

Arome training course

Marsh 2008

surfex

*ロ > *四 > * 注 > * 注 >

2

Preparation of physiographical fields initialization of historical model variables running surface schemes surfex physical parameterizations surface diagnostics

Introduction budgets surfex content

Surfex system

- surfex stands for surface externalisée;
- externalized from meso-NH mesoscale model;
- externalization allows use with various atmospheric models;
- surfex gathers all surface developments;
- lower boundary condition of atmospheric model;
- its goal is to compute the exchanges of momentum, heat, water, CO2 concentration or chemical species. These exchanges are performed by mean of fluxes.

Preparation of physiographical fields initialization of historical model variables running surface schemes surfex physical parameterizations surface diagnostics

Surfex system

Introduction budgets surfex content

surfex

ヘロト 人間 とくほど 人間とう

4

Preparation of physiographical fields initialization of historical model variables running surface schemes surfex physical parameterizations surface diagnostics

Introduction budgets surfex content

energy budget

Preparation of physiographical fields initialization of historical model variables running surface schemes surfex physical parameterizations surface diagnostics

net radiation

Introduction budgets surfex content

$${\sf F}_{net}={\sf S}_w\downarrow -{\sf S}_w\uparrow +{\sf L}_w\downarrow -{\sf L}_w\uparrow$$

$$F_{net} = (1 - \alpha) * S_w \downarrow + \epsilon (L_w \downarrow -\sigma T_s^4)$$
$$F_{net} = H + LE + G$$

◆□ ▶ ◆□ ▶ ◆ □ ▶ ◆ □ ▶ →

3

Preparation of physiographical fields initialization of historical model variables running surface schemes surfex physical parameterizations surface diagnostics

Introduction budgets surfex content

water cycle

water repartition

On the 20% of total precipitation falling on continent 60% evaporates, 25% infiltrates and 15% generates surface runoff

Preparation of physiographical fields initialization of historical model variables running surface schemes surfex physical parameterizations surface diagnostics

Introduction budgets surfex content

available water for plants

イロト イヨト イヨト イヨト

Preparation of physiographical fields initialization of historical model variables running surface schemes surfex physical parameterizations surface diagnostics

surfex content

global databases

- orography : GTOPO30, 1km
- soil texture : FAO, 10km
- land use : ECOCLIMAP, 1km
- bathymetry : ETOPO2, 4km

・ロト ・回ト ・ヨト ・ヨト

budgets

surfex content

Preparation of physiographical fields initialization of historical model variables running surface schemes surfex physical parameterizations surface diagnostics

Introduction budgets surfex content

surfex content

physical models

- ISBA : Interaction Soil Biosphere Atmosphere, *Noilhan, Planton, 1989*
- TEB : Town Energy Balance, Masson 2000
- FLAKE : Mironov, 2005
- SEAFLUX : Gaspar, et al. 1990

イロト イヨト イヨト イヨト

description of databases initialization of physiographical fields

databases

orography

GTOPO30 is a global, digital elevation model (DEM), with a horizontal grid spacing of 30 arc seconds (approximately 1km) http://edc.usgs.gov/products/elevation/gtopo30/gtopo30.html

description of databases initialization of physiographical fields

orography

envelope

$$z_s = \overline{z_s} + F_{env} * \sigma_{z_s}$$

$$F_{env} = 0$$
 in Arome

Laplacian filtering

$$z_{s_n}{}^f = z_{s_{n-1}} + rac{1}{8} * \Delta(z_{s_{n-1}})$$
 $n \ge 1$
 $z_s{}^f = z_s + rac{1}{8} * \Delta(z_s)$ in Arome

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ●

databases

description of databases initialization of physiographical fields

soil texture

FAO information is used to construct a 10km global database for percentage of sand and clay, used in surfex to retrieve some model parameters.

http://www.fao.org/ag/agl/agll/dsmw.htm

イロト イヨト イヨト イヨト

description of databases initialization of physiographical fields

land use

ECOCLIMAP is a 1km global database for land use.

