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Part I

ARPEGE-GCM-V5.0

1 Introduction - Motivations

The full documentation of the “new” Deep-convection scheme ACCVIMP have been written by Luc Gerard
and is presented without any change in the Part II of the present document. Some additional explanations
are presented in the Part I, with a description of the main differences with the older scheme (ACCVIMP V3)
used in the Climate version 3 and 4 of ARPEGE.

The original Deep-Convection scheme (ACCVIMP) is based on the ideas of Bougeault [1985] and has
been coded by J.F. Geleyn in 1989, including very important numerical aspects, allowing the use of large time
steps. This scheme has been used until the very beginning of the Climate versions of ARPEGE.

New developments has been made by the team of J.F. Geleyn and L. Gerard since the years 1998, with
the new keys LSRCON (and LSRCONT) for the CYCORA modifications, LCVCAS, LCVLIS and LCVDD
for the L. Gerard changes, all associated with a lot of new variables (GCVADS, GCVALPHA, GCVBETA,
GCVMLT, GCVNU, GCVPSI, GDDEVA, GDDSDE, TDDGP, TUDGP, ...)

It has not been possible to recover a correct climate version 4 (cycle 24t1) with the use of these new
ACCVIMP versions, with the main drawback of a too strong double ITCZ. In spite of numerous back-phasing
of the code, also numerous tests of most of the tunable variables, it has not been possible (at that time) to fix
the problem of the double ITCZ...

As a consequence, a choice has been made in the Climate version 4 (cycle 24t1) to keep the “old” Climate
version 3 of the code (cy18t1), recoded in an additional new subroutine called ACCVIMP V3 (activated if
LCVRAV3=.TRUE.), whereas the more recent and modified versions, still called ACCVIMP, was currently
used in the NWP versions of ARPEGE.

In the meanwhile, the improvement of the quality of the new Bougeault-Geleyn-Gerard Deep Convection
scheme (ACCVIMP) has been demonstrated, with the use of SCM simulations. Thus, it was a priori interesting
to test again the new developments in the frame of the new Climate version 5 of ARPEGE, in association with
the Lopez prognostic cloud and precipitations scheme and the TKE-CBR prognostic turbulent scheme.

In the meanwhile too, other Deep Convection schemes exist or have been coded and have (or could have)
been tested in the frame of the ARPEGE-IFS code package.

• The Tiedtke (1986-87-89), Gregory (1996) and Bechtold (2005) scheme is the one currently used in the
ECMWF package. It is called by CALLPAR, with the name CUCALLN=(CUMASTRN, CUCCDIA,
CUSTRAT). The master cumulus subroutine is CUMASTRN, which calls a large set of other subrou-
tines (CUININ, CUBASEN, CUASCN, CUDLFSN, CUDDRAFN, CUASCN, CUFLXN, CUDTDQN,
CUDUDV, CUCTRACER). The computation of convective cloud amounts, to be transmitted to the
radiation, are made in CUCCDIA. The PBL strato-Cumulus computations (if not made elsewhere),
are made in CUSTRAT. At least the basic subroutine CUMASTRN could be tested as a pure Deep
Convection scheme.
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2 ARCHITECTURE - SUBROUTINE

• The Gueremy [2005] scheme is an evolution of the Bougeault [1985] and Geleyn subroutine ACCVIMP.
It is based on the CAPE method, with a prognostic equation for the convective velocity and with the
capacity to represent both the Deep and the Shallow Convections.

• The scheme of Piriou et al. [2007] is another evolution of the Bougeault [1985] and Geleyn subroutine
ACCVIMP. It has been written first in order to represent the Deep Convection regime with a “Micro-
physics and Transport” underlying assuption, leading to the name “MT” for this scheme. More recently,
the scheme has been extended to the “2MT” approach (for Multiscale Micro-physics and Transport) and
the “3MT” approach (for Modular Multiscale Micro-physics and Transport). Even more recently, the
“FP-MT” approach (for Fully-Pronostic Micro-physics and Transport) is described in Yano and Piriou
[2008].

The problem to know if a convection scheme can (or cannot) represent both the Deep and Shallow
convection regimes is an important one. Indeed, the Shallow Convection scheme is presently parameterized in
some way by the standard turbulent schemes, either by the Louis-Geleyn scheme (in NWP mode) or by the
moist Mellor-Yamada scheme (in GCM mode). But this is no longer true for the prognostic moist TKE-CBR
turbulent scheme, the turbulent scheme which is intended to be used in the Climate version 5 of ARPEGE.
As a consequence, there was a need for getting a new Shallow Convection scheme...

The possibility to use the Gueremy [2005] scheme has long been tested in the Climate version 4. Some
detrimental problems of unclosed energy budgets, together with the strong wish to get a common solution valid
both for the NWP and the GCM versions of ARPEGE, has lead to the solution retained for the “GAME”
prospective.

In this “GAME” solution for the ARPEGE physics package, the Shallow Convection is represent by the
mass-flux scheme of Bechtold et al. [2001] (subroutine ACVPPKF, called by APLPAR if LCVPPKF). The
vertical extension of the clouds is no more than the maximum value XCDEPTH D = 4000 m or so, with the
minimum value for this vertical extent equal to XCDEPTH = 500 m or so.

In this “GAME” solution for the ARPEGE physics package, the Deep Convection is represented by
the present scheme of Bougeault-Geleyn-Gerard (ACCVIMP, called by APLPAR if LCVRA), with the ad-
ditional property to ensure a minimum value for the vertical extent of the Cumulus clouds, at least equal
to GCVHMIN /g ≈ 2000 m or so. This new property has been implemented in the scheme by E. Bazile
(CNRM/GMAP), in term of the minimum value GCVHMIN for the difference in the geopotential of the top
and bottom of the clouds.

If the CAPE method is switched-off, i.e. if LCAPE=.FALSE., the convergence of specific humidity is one
of the important input value for the Deep Convection scheme ACCVIMP. It is computed in the array PCVGQ
and it is available as input of APLPAR, since it has been computed in the dynamics (from the convergence or
divergence of the wind and from the gradient of the specific humidity).

