoids going through complicated setups. One could
also preallocate the arrays according to a first guess of the dimensions, as
chosen by the user.

— at every time step the field is stored in RDDH_FIELD through the pointer
RFIELD

— at every time step, some transformations are done on the field according to its
nature (and documented by its attributes), for instance conversion from 6 to
T... These operations also depend on the physics used (Meso-NH, Arpege...).
Here it will be possible for users to add parts corresponding to specific needs,
and to document them through attributes.

4 User’s guide

4.1 Using DDH products included in documentation

The DDH documentation helds as a reference for the formulation of the budget
equations and for the list of terms present by default in the DDH files. If you just
need these products, just set the DDH namelist according to your need and you
just have to plot the ddh files using the ddhtoolbox.

4.2 Adding terms to the already existing DDH products

You just have to call ADD_FIELD_3D (Make sure that you have imported this
function by adding in your file USE DDH_MIX,ONLY :ADD_FIELD_3D) If you
want to add a term to an existing budget equation, just use the same name for
the variable ("'CT’QR’...) than in the rest of the code. Otherwise you are free to
introduce a new name. If you are in a .mnh subroutine, you have to proceed in
two steps :

— First you have to transform your array on NLEV+2 levels to an array on
NLEV levels in reverse order (to go from the “MNH” word to “Arpege” word).
There is a subroutine dedicated to this transformation INVERT_VLEV.MNH

— Then use ADD_FIELD_3D on the transformed array.

4.3 Using the dataflow for extracting terms from the phy-
sics but not for DDH

It is possible by just setting LDDH to .FALSE. when calling ADD_FIELD_3D
to use the flexible dataflow for retrieving fields out from the physics and use them
elsewhere. Once the field is stored using ADD_FIELD_3D, you just have to go
through the flexible structure once to have the index MYINDEX of your field that
you can use later on by accessing RDDH_FIELD(:, : MYINDEX) :

DO II=1,NTOTFIELD

IF (RDDH_DESCR(II)\’%CNAME=="MYNAME’) THEN
MYINDEX=RDDH_DESCR(II)\%NFIELDINF
ENDIF
ENDDO

% your field is stored in RDDH_FIELD(:,:,MYINDEX)

For the time being the previous lines of code are not in the common cycles, if
you feel that there should be just send an email to the DDH team.

4.4 Plotting results

Use the ddhtoolbox : see DDH’s main documentation for details.

5 Architecture of the code

Subroutine ADD_FIELD_3D and associated modules are in xrd /module/ddh_mix.F90.
This subroutine contains all elements for using the new dataflow.

However the use of the new dataflow in the part of the Arome code originating
form Méso-NH required some interfacing described in the following subsection.

5.1 Application to DDH in Arome

The new dataflow is used in Arome since cy35t1 for DDH diagnostics. Méso-NH
code already uses its own diagnostics through the sophisticated budgets and advan-
tage is taken form the work already performed there in order to avoid duplication
of effort. MNH’s budgets are called through the call of the subroutine budget after
each process. This subroutine is able to perform operations on the stored quantity.
In order to keep the maximum level of compatibility between MNH and Arome
code, it was chosen to keep the calls to budget unchanged in the Méso-NH code
and to write a new budget subroutine that would be called in Arome instead of
the budget from MASDEV. This subroutine, located in /mpa/micro/externals,
supresses first and last level of MNH fields and reverses the order of the vertical
levels.

5.2 Organization of the data flow

The DDH diagnostic facility performs some domain averaging and budget com-
putation after the diagnostic extraction. These operations are performed at each

6

timestep, after the physics computations, so that the raw recorded fields are ac-
cessible as NPROMA packets at the level of APLPAR/APL_AROME, where they
may be used for other purposes.

For the DDH domain averaging, the Arpege subroutine cpcuddh.F90 (see DDH
documentation for more details) is used and averaged fields are then written into
file in ppfidh.F90 (which will be simplified since now with the self-documented
structure, a loop on all elements in DDH_DESCR can generate the names of the
fields to be written into the DDH file). The subroutine cpcuddh.F90 uses arrays
(hdevbx stored in module yomtddh) whose size is computed in setups (the total
number of fluxes/tendencies depend on the options used for physics). Since these
setups are no longer used with the new data flow, these arrays are allocated with an
estimated size (larger than expected value) for the time being but we are thinking
at a way to have them reallocated or initialized elsewhere in the code after a
dummy call to the code that only computes the total size of DDH arrays (like the
call to stepo from cntd.F90 if CFU/XFU diagnostics are switched on).

Figure [l summarizes the new data flow (which is the same for Arpege and
Arome) within a time step.

6 Application to DDH in Arome

6.1 Architecture of the code

In Arome there are two different ways to have terms in the DDH products. The
first is to use ADD_FIELD_3D after a call INVERT_VLEV as shown previously.
The second possibility is to use the budgets from Méso-NH as in the first version
of the DDH code in Arome. We have used a combination of the two methodes in
order to take advantage of the validation performed by the Méso-NH team of the
budget packages.

— Variables are stored in cpdyddh.F90 using ADD_FIELD_3D since the part

of the code is common with Arpege/Aladin/Alaro.

— Within APL_AROME, adjustment and radiation are retrieved using ADD_FIELD_3D
and other processes through budgets from Méso-NH.