- parameters depending on soil
 - % sand
 - % clay
 - soil depth
- parameters depending on vegetation
 - fraction of vegetation veg
 - leaf area index LAI
 - minimal stomatal resistance R_{smin}
 - roughness length z_0
- parameters depending on soil and vegetation
 - albedo
 - emissivity

ecoclimap

definition of ecosystems/land covers

- climate map : Koeppe and de Lond 1958, 16 classes, 1km
- Iand cover maps :
 - University of Maryland, global, 15 classes, 1km
 - Corine land cover, Europe, 44 classes, 250m
- ndvi profiles

description of databases initialization of physiographical fields

description of databases initialization of physiographical fields

ecoclimap

Corine land cover, Europe, 44 classes, 250m

・ロト・西ト・山田・山田・山口・

description of databases initialization of physiographical fields

ecoclimap

イロン イヨン イヨン イヨン

2

description of databases initialization of physiographical fields

ecoclimap

each land cover is represented by a fraction of 12 vegetation types : bare soil, rocks, permanent snow, evergreen broadleaf, deciduous broadleaf, needleleaf, C3 crops, C4 crops, irrigated crops, grassland, wetland, irrigated herbaceous

	bare soil: bare soil / rocks / permanent snow permanent snow	woody vegetation: evergreen brodaleaf / deciduous broadleaf / needleleaf	herbaceous: C3 / C4 / irr. crops / natural herbaceous / wetland and irr. herbaceous
any forest		100%	
woodland	0-10%	40-50%	50%
wooded grassland	0-20%	20-30%	50-70%
closed shrubland	20-30%	20%	50-60%
open shrubland	20-60%		40-80%
grassland			100%
crops			100%
bare soil; rock, permanent snow	90-100%		0-10%

description of databases initialization of physiographical fields

ecoclimap

ndvi profiles of woodland

description of databases initialization of physiographical fields

databases

bathymetry

ETOPO2 is a global database, with a horizontal grid spacing of 2 arc minutes (approximately 4km) . http://www.ngdc.noaa.gov/mgg/global/global.html

description of databases initialization of physiographical fields

PGD tool

user has to define

- geographic area of interest
- projection
- grid

user has to select

 databases for vegetation, orography, soil texture and bathymetry

イロト イヨト イヨト イヨト

description of databases initialization of physiographical fields

PGD tool

orography

Example of 10km orography computed from initial GTOPO30 database

surfex

イロト イヨト イヨト イヨト

3

description of databases initialization of physiographical fields

PGD tool

computation of surface parameters

$LAI - LAI_{min} = (NDVI - NDVI_{min}) * \delta_{LAI} / \delta_{NDVI}$

vegetation type	total vegetation fraction	roughness length (m)	albedo of vegetation	minimal stomatal resistance (sm^{-1})	emissivity of vegetatior
bare soil	0	0.013			
rocks	0	0.13			
permanent snow and ice	o	0.0013			
C3 crops	$1 - e^{-0.6LAI}$	$0.13 \min(1, e^{\frac{LAI = 3.5}{1.3}})$	0.20	40	0.97
C4 and irr. crops	$1 - e^{-0.6LAI}$	$0.13\min(2.5,e^{\frac{LAI-3.5}{1.5}})$	0.20	40	0.97
natural herbaceous (tropics)	0.95	$0.13 \ \tfrac{LAI}{6}$	0.20	120	0.97
Other herbaceous	0.95	$0.13 \frac{LAI}{6}$	0.20	40	0.97
Needleleaf trees	0.95	0.13 h	0.10	150	0.97
Evergreen broadleaf trees	0.99	0.13 h	0.13	250	0.97
Deciduous broadleaf trees	0.95	$0.13 \ h$	0.15	150	0.97

description of databases initialization of physiographical fields

PGD tool

aggregation rules

▲□▶▲□▶▲臣▶▲臣▶ 臣 のん

description of databases initialization of physiographical fields

PGD tool

LAI for July

description of databases initialization of physiographical fields

PGD tool

town fraction

$$\frac{\partial X}{\partial t} = \cdots \leftarrow \quad X(t=0)$$

from atmospheric model :

ECMWF, ARPEGE, ALADIN, MESO-NH, MOCAGE, MERCATOR

- vertical profiles for temperature, liquid water and ice
- interception water content
- temperatures of road, wall, roof
- sst, salinity
- snow water equivalent, albedo, ...