The value of PCVGQ coming from the dynamics is modified in APLPAR before the call to ACCVIMP.
PCVGQ is multiplied by a factor depending on the local resolution of the model (depending on the map factor
PGM), in order to get a formulation which is intended to be less dependent on the variable resolution of the
(possibly stretched) Gauss grid. PCVGQ is also corrected by adding the evaporation of water coming from the
turbulent and the precipitation fluxes (Fq)turb and (Fq)prec, also from the correction of non-negative humidity
fluxes (Fq)neg.

PCVGQ =
PCVGQ

( 1 + TEQK ∗ PGM )GCOMOD
− g

∆(p)
∆
[
(Fq)turb + (Fq)neg + (Fq)prec

]
.

TEQK and GCOMOD are two tunable parameters. Only the exponent GCOMOD is available in the
NAMELIST, and not TEQK which is computed in SUGEM1B for ARPEGE (in SUEBIG for ALADIN),
following

(TEQK) ARPEGE = REFLKUO ∗NDLON / (2. ∗ RPI ∗ RA) ,
(TEQK) ALADIN = REFLKUO / MIN (EDELX, EDELY) .

In both case, TEQK depends on the same tunable parameter REFLKUO, available in the NAMELIST.

2 Architecture - Subroutine

The monitor of the ARPEGE physics is APLPAR. The Bougeault and Gerard Deep-Convection scheme is
called if LCVRA=.TRUE., with the following sequence of subroutines.
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3 ARCHITECTURE - NAMELIST

APLPAR : monitor of the ARPEGE physics
> ACCVIMP : general call to the Bougeault-Geleyn-Gerard-Bazile

Deep-Convection scheme (if LCVRA=.TRUE.)
> ACCVIMPD : computation of the Downdraught fluxes (if LCVDD=.TRUE.)

3 Architecture - NAMELIST

The main NAMELIST variables controling the Physics are located in the Namelist NAMPHY.
&NAMPHY

LCVRA=.TRUE., ; to switch-on the Bougeault-Geleyn-Gerard-Bazile scheme (call to ACCVIMP).
LCVDD=.TRUE., ; to switch-on the Downdraught computations (call to ACCVIMPD).
LCVCAS=.TRUE., ; to switch-on the “Connected Active Segment (CAS)” on the vertical.
LCVLIS=.TRUE., ; to switch-on the “smoothing” (LISsage in French) for the humidity

as for the “enthalpy” (in fact the static energy s = cp T + φ).
LCAPE=.FALSE., ; switch-off the computations and use of the CAPE.
LNEBN=.TRUE., ; to switch-on the computation of Cloud Cover (call to ACNEBN).
LNEBCO=.FALSE., ; switch-off the computation of convective cloudiness (call to ACNEBC).
LCVRAV3=.FALSE., ; switch-off the old Bougeault-Geleyn scheme (call to ACCVIMP V3).
LSRCON=.FALSE., ; switch-off the CYCORA computations (to substract grid-scale precipitation

from moisture convergence before passing it to deep convection).
LSRCONT=.FALSE., ; switch-off the CYCORA computations (to substract grid-scale precipitation

from the energy fluxes in input to deep convection).

The usual tunable papareters are located in the Namelist NAMPHY0.
&NAMPHY0

GCVADS=0.80, ; to switch from an equi-pressure adiabat computation to an equi-geopotential
one ; a modification of saturated adiabat computation (Banciu, 1999)

GCVALPHA=4.5 E-5, ; coefficient to compute entrainment rate from cloud buoyancy ;
a new entrainment rate formulation (Banciu, 1999)

GCVBETA=0.20, ; fraction of convective mass flux divergency used in detrainment computations ;
an enhanced detrainment rate (Banciu, 1999)

GCVPSI=1.0, ; adimensional coefficient to go from a local use of turbulent fluxes (if 1)
to an integral one (if 0) ; treatment of turbulent fluxes (Banciu, 1999)

GCVNU=5. E-5, ; Cloud core buoyancy as a fraction of an undilute plume (Piriou, 2000)
GCVMLT=16. E-5, ; Hysteresis of precipitations melting/freezing (Piriou, 2001)
GDDEVA=0.25, ; Downdrafts: precipitations evaporation fraction
GDDSDE=0.50, ; Downdrafts: surface descending flow exponent
TDDGP=0.80, ; Downdraught Horizontal Grad(p) effect coefficient (Kershaw & Gregory)
TUDGP=0.80, ; Updraught Horizontal Grad(p) effect coefficient (Kershaw & Gregory)
(TRENTRV) = 0.70, ; Old relative wind’s entrainment rate (Kershaw & Gregory) !! not used !!
TENTR=2.5 E-6, ; the (minimum) lateral entrainment coefficient
TENTRX=80. E-6, ; the (maximum) lateral entrainment coefficient
(TENTRVL) = 0.185, ; Old lateral entrainment rate (V. Lorant) !! not used !!
RCVEVAP=0., ; modulation factor for convective evaporation

RCVEVAP=0. or 1. <=> LCVEVAP=.FALSE. or .TRUE. (Bouteloup, 2002)
GCVHMIN=20000., ; if GCVHMIN> 0 : a minimum geopotential thickness for bridling (Bazile, 2008)
RSATDEF=0., ; if GCVHMIN< 0 : use also a saturation deficit for bridling (Bazile, 2008)
SCO=-20., ; threshold for the convective precipitation (statistical cloud scheme)

IF SCO > 0 setting to zero if PRECIP. ¡ SCO
IF -1-EPS < SCO < 0 no setting to zero (with EPS=0.001)
IF SCO < -1-EPS setting to zero if PRECIP. ¡ -SCO*MIN(QSAT-QN)

(TEQK), ; ratio between REFLKUO and the model equivalent mesh size ;
!! computed in SUGEM1B or SUEBIG ; not in the NAMELIST !!