Interfacing with Méso-NH budgets works the following way :

— ARO_SUINTBUDGET stores quantities (Exner function...) necessary to trans-
form tendencies from Méso-NH (in #,r variables) to tendencies in (T,q) va-
riables into the module MODDB_INTBUDGET

— ARO_STARTBU stores initial values of tendencies for each variable

— Within Méso-NH, subroutine “BUDGET” is called. The BUDGET subrou-
tine from Méso-NH is replaced by a new subroutine (/mpa/micro/internals/-
budget.mnh) called the same way with the same arguments that transforms

7

module ddh_mix

,,,,,,,,,,,,,,,,,

' ddh_descr(1)

physics/dynamics subroutines | nemef="field1’

~| attributesof field1 |,
call add_field(fieldl,’fieldl’,....)/_% PRIELD=FIELDY | |

call add_field(fieldi ‘fieldi’,....) . A
\\ ddh_descr(1) | target of field
| namef="fieldi b

attributes of fieldi |/

PFIELD=FIELDI /

cpcuddh.F90: averaging on domains

Input: ddh_field
Output: averaged fields passed to ppfidh.F90

\l/ L.

ppfidh.F90: writing into file
Soresfieldsinto DDH file starting from output of

Performs averaging on domains (unchanged)

cpcuddh and reading documentation from ddh_descr

F1G. 1 - Organization of the data flow within a time step. Subroutine ADD_FIELD
stores the field and the associated description into DDH_DESCR after possible
transformations (bold arrows). Averaging on the domains is performed as in Ar-
pege in cpcuddh.F90, the output being written into file in ppfidh.F90 using the
description of the fields stored as attribute in DDH_DESCR.

tendencies of Méso-NH variables (6...) to tendencies on the desired variables
(¢, T...) and skips the Méso-NH processing.

6.2 Maintenance

If the budget package in Méso-NH is mantained there is nothing to do for
mantaining the code except in the followng situations :
— New species are added in Arome.
— In this case, a label for it first has to be introduced.
If this is an hydrometeor you have to add an entry to CLVARNAME in
APL_AROME (it corresponds to the names of hydrometeors ordered the

same way than in PTENDR) and report it coherently in MODDB_INTBUDGET.

Increase also by one dimension of TAB_VARMULT array. Beware to use
the same ordering of variable than in Méso-NH calls to budget ! ! !
If this is not an hydrometeor, it may not be present in the Méso-NH bud-
gets and thus we recommend to use combination of INVERT_VLEV and
ADD_FIELD_3D.

— The transformation applied to this field has to be defined.

In ARO_SUINTBUDGET, increase by one the last dimension of TAB_-VARMULT

and have it pointing on the TCON2 (equal to PQDM) since it is an hy-
drometeor.

— In APL_LAROME, check that loops on last dimension on PTENDR include
this new hydrometer.

— In CPDYDDH just use ADD_FIELD_3D to add the value of the variable
corresponding to your new hydrometeor.

— Order of subroutines is changed in APL_AROME. In this case make
sure that ARO_STARTBU and ARO_SUNINTBUDGET are called at the
right place.

6.3 Validation

Validation has been performed in Arome on 1D (thanks to Sylvie Malardel)
and 3D cases using cy35tl. Two small bugs in cy35t1 have been corrected. 1D
cases allow to have closed budgets (since dynamical terms are zero) and easier
interpretation of physical processes.

7 Remaining issues specific to the new dataflow

Some issues are still to be dealt with in the new dataflow :

— Performances. If faster in Arome than the old code, there is still room for
improvement in terms of computational performances.

— OpenMP. The code has to be tested and optimized for OpenMP paralleliza-
tion. For the time being, validation has only been done on the NEC platform
from Météo-France.

— Elarging the flexibility of the code to the DDH operators for domain ave-
raging. Some arrays like PDDHCV_TOT still have to be initalized at the
beginning of the time step and thus we don’t fully benefit from the flexibility
of the new dataflow. Thinking about how to deal with that without affecting
the part of he code used by ECMWF is ongoing.

8 Conclusion

This new version of the dataflow offers not only more facilities to add new
quantities in the diagnostics but also more flexibility in terms of possible uses of
these diagnostics. For developers, since the new code is considerably smaller and
readable than the current one in Arome, it will be easier to debug and maintain
when physics evolve in the future. We also expect an increase in the code’s per-
formance for Arome’s DDH since the Meso-NH budgets part of the code (with a
lot of unused (in Arome) options slowing the code) will be skipped. An another
important aspect is that this tool, after being successfully implemented in Arome
can be used in Arpege/Aladin . Before going on with further work to upgrade this
prototype version towards a beta version, discussion between the different possible
users of this type of diagnostics is needed in order to raise possible new issues and
needs regarding what different users would like these structures to offer.

In fact it is easier to implement in Arpege than in Arome

10

	Summary
	Achievements-Future developments
	General basics of the new dataflow
	Description
	Extracting a field from the physics

	User's guide
	Using DDH products included in documentation
	Adding terms to the already existing DDH products
	Using the dataflow for extracting terms from the physics but not for DDH
	Plotting results

	Architecture of the code
	Application to DDH in Arome
	Organization of the data flow

	Application to DDH in Arome
	Architecture of the code
	Maintenance
	Validation

	Remaining issues specific to the new dataflow
	Conclusion