- reading of relevant surface fields in atmospheric file : Z_s, T, W_{liq}, W_{ice}, W_R, snow, SST (LAI)
- horizontal interpolation on target grid
- vertical interpolation on target soil
- vertical interpolation according to δ_{Z_s}
 - repartition of liquid water and ice

Image: A math a math

PREP tool

イロト イヨト イヨト イヨト

2

PREP tool

liquid water and ice content

$$w_l = w_l - \delta w$$

$$w_i = w_i + \delta w$$

freezing

$$\delta w = \gamma(h) * \delta z$$

melting

$$\delta w = \gamma(h)\delta z_1 + \gamma(0) * \delta z_2$$

surfex algorithm

princip

Surfex output as surface boundary conditions for atmospheric radiation and turbulent scheme

・ロト ・団 ト ・田 ト ・田 ト ・日 ・ うらぐ

surfex algorithm

princip

tiling

one important feature of the externalized surface : each grid cell is divided into 4 elementary units called tiles according to the fraction of covers in the grid cell

イロン イヨン イヨン イヨ

surfex algorithm

princip

vegetation tiling

second level of tiling for vegetation : natural areas of each grid cell may be divided into several peaces called patches

1: bare ground 2: rocks 3: permanent snow 4: deciduous forest 5: conifer forest 6: evergreen broadleaf trees 7: C3 crops 8: C4 crops 9: irrigated crops 10: grassland 11: tropical grassland 11: tropical grassland 12: garden and parks

イロト イヨト イヨト イヨト

surfex algorithm

setup

packing

- a mask is associated to each tile to select points of same kind
- physical parameterizations are done separately on each tile
- masks size is obtained by counting number of point which have a non-zero fraction of the tile in the domain

<ロト <回ト < 三

surfex algorithm

setup

initialization of masks

Particular case where each grid box is represented with only one tile (pure pixel, while in reality the 4 tiles may be present in the box) The grid is composed of 12 grid cells organized as follows

1 NATURE	2 NATURE	3 TOWN	4 TOWN
5 WATER	6 NATURE	7 SEA	8 TOWN
9 NATURE	10 SEA	11 SEA	12 NATURE

fraction of each tile

```
\begin{array}{l} \mathsf{XNATURE} = (\ 1\ 1\ 0\ 0\ 0\ 1\ 0\ 0\ 1\ 0\ 0\ 1\ )\\ \mathsf{XTOWN} &= (\ 0\ 0\ 1\ 1\ 0\ 0\ 0\ 1\ 0\ 0\ 0\ 0\ )\\ \mathsf{XSEA} &= (\ 0\ 0\ 0\ 0\ 0\ 0\ 1\ 0\ 0\ 1\ 0\ 0\ 0\ 0\ 0\ )\\ \mathsf{XWATER} &= (\ 0\ 0\ 0\ 0\ 1\ 0\ 0\ 0\ 0\ 0\ 0\ 0\ 0\ 0\ 0\ 0\ )\\ \mathsf{The dimensions of the masks are respectively 5, 3, 3 and 1} \end{array}
```

surfex algorithm

setup

Once the fraction and the size of the mask of each tile is computed, it becomes possible to pack the variables over each tile to deduce effective mask (1D vector)

1d field
sea
inland_water
town
nature

surfex algorithm

Input/Output

I/O belong to the model that calls SURFEX. Reading and writing orders are done using the same generic subroutine, called respectively read_surf and write_surf