REFLKUO=50000., ; Moisture convergence : reference value for the Kuo scheme
GCOMOD=1.0, ; Moisture convergence : exponent used in the computation of PCVGQ
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1 GENERALITIES

Part II

The Bougeault-Gerard scheme / ACCVIMP

1 Generalities

The model large scale equations yield the evolution of the large scale model variables, which are values at dis-
crete grid points, representing an average value over 1 grid mesh. Subgrid effects are hidden into the so-called
“turbulent stress”. All parameterizations are intended to represent the effects of subgrid phenomena on the
large scale model variables.

The occurrence of deep convection (i.e. the convection producing precipitation), affects mainly the vertical
component of the turbulent flux.
Some models distinguish a deep convection associated to large scale moisture convergence, a shallow convection
associated to local evaporation alone, and a mid-level convection, which originates above the boundary layer;
in Arpège-Aladin’s frame, the shallow convection is treated as a correction in turbulent fluxes parameteriza-
tion, while the “deep” convection needs large scale moisture convergence, and produces subgrid precipitation;
it also includes the mid-level convection.

We must emphasize that what is handled by the parameterization is actually the subgrid effect of convective
processes; the vertical movements induced by fronts have scales big enough to be resolved by the model grid,
and the associated precipitation is handled by the large-scale precipitation scheme. But also in convective
situations, part of the vertical movements are perceived at the large scale, and handled by the large scale pre-
cipitation scheme. So the so-called “deep convection” parameterisation scheme is only concerned with what
the large scale cannot distinguish.
As stated by Kuo [1965, 1974], wherever the conditions for deep convection are fulfilled, the large scale
equations cannot describe correctly the evolution of heating and moisture, as the release of latent heat is
accomplished by the vertical motion associated with the convective clouds (much smaller than the grid box),
and not by the vertical component of the large scale wind. Cumulus clouds serve collectively as a heat source
for the mean flow field, in addition to their function as agents of diffusion. The deep convection scheme has
to estimate the part of the large scale heating Q1 and of the moisture sink −Q2 associated to the subgrid
motions; the convective precipitation corresponds to the vertical integral of the moisture sink. Besides, the
convective mass flux induces a vertical redistribution of heat, moisture, and momentum.

Cloudiness is treated separately from the convective scheme: “deep convection cloudiness” will be derived from
the convective precipitation flux, while shallow convection cloudiness is diagnosed at the same time as large
scale cloudiness.
Figure 1 presents the main characteristics of a single cumulus cloud. Main active elements are the updraught

and the downdraught. Air is entrained from the environment, and cloudy air is also detrained to the environ-
ment. The updraught activity is fed by the large scale convergence and also by the local evaporation. The
upper part of the cloud is made of ice, the lower part of liquid water. Evaporation of falling precipitation cools
the environment, which can spawn a downdraught motion. The cooler air induces a “local high” (pressure)
near the ground, which causes a wake of cool air and a gust front.

These clouds are often organized in cloud systems, but our parameterization will use a bulk formulation,
replacing the subgrid turbulent structure by a single updraught and a single downdraught.

• The updraught is computed first, as resulting from the occurrence of both moisture convergence and
positive buoyancy.

• Saturation spawns a cloud condensate, which converts into precipitation when the saturated layer reaches
a critical thickness.

• The closure of the subgrid mass budget may require a local compensating subsidence, but we’ll see
another vertical advection term abusively called “compensating subsidence”, appearing in the equations
following the choice of the referential. This term implies anyway a vertical reorganisation of the (variables
describing the) immediate (subgrid) environment of the updraught.

• This affects the moisture budget and can result in a vertical convergence of the precipitation flux,
representing the evaporation of falling precipitation.
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1 GENERALITIES
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Figure 1: Schematic representation of a single cumulus cloud

• The downdraught scheme is computed separately, as resulting from the occurrence of both vertical
convergence of the precipitation flux and negative buoyancy. The latter results actually of precipitation
evaporation cooling the mid-level layers.

Separation of phenomena drives us to express a partial tendency for the convective effect. We write conven-
tionally the large scale equations (i.e. prognostic equations for the large scale model variables, and dropping
the viscous stress terms) using the hydrostatic pressure as vertical coordinate. For this paragraph only, we
note the large scale values with a bar, reminding they represent a mean value over 1 grid mesh, as:

dψ

dt
= (Source)− (Turbulent Stress)

or (using the notation Q1, Q2 introduced by Yanai et al. [1973]):

• Large scale apparent heating Q1 (K/day):

cp ·Q1 =
∂s

∂t
+ V · ∇s+ ω

∂s

∂p
= L · (C − E) + cp ·QR −

∂ω′s′

∂p
−
(
∂u′s′

∂x
+
∂v′s′

∂y

)
(1)

• Large scale apparent moisture sink −Q2 (K/day) (i.e. cooling / heating brought by moisture variations):

−cp ·Q2

L
=
∂q

∂t
+ V · ∇q + ω

∂q

∂p
= −(C − E)− ∂ω′q′

∂p
−
(
∂u′q′

∂x
+
∂v′q′

∂y

)
(2)

In addition, we may consider the

• Horizontal momentum equation

∂V
∂t

+ V · ∇V + ω
∂V
∂p

− f k ∧V = −∇φ− ∂ω′V′

∂p
−
(
∂u′V′

∂x
+
∂v′V′

∂y

)
(3)

C − E is the net condensation-evaporation rate, QR is the radiative local heating (K/day): these source terms
can be separated between the part occurring at large scale, and the part occurring at subgrid scale.
So we express that the heating of a (3D) mesh-scale material parcel is due to
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1 GENERALITIES 1.1 Mass flux approach

• large-scale and subgrid-scale phase transitions,

• large-scale and subgrid radiative heating and

• subgrid reorganization effects (divergence of the eddy transport of sensible heat).