According to the atmospheric model (AROME, Meso-NH, Aladin), specific subroutines are used

reading and writing orders are distributed over processors
surfex algorithm

fluxes

Monin Obukov characteristic scale parameters : u_* , q_* , θ_*

$$\|\vec{\tau}\| = \rho_a \overline{w'u'} = -\rho_a u_*^2$$

$$H =
ho_{a} c_{p_{a}} w' heta' = -
ho_{a} c_{p_{a}} u_{*} heta_{*}$$

$$LE = \rho_a L_v \overline{w'q'} = -\rho_a L_v u_* q_*$$

イロト イヨト イヨト イヨト

surfex algorithm

fluxes

bulk formulation

$$\|\vec{\tau}\| = -\rho_a C_D U^2$$
$$H = \rho_a c_{\rho_a} C_H U(\theta_S - \theta_a)$$
$$LE = \rho_a L_v C_E U(q_S - q_a)$$

 C_D , C_H and C_E are expressed as functions of atmospheric 1st layer height, stratification and roughness lengths

isba teb seaflux flake

Intercation Soil Biosphere Atmosphere

isba teb seaflux flake

isba

2 options to treat soil transfer

- force restore method (Noilhan-Planton 1989)
 2 layers for temperature and 2 or 3 layers for water and ice contents
- diffusion method (Boone 1999)
 n-layers for temperature, water and ice contents

isba teb seaflux flake

isba

Atmospheric forcing : T, q, u, P, S_w , L_w , rain, snow

・ロト ・日ト ・ヨト ・ヨト

isba teb seaflux flake

basic equations

$$\frac{\partial T_s}{\partial t} = C_T(G) - \frac{2\pi}{\tau} (T_s - T_2)$$
$$\frac{\partial T_2}{\partial t} = \frac{1}{\tau} (T_s - T_2)$$

 $C_{\mathcal{T}}$: thermal coefficient for continuum soil-vegetation-snow G : ground flux

$$G = F_{net} - H - LE$$

イロト イヨト イヨト イヨト

isba teb seaflux flake

basic equations

$$\frac{\partial w_g}{\partial t} = \frac{C_1}{\rho_w d_1} (P_g - E_g) - \frac{C_2}{\tau} (w_g - w_{g_{eq}})$$
$$P_g = (1 - veg)P + R_r - Q_r$$

- P : total precipitation
- E_g : bare ground evaporation
- *w<sub>g_{eq}* : balance water content (gravity/capillarity)
 </sub>
- R_r : interception runoff
- Q_r : surface runoff

isba teb seaflux flake

surface runoff

saturated areas in a gridbox reduce infiltration and contribute to surface runoff.

 Q_r depends on : soil texture, w_2 and a parameter *b* used to compute the saturated surface of the gridbox : Q_r increases with *b*

-∢ ≣ ▶

isba teb seaflux flake

basic equations

$$\frac{\partial w_2}{\partial t} = \frac{1}{\rho_w d_2} (P_g - E_g - E_{tr}) - D_{r_1} - D_{f_1}$$
$$D_{f_1} = \frac{C_4}{\tau} (w_2 - w_3)$$

- *E*_{tr} : evaoptranspiration
- D_{r_1} : root zone drainage
- D_{f_1} : diffusion of water term

イロト イヨト イヨト イヨト

isba teb seaflux flake

basic equations

$$\frac{\partial w_3}{\partial t} = \frac{d_2}{d_3 - d_2} (D_{r_1} + D_{f_1}) - D_{r_2}$$
$$D_r = \frac{C_3}{\tau d} [e_b, w - w_{fc}]$$

- *E*_{tr} : evapotranspiration
- D_{r_1} : root zone drainage
- D_{f_1} : diffusion of water term