The apparent moisture sink measured by Q2 is due to the net condensation and the divergence of the eddy
transport of moisture. A complete resolution of the parameterization problem would be to derive expressions
for the subgrid part of C − E and QR, and the turbulent fluxes: as this is hardly thinkable, we opt instead for
a bulk description of the resulting large-scale effects, seeking an expression for Q1 −QR and −Q2, accounting
for the effects of both deep convection and turbulent transports; and we want to determine Q1 and −Q2 from
the large-scale environment.
Outside the regions of deep convection the convective part of Q1 and −Q2 is zero, while the turbulent processes
still give an input.

The set of large scale equations may be rewritten in the form:

∂ψ

∂t
= −V∇ψ − ω

∂ψ

∂p
− ∂ω′ψ′

∂p
+ Sψ (4)

where ψ stands for s, q, or h = s + Lq and V. The vertical flux ω′ψ′ represents all subgrid scale transports
(linked to either micro-scale, cloud-scale, or meso-scale circulations) and Sψ the source/sink terms (radia-
tion contribution for thermodynamic variables, geopotential gradient for the momentum equation). We drop
here the horizontal turbulent stresses and the Coriolis term as they do not affect directly the convective process.

Equation (4) can be considered as:

∂ψ

∂t
=
(
∂ψ

∂t

)
LS

+ S′ψ +
(
∂ψ

∂t

)
subgrid

(5)

The subscript LS denotes the contribution to the time derivative by the large-scale advective process and
subgrid for those having a space scale smaller than the grid size. S′ψ represents the source terms treated outside
the convection parameterisation scheme (the large scale parts). The subgrid tendency becomes then:(

∂ψ

∂t

)
subgrid

= source− ∂ω′ψ′

∂p
=
(
∂ψ

∂t

)
conv

+
(
∂ψ

∂t

)
vert diff

(6)

1.1 Mass flux approach

The approach performs an average over the “cloudy” (i.e. convectively active) and “no-cloudy” (inactive) area
of the grid point and may allow some approximations as the active cloud covers a fractional area much smaller
than one.
The mass flux approach partitions the flux between contributions from convective updraughts (subscript u),
convective downdraughts (subscript d), and the environment (subscript e):

ψ′ω′ = σu ψ′ω′
∣∣
u

+ σd ψ′ω′
∣∣
d

+ σe ψ′ω′
∣∣
e

(7)

where ψ stands for V, s, or q and the σ represent the fractional areas covered by convective up- and down-
draughts, and the environment.

ψ = ψ + ψ′ (8)

where ψ represents the average value over the grid box, and ψ′ the fluctuations from it. We have:

ψ = σu · ψu + σd · ψd + (1− σu − σd) · ψe
ω = σu · ωu + σd · ωd + (1− σu − σd) · ωe

(9)

hence

ω′ψ′ = ω · ψ − ω · ψ
= σu · ωuψu + σd · ωdψd + (1− σu − σd) · ωeψe − (σu · ωu + σd · ωd + (1− σu − σd) · ωe) · ψ
= σu · ωu ·

(
ψu − ψ

)
+ σd · ωd ·

(
ψd − ψ

)
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1 GENERALITIES 1.1 Mass flux approach

+ωe
{
−σu (ψu − ψe)− σd (ψd − ψe)− σu

(
ψe − ψ

)
− σd

(
ψe − ψ

)}
= σu · (ωu − ωe) ·

(
ψu − ψ

)
+ σd · (ωd − ωe) ·

(
ψd − ψ

)
(10)

= σu · (ωu − ω) · (ψu − ψe) + σd · (ωd − ω) · (ψd − ψe) (11)

The last equality results from the symmetry between ψ and ω in the calculation.
We define

ω
∧
∗ ≡ σu · (ωu − ωe) , ω

∨
∗ ≡ σd · (ωd − ωe) (12)

the relative up- and downdraught mass fluxes with respect to the environment.
The absolute draught mass fluxes (by the absolute cloud velocity),

Mu ≡ −σu · ωu = −(ω
∧
∗ + σuωe) ⇐⇒ ω

∧
∗ = −(Mu + σuωe)

Md ≡ σd · ωd = (ω
∨
∗ + σdωe) ⇐⇒ ω

∨
∗ = (Md − σdωe)

(13)

Following assumption is generally applied

−ω
∧
∗ ∼Mu ≡ −σu · ωu and ω

∨
∗ ∼Md ≡ σd · ωd (14)

This will be realized if

• σu � 1: remember that σu represents only the fraction of the grid box occupied by the updraught. We
have then

σu � 1 =⇒ ωu � ωe

Various articles, like Asai and Kasahara [1967] propose to estimate an affordable section for the
updraught by considering complete Bénard-like cells, considering that space is required between the
updraughts for compensating subsidence. For such a situation, they obtain that the updraught should
not pass over 15% of the section of the cloud. Such a view is rather academic: in our case, most of the
compensating subsidence could occur outside the grid box containing the cloud system we try to simulate,
because if it was within the box, we should not observe the large scale convergence that we put as a
necessary condition for convective activity. Practically, with large grid boxes, there could be significant
compensating subsidence within the box, but this part would then be hidden in the parameterization; on
the other hand, with grid boxes of a few kilometers, cloud systems could extend over several grid boxes,
and the active mesh fraction would not need to be small.

• ωe ∼ 0 could be less restrictive. The large scale vertical velocity is related to the large scale convergence,
which is supposed here to feed the convective process: so the average large scale upward motion should
come essentially from a larger updraught velocity over the small updraught mesh fraction σu. Note that
actually, the local surface fluxes also feed the updraught (see §1.2), so that this balance could not be
perfect.
Outside the updraught, only the compensating subsidence could produce a non-zero subgrid environmen-
tal vertical velocity. In the case both an updraught and a downdraught are present, the downdraught’s
compensating ascent acts opposite to the compensating subsidence, reducing the net effect, and the
so-called compensating vertical fluxes could be seen as mere tools to close the subgrid budgets, with no
net impact on the large scale.

Bougeault [1985]’s experiments with a single updraught showed already similar profiles for his variables
ω∗ = σu(ωu − ωe) (representing in his terminology the “net vertical ascent occurring at subgrid scale”) and
the large scale vertical velocity ω = ω∗ + ωe, the first being nevertheless slightly bigger, suggesting the need
of some correction by environment compensating subsidence (but his scheme did not include a downdraught).
Anyway it is important to maintain a clear distinction between the fluxes in the reasoning.
The final expression is thus

ψ′ω′ = ω
∧
∗ (ψu − ψ) + ω

∨
∗ (ψd − ψ) (15)

In the general equations we must express the turbulent constraints as

−∂ψ
′ω′

∂p
= −∂ω

∧
∗(ψu − ψ)
∂p

− ∂ω
∨
∗(ψd − ψ)
∂p

(16)

Deep Convection / ACCVIMP II – 7



1 GENERALITIES 1.2 Formulation

1.2 Formulation

Bougeault [1985] uses the following guidelines:

• Most of the vertical mass ascent needed to satisfy the large-scale mass budget is not visible at the large
scale but only at the sub-grid scale, where

– the ascent cooling effect is widely balanced by the condensation heat release

– the moistening is widely balanced by the rain fallout

Similarly, we’ll suppose that the downdraught moisture and energy budgets are closed without mixing
with the environment: the evaporation of precipitation is the only source of q and s in the downdraught
and is totally devoted to it.

• When deep convection occurs, the large scale values of s and q are also modified by mixing of cloudy
air with the environment, which is called detrainment. For this, Kuo’s scheme uses a relaxation of
the large-scale variables towards a single cloud profile (sc, qc) with a time constant independent of the
altitude (practical implementation will refine this scheme, introducing enhanced detrainment at the cloud
top).

• As soon as deep convection occurs, the validity of a separate treatment of vertical turbulent diffusion
becomes doubtful: a simple way to compensate for the contribution of the turbulent diffusion scheme
added in a subsequent computation step, is to subtract the turbulent tendencies in the expression of the
convective tendencies. When closing the moisture budget, this requires to subtract the vertical divergence
of turbulent moisture flux (and similarly for the associated dry static energy) from the total convective
tendencies. In addition (see §6.1.1), it has been proposed to add the effect of the turbulent moisture flux
to the large scale moisture convergence feeding the convective process, which reflects the fact that large
scale moisture advection alone is not always the main moisture provider to the updraught: local surface
evaporation – expressed in this turbulent vertical flux – sometimes brings a substantial contribution.

Considering the mixing of the cloud air with the environment, through an entrainment rate E ≥ 0 and a
detrainment rate D ≥ 0, we can write cloud-scale budgets, with the hypotheses that ψe = ψ, σu, σd � 1, and
∂σuψu

∂t ≡ 0 as we neglect the contributions of the cloud variables tendencies (stationarity of cloud properties
over the time step).
For the updraught :

∂Mu

∂p = Du − Eu
∂Musu

∂p = Dusu − Eus− Lc

∂Muqu

∂p = Duqu − Euq + c

∂MuVu

∂p = DuVu − EuV

(17)

where c is in-cloud condensation rate (there is no evaporation inside the cloud).

For the downdraught, we have, similarly:

∂Md

∂p = Ed −Dd

∂Mdsd

∂p = Eds−Ddsd − L e

∂Mdqd

∂p = Edq −Ddqd + e

∂MdVd

∂p = EdV −DdVd

(18)

where this time the source term e is the evaporation (measured through the convergence of the precipitation
flux), and there is no condensation as the downdraught no longer works when saturated.

With (17), (18) we can derive:

∂Mu(su − s)
∂p

= Du(su − s)−Mu
∂s

∂p
− Lc

∂Md(sd − s)
∂p

= −Dd(sd − s)−Md
∂s

∂p
− L e
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1 GENERALITIES 1.2 Formulation

and similar relations for q and V, hence the general form

−
∂ω

∧
∗ (ψu − ψ

)
∂p

= Du(ψu − ψ) + ω
∧
∗ ∂ψ

∂p
− source

∂ω
∨
∗ (ψd − ψ

)
∂p

= −Dd(ψd − ψ)− ω
∨
∗ ∂ψ

∂p
− source

Combining with (16) and (6), we obtain as final expression, applying to regions of deep convection:(
∂ψ

∂t

)
conv

= ω
∧
∗ ∂ψ

∂p︸ ︷︷ ︸
pseudo subs.

+Ku(ψu − ψ)︸ ︷︷ ︸
Detrainment

+ ω
∨
∗ ∂ψ

∂p︸ ︷︷ ︸
pseudo asc.

+Kd(ψd − ψ)︸ ︷︷ ︸
Detrainment

+ g
∂Jψ
∂p︸ ︷︷ ︸

turb. vert. diffusion

(19)

where we noted the detrainment rates D as Kuo-type detrainment coefficients Ku and Kd.
The last term of the RHS is the subtraction of the separate vertical diffusion scheme contribution, following
Bougeault’s third guideline.
This equation expresses the part of the tendency of the large scale model variables due to convection, and
the different terms can receive an external interpretation, as indicated: pseudo subsidence and ascent, and
detrainment of cloudy air which modifies the environment by mixing to it.

We could summarize the development as follows:

• Outer side: We try to express here the environmental effects of the convection. Those are

– A pseudo downward advection for the updraught (often abusively called compensating subsidence)
and pseudo-upward advection for the downdraught (abusively called compensating ascent). Those
two terms are linked to the fact that large scale variables have the large scale vertical velocity, while
the draught actual environment has vertical velocity ωe:

ω = σuωu + σdωd + σeωe =⇒ ω
∧
∗ + ω

∨
∗ = ω − σeωe

and we see these pseudo-advection terms by the two draughts fluxes combine in a relative advection
of the large scale variable by the difference between large scale vertical velocity and the subgrid
average environment velocity.
No environmental vertical motion effect of this term is experienced at large scale.

– When deep convection occurs, the large scale values are affected via the detrainment process.

– We suppose that the convective scheme includes the vertical turbulent diffusion effects in the case
of convection, so we have to subtract the contribution of the separate diffusion scheme that would
be redundant and alter the results.