イロト イヨト イヨト イヨト

isba teb seaflux flake

drainage

depends on soil texture and occurs from a given threshold

イロト イヨト イヨト イヨト

 Surfex system

 Preparation of physiographical fields

 initialization of historical model variables

 running surface schemes

 surfex physical parameterizations

 surface diagnostics

basic equations

$$\frac{\partial w_r}{\partial t} = \operatorname{veg}(P) - E_r$$

- P : total precipitation
- E_r : evaporation of interception reservoir

isba teb seaflux flake

basic equations

イロン イヨン イヨン

isba teb seaflux flake

force restore equations

$$G = F_{net} - H - LE$$

$$F_{net} = (1 - \alpha) * S_w \downarrow + \epsilon (L_w \downarrow -\sigma T_s^4)$$

$$H = \frac{\rho_a c_{\rho_a}}{R_a} (\theta_s - \theta_a)$$

$$LE = L_v * E = L_v * (E_g + E_r + E_{tr} + E_n)$$

surfex

ヘロト 人間 とくほど 人間とう

isba teb seaflux flake

evaporation

bare ground evaporation

$$egin{aligned} \mathsf{E}_{\mathsf{g}} = (1 - \mathsf{veg}) rac{
ho_{\mathsf{a}}}{R_{\mathsf{a}}} (h_{u} q_{\mathsf{sat}}(T_{\mathsf{s}}) - q_{\mathsf{a}}) \end{aligned}$$

 h_u is the ground humidity

$$h_u q_{sat}(T_s) = q_s$$

・ロト ・回ト ・ヨト ・ヨト

isba teb seaflux flake

evaporation

evaporation due to interception

$$E_r = veg
ho_a rac{\delta}{R_a} (q_{sat}(T_s) - q_a)$$

 $\boldsymbol{\delta}$ is the fraction of foliage covered by water

$$\delta = (1 - f_{z_0})\delta_{low} + f_{z_0}\delta_{high}$$

イロト イヨト イヨト イヨト

isba teb seaflux flake

evaporation

snow sublimation

$$E_n = p_n \frac{\rho_a}{R_a} (q_{sat}(T_s) - q_a)$$

 p_n : snow fraction

イロン 不良 とくほど 不良 とう

isba teb seaflux flake

evaporation

evapotranspiration

$$E_{tr} = veg
ho_a rac{1-\delta}{R_a+R_s}(q_{sat}(T_s)-q_a)$$

stomatal resistance R_s regulates evaporation of plants

・ロト ・回ト ・ヨト ・ヨト

isba teb seaflux flake

A-gs approach

The active biomass is a reservoir fed by the net CO2 uptake by leaves : net assimilation = photosynthesis - leaf respiration

イロト イヨト イヨト イヨト

isba **teb** seaflux flake

Town Energy Balance

isba **teb** seaflux flake

urban canyon concept

◆□ ▶ ◆□ ▶ ◆ □ ▶ ◆ □ ▶ ●

æ

isba **teb** seaflux flake

TEB

radiative perturbations

shading effect on walls and roads

radiative trapping inside the canyon

surfex

isba teb seaflux flake

thermal perturbations

- specific properties of materials
- lot of available surfaces

 \Rightarrow strong heat storage

イロト イヨト イヨト イヨト

isba **teb** seaflux flake

anthropogenic perturbations

- metabolism
- road traffic
- heating/cooling domestic systems
- industrial activity

イロト イヨト イヨト イヨト

isba teb seaflux flake

hydrological perturbations

- sewer network
- waterproof surfaces

\Rightarrow strong runoff and weak evaporation

イロト イヨト イヨト イヨト

isba teb seaflux flake

TEB

$F_{net} + F_{ant} = H + LE + \Delta F_{sto} + \Delta F_{adv}$

- *F_{net}* : net flux
- F_{ant} : anthopogenic flux
- H : sensible heat flux
- LE : latent heat flux
- F_{sto} : storage flux
- F_{adv} : advection flux

・ロト ・日ト ・ヨト ・ヨト

isba **teb** seaflux flake

princip of TEB model

- urban canyon model : parameterization of exchanges of water and energy between canopy and atmosphere
- exclusive treatment of built surfaces
- idealized geometry
- 3 elementary surfaces

• • • • • • • • •

isba **teb** seaflux flake

princip of TEB model

computation of temperature surface + materials

surfex

isba **teb** seaflux flake

princip of TEB model

computation of exchanged energy with aerodynamical network

computation of air temperature and humidity inside the canyon

isba **teb** seaflux flake

Arome forecast for the 18th November 2005 at 00UTC

イロト イヨト イヨト イヨト

-

isba teb seaflux flake

sea flux parameterization

 Surfex system

 Preparation of physiographical fields

 initialization of historical model variables

 running surface schemes

 surfex physical parameterizations

 surface diagnostics

Charnock formulation

$$z_0 = 0.015 \frac{{u_*}^2}{G}$$

prescribed SST and Charnock's formulation allow to compute fluxes over sea

イロト イヨト イヨト イヨト

isba teb seaflux flake

1d ocean boundary layer

pronostic SST, salinity and TKE

イロト イヨト イヨト イヨト

isba teb seaflux flake

1d modele fluxes

 $\|\vec{\tau}\| = -\rho_a C_D U^2$ $H = \rho_a c_{\rho_a} C_H U(\theta_S - \theta_a)$ $LE = \rho_a L_v C_E U(q_S - q_a)$

isba teb seaflux flake

1d ocean boundary layer

sea surface temperature

surfex

isba teb seaflux flake

1d ocean boundary layer

salinity

surfex
isba teb seaflux flake

Flake model

isba teb seaflux flake

Flake model is able to predict :

- vertical temperature structure
- mixing conditions in lakes of various depth
- for various time scales (few hours to several years)
- bulk model based on M.O. similarity theory : structure of turbulence in boundary layer entirely defined with turbulent scales u_* and θ_*
- includes a parameterization of sediments
- includes also a snow scheme since part of lake can freeze

イロト イヨト イヨト イヨト

isba teb seaflux flake

variables

- $\theta_s(t)$ surface temperature
- h(t) height of mixed layer
- $\theta_b(t)$ deep temperature
- *H*(*t*) depth penetrated by thermal wave
- θ_H(t) temperature at depth H(t)

・ロト ・回ト ・ヨト ・ヨト

isba teb seaflux flake

variables

- θ_S(t) temperature at air-snow interface
- θ_I(t) temperature at ice-snow interface
- $H_S(t)$ snow thickness
- $H_I(t)$ ice thickness

イロト イヨト イヨト イヨト

2

main options 2 meters diagnostics

energy budget (mean and per tile/patch)

- LSURF_BUDGET, classical energy fluxes : F_{net}, H, LE, G
- LSURF_EVAP_BUDGET, evaporative components :
 - $L_v E_g$, $L_v E_r$, $L_v E_{tr}$, $L_s E_{gi}$, $L_s E_s$
 - total evaporative flux, drainage, runoff, snow melting rate
- LSURF_BUDGETC : accumulated fluxes from begining of simulation

イロン イヨン イヨン

main options 2 meters diagnostics

inquiry mode

- LCOEF : turbulent exchange coefficients, roughness lengths
- LSURF_VARS : returns surface humidity q_s

LPGD : returns surface parameters (LAI, veg, ...)

イロト イヨト イヨト イヨト

main options 2 meters diagnostics

2 meters diagnostics

N2M=1

Paulson, 1970 : extrapolation from lowest atmospheric level using predefined stability functions

• N2M=2

Geleyn, 1988 : interpolation between surface and lowest atmospheric level using exchange coefficients (used to compute fluxes)

イロト イヨト イヨト イヨト

main options 2 meters diagnostics

SBL scheme : Masson, 2008

- 1d vertical prognostic scheme
- extra layers between lowest atmospheric level and surface
- takes into account large scale forcing, turbulence and drag due to canopy

2 meters variables are computed in a prognostic way

surfex