• Inner side: The subgrid behaviour will be replaced by a single updraught and a single downdraught.
This is the part concerned by the parameterization, which must take into account:

– The source of the convective activity: moisture convergence and positive buoyancy for the updraught,
and evaporation of the precipitation and negative buoyancy for the downdraught.

– The effects of entrainment of environmental air into the up/downdraughts.

– The effects of the pressure gradient on momentum, due to the fact that the pressures into the
updraught, the downdraught, and the environment may be different.

Let’s rewrite equation (19) for the actual model variables, and compare with the case with no convection.
In the convective region, we have to add convection’s contribution :

cp ·Qcu
1 = C · L− ∂ω′s′

∂p
= ω

∧
∗ ∂s

∂p
+Ku (su − s) + ω

∨
∗ ∂s

∂p
+Kd (sd − s) + g

∂Js
∂p

(20)

−cp
L
·Qcu

2 = −C − ∂ω′q′

∂p
= ω

∧
∗ ∂q

∂p
+Ku (qu − q) + ω

∨
∗ ∂q

∂p
+Kd (qd − q) + g

∂Jq
∂p

(21)

Q3 =
(
∂V
∂t

)cu

= ω
∧
∗ ∂V
∂p

+Ku

(
Vu −V

)
+ ω

∨
∗ ∂V
∂p

+Kd

(
Vd −V

)
(22)
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2 MESH SIZE EFFECTS ON PARAMETERIZATION

To the turbulent fluxes, found everywhere:

cp ·Qdiff
1 = cp · (Q1 −QR) = −g ∂Js

∂p
(23)

−cp
L
·Qdiff

2 = −g ∂Jq
∂p

(24)

Qdiff
3 = −g ∂JV

∂p
(25)

In the case of momentum, it doesn’t seem wise to introduce a turbulent vertical diffusion term (see §5.2): unlike
s and q, momentum has no active contribution to convection itself, while Q3 (22) acts as a pure redistribution
of horizontal momentum. So we let turbulent diffusion of horizontal momentum act everywhere through the
turbulent diffusion scheme.
To go farther, we need expressions for the parameters Ku and Kd, for the cloudy mass fluxes ω

∧
∗, ω

∨
∗, and for

the cloudy profiles ψu, ψd.
For all this, we have to look at the inner side of the parameterization.
In the following sections, we’ll first derive the pseudo subsidence/ascent terms and the detrainment coefficients
Ku and Kd, supposing the cloudy mass fluxes are known.
After, we will build the cloudy profiles, and finally examine the different closure hypotheses allowing to
determine the mass fluxes.

2 Mesh size effects on parameterization

The aim of “deep convection” parameterization is primarily to address the unresolved phenomena inducing
precipitation. Large scale precipitation is based widely on large scale vertical velocities, themselves represent-
ing averages over one grid mesh.
When increasing the resolution, more and more precipitation represented by the parameterization scheme will
also be diagnosed by the large scale scheme, leading to a double count of precipitation.
Practically cumulo-mimbus clouds are totally resolved by a 1 km grid mesh, and ignored by a 100 km grid
mesh.
Between those mesh sizes, you need to modulate the contribution of the deep convection scheme, and this is
particularly sensible in Arpège global model, where the mesh size varies over the domain.

The modulation is performed by affecting the large scale moisture convergence fed to the deep convection
routine.

2.1 Classic method

Moisture convergence at a given level is expressed by

CVGQ ≡ −R
[
V · ∇q + ω

∂q

∂p

]
− g

∂Jq
∂p

(26)

where R is a modulation factor to take into account mesh size effects.
Note the addition of the divergence of the turbulent diffusion flux, which is an important characteristic of the
scheme (see §6.1.1).

The ancient way (LSRCON=.FALSE.) defines this modulation factor as

R =
1

(1 + PGM(JLON) · 4xref
4xequiv

)Υ
(27)

where

• PGM is the local map factor,

• Υ ≡ GCOMOD is a tuning exponent,

• 4xequiv is the model equivalent mesh size, defined as

4xequiv ≡ 2πra

3NSMAX in the global model Arpège, and
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3 PSEUDO ADVECTION 2.2 Smarter method

4xequiv ≡ min(EDELX,EDELY) in Aladin

where ra is the earth radius, NSMAX the model truncation, EDELX and EDELY the local area model
mesh dimensions [m].

• 4xref is a reference length [m] suitable to the closure type of the convection scheme, corresponding to
parameters REFLKUO (Kuo closure) of REFLCAPE (CAPE closure).

2.2 Smarter method

Activated by the key (LSRCON=.TRUE.), it consists to add, to the moisture convergence CVGQ, the vertical
divergence of total the large scale precipitation flux (returned by CPFHPFS), before passing it to the deep
convection routine.

CVGQ ≡ −R
[
V · ∇q + ω

∂q

∂p

]
− g

∂Jq
∂p

− g
∂PLS

∂p
(28)

In this case, it is advisable to have R = 1, by setting GCOMOD = 0. or REFLKUO = 0. since there is no need
to perform the large scale moisture convergence modulation in two ways simultaneously.

3 Pseudo vertical advection effects

The original development can be found in the appendix of [Geleyn et al., 1982].
In a separate resolution, we consider here only the first and the third terms of the RHS of equation (19): so
we have to solve (

∂ψ

∂t

)
ps

= ω
∧
∗ ∂ψ

∂p
=
∂ω

∧
∗ψ

∂p
− ψ

∂ω
∧
∗

∂p
= −g

∂F psψ
∂p

(29)(
∂ψ

∂t

)
pa

= ω
∨
∗ ∂ψ

∂p
=
∂ω

∨
∗ψ

∂p
− ψ

∂ω
∨
∗

∂p
= −g

∂F paψ
∂p

where subscript ps represents the pseudo-subsidence and pa the pseudo ascent. The resolution is identical for
the updraught and the downdraught.

(
∂ψ

∂t

)
ps

= ω
∧
∗ ∂ψ

∂p
=
∂ω

∧
∗ψ

∂p
− ψ

∂ω
∧
∗

∂p
= −g

∂F psψ
∂p

The physics being called before the dynamics, the time discretisation is necessarily decentered. In this case,
an explicit discretization of the advection equation is always unstable: hence we must use an implicit one.

Let’s define ZFORM = c = −ω
∧
∗4t ≥ 0 the updraught mass flux.

Putting δl ≡ pl − pl−1 we get, using a split-implicit algorithm for the intermediate determination of ψps:

ψlps − ψl = − 1
δl

{
cl
ψl+1
ps + ψlps

2
− cl−1

ψlps + ψl−1
ps

2

}
+ ψlps

cl − cl−1

δl

As this system is not diagonal dominant (the calculation at level l requires the knowledge at l − 1 and l + 1),
we prefer to write:

ψlps − ψl = − 1
δl

{
cl
ψlps +

(
ψl+1 − ψl

)
+ ψlps

2
− cl−1

ψl−1
ps +

(
ψl − ψl−1

)
+ ψl−1

ps

2

}
+ ψlps

cl − cl−1

δl

= −
cl
δl
ψl+1 − ψl

2
−
cl−1

δl
ψl − ψl−1

2
+
cl−1

δl
(ψl−1
ps − ψlps)
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4 DETRAINMENT COEFFICIENT

so the values at the levels above and below are estimated by considering the same increment as at previous
time step.

ψlps (1 +
cl−1

δl
)− ψl−1

ps

cl−1

δl
= ψl +

cl−1

δl
ψl − ψl−1

2
−
cl
δl

ψl+1 − ψl

2

=⇒ ψlps =
ψl +

c
l−1
δl

{
ψl−1
ps + ψl−ψl−1

2

}
− c

l

δl

{
ψl+1−ψl

2

}
1 +

c
l−1
δl

Defining

ZAUX =
1

1 +
c

l−1
δl

yields

ψlps = ZAUX

{
ψl +

1
δl

[
cl−1

ψl − ψl−1

2
− cl

ψl+1 − ψl

2
+ cl−1 ψ

l−1
ps

]}
(30)

This scheme is conservative, well-conditioned and stable for linear perturbations.
Non linear instability appears when the jump in speed of propagation from one level to the next breaks the
CFL criterion. Mathematically, it can be shown that linear instability is linked to the absence of diagonal
dominance in the matrix. To avoid non linear instability we should have here

|cl − cl−1|

δl

∣∣∣1 + cl

δl

∣∣∣ < 1 (31)

This is obtained by replacing cl by c′l:

c′l = c′l−1 +
(
cl − c′l−1

) 1 + c′l−1
δl

1 + |cl−c′l−1|
δl

(32)

Having the pseudo subsidence tendency, we can express the corresponding flux:

4F psψ = − 4p
g4t

(ψps − ψ) (33)

4 Detrainment coefficient derivation

As we suppose that the convective process induces only a vertical redistribution of heat, moisture, rainfall
and momentum (Bougeault [1985]’s first hypothesis), we can express that the vertical integral of the moist
static energy on the convective column must be conserved by the cumulus components. If we suppose that
the updraught and the downdraught processes are not coupled in the realisation of this balance, this gives us a
relation between Kc and ω∗ (c = u, d):

pb∫
pt

(Qu1 −Qu2 )
dp

g
= 0,

pb∫
pt

(
Qd1 −Qd2

) dp
g

= 0 (34)

4.1 Updraught

We get:
pb∫
pt

{
Ku (hu − h) + ω

∧
∗ ∂h

∂p
+ g

∂Jh
∂p

}
dp

g
= 0

which yields the value for the Kuo coefficient Ku:

Ku =

pb∫
pt

−ω
∧
∗ ∂h
∂p

dp
g + Jh(pt)− Jh(pb)

pb∫
pt

(hu − h) dpg

(35)
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4 DETRAINMENT COEFFICIENT 4.1 Updraught

In this view, the detrainment coefficient is constant over the whole vertical.
To introduce some degree of explicit detrainment at the top of our “equivalent single cloud”, we introduce a
dependency over the vertical through the updraught mass flux divergence, as

Kl = K0 + βmax(0,

−∂ω∧∗
∂p

l

)

where the average detrainment rate K0 is computed as above, leading:

Ku
0 =

pb∫
pt

−ω
∧
∗ ∂h
∂p

dp
g − β

pb∫
pt

max(0,−∂ω
∧
∗

∂p )(hu − h)dpg + Jh(pt)− Jh(pb)

pb∫
pt

(hu − h) dpg

(36)

The tuning coefficient β ≡ GCVBETA may be reset to 0 to suppress the dependency of the detrainment on the
updraught mass flux. Presently recommended value is 0.2.
This enhanced detrainment applies only to the updraughts.

As section (3) gave us ω∗ ∂h∂p = ψps−ψ
4t , we compute a single value of Ku over an entire vertical, keeping also

in mind that the introduction of turbulent diffusion fluxes was essentially intended to include boundary lay-
ers effects, which would not take much sense if we make independent computations over separate vertical slabs.
Discretization of the integrals uses the updraught mass flux and also the layer activity index δlstab ≡ KNLAB(JLON, JLEV)
which is 1 where appropriate conditions are fulfilled for updraught generation and 0 elsewhere (§6.1.2).

Ku
0 4t ≡ ZALFP(JLON)

=
−

lb∑
lt

δlstab4pl
(
hlps − hl

)
+

lb∑
lt

δlstab4pl
g4t
4pl

[
J l−1
h − J lh

]
− β

lb∑
lt

max(0,
(
−∂ω

∧
∗4t
∂p

)l
)δlstab4pl

(
hlc − hl

)
lb∑
lt

δlstab4pl (hlc − hl)

For this we compute:

ZS2(JLON) =
L∑
lt

δlstab4pl
{(
slc − sl

)
+ Lbud

(
qlc − ql

)}
ZS6(JLON) =

L∑
lt

δlstab4plLbud

(
qlps − ql

)
ZS7(JLON) =

L∑
lt

δlstab4pl
(
slps − sl

)
ZS8(JLON) =

L∑
lt

δlstab4pl Lbud
g4t
4pl

[
J l−1
q − J lq

]
ZS9(JLON) =

L∑
lt

δlstab4pl
g4t
4pl

[
J l−1
s − J ls

]
ZALFPB(JLON, JLEV) = βmax(0, (−∂ω

∧
∗4t
∂p

)l)

ZS18 =
L∑
lt

ZALFPBl · δlstab4pl
{(
slc − sl

)
+ Lbud

(
qlc − ql

)}
ZALFP(JLON) ≡ K0 4t =

max(ZS8 + ZS9− ZS6− ZS7− ZS18, 0)
max(ε2,ZS2)

Kul4t ≡ ZALFP + ZALFPBl
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4 DETRAINMENT COEFFICIENT 4.2 Downdraught

Note that the budget latent heat is used here, as we are making budgets between the whole vertical column
and the environment.

If ZALFP computed this way would be negative, it would represent a non physical situation, and lead to
numerical instabilities.
Comparing equation (35) and equation(100), we see that the vertical gradient of turbulent diffusion fluxes
intervenes in both. In (100), the term (Jq(pt)− Jq(pb)) should be positive to diagnose convective rather than
large scale precipitation: this is confirmed by what happens here.

So the forcing of ZALFP to zero must be traced and cause a stop of the convective treatment: in this case,
there is actually no convective contribution to add to the turbulent diffusion and the large scale precipitation
schemes.
This is done via variable KNND(JLON), which we reset to 0 when a non-physical situation is met. We then
multiply the activity index KNLAB(JLON,JLEV) by KNND(JLON), to remove any convective treatment of the
concerned vertical.

The final recombination of the tendencies by CPTEND works as follows:

∂q

∂t
= −V∇q − ω

∂q

∂p
+
(
−cpQ2

L

)
− g

∂Jq
∂p

where
(
−cpQ2

L

)
= ω

∧
∗ ∂q

∂p
+K(qc − q) + g

∂Jq
∂p

Wherever a convective stop occurs, we may stop immediately the convective computations (by resetting the
convective activity indicator KNLAB to Zero), and just have to reset all convective fluxes to Zero, so that the
vertical turbulent diffusion fluxes will no longer be compensated in the recombination.

4.2 Downdraught

We consider a constant detrainment rate over the vertical, and the expressions are slightly simpler:

pb∫
pt

{
Kd (hd − h) + ω

∨
∗ ∂h

∂p

}
dp

g
= 0 =⇒ Kd =

pb∫
pt

−ω
∨
∗ ∂h
∂p

dp
g

pb∫
pt

(hd − h) dpg

(37)

Using the downdraught activity index δ↓lstab ≡ INLAB(JLON, JLEV) (see §6.2.2):

ZALFP(JLON) ≡ Kd 4t =
−

lb∑
lt

δ↓lstab4pl
(
hlpa − hl

)
lb∑
lt

δ↓lstab4pl (hlc − hl)
(38)

For this we compute:

ZS2(JLON) =
lt∑
L

δ↓lstab4p
l
{(
slc − sl

)
+ Lbud

(
qlc − ql

)}
ZS6(JLON) =

lt∑
L

δ↓lstab4p
lLbud

(
qlpa − ql

)
ZS7(JLON) =

lt∑
L

δ↓lstab4p
l
(
slpa − sl

)
ZALFP(JLON) ≡ Kd 4t =

ZS6 + ZS7

−ZS2

Negative values of ZALFP are not physical and rejected while setting the corresponding feasibility index INND
to 0. In this case, all downdraught contributions to the fluxes are reset to zero, which means there is no
downdraught activity while the results from the updraught become final.
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5 CLOUD PROFILES

5 Cloud profiles

5.1 Thermodynamic variables sc, qc

5.1.1 Updraught profiles

For su and qu, we know that we have saturation all along the cloud, hence we follow the moist adiabat; but as
there is entrainment (that we will express by relaxing cloud variables to the environment), things are a little
more complex.

5.1.1.1 Entrainment

We will always use Kuo’s scheme to parameterize the entrainment:

∂ψu
∂φ

= −λu (ψu − ψ) or
∂ψu
∂p

=
λu
ρ

(ψu − ψ) with ψ = s, q, V (39)

where ZENTR ≡ λu represents the fractional entrainment rate, i.e. the relative variation of the updraught flux
with respect to φ. We have the relation

4Mu

Mu
= λu4φ =

Eu4p
Mu

where Eu is the entrained flux over a layer 4p and λu has the dimension [1/φ].

The vertical profile of λu is the same for all four variables, as the air is entrained with all its characteristics.
It is chosen as

λu
l = λmin + (λmax − λmin) ZFRAAl (40)

where ZFRAA is the uncompleted fraction of the ascent trajectory:

ZFRAAl = e−λ
3/4
maxλ

1/4
min(φl−φb) = e−ZENEN·ZS5l

(41)

with

ZENEN ≡ λmax

(
λmin

λmax

)0.25

, ZS5l ≡
pl∫
pb

δstab dφ , ZENTRMN ≡ λmin , ZENTRMX ≡ λmax

δstab is the layer activity index (§6.1.2), equal to 1 in active layers, 0 elsewhere. If we take constant values for
λmin = En ≡ TENTR and λmax = Ex ≡ TENTRX, λu is maximum at the cloud base (λmax), and decreases
asymptotically to λmin upwards.

It seems that for deep clouds in the tropics there is a loss of buoyancy starting from the cloud basis, that could
be related to a too big value of the entrainment rate there. On the other side, experiments carried out for
middle latitude active events showed an improvement of squall line structures by increasing the entrainment
rates.
An enhanced formulation of the entrainment rate has been proposed, where the minimum and maximum
entrainment rates are no longer constant but depend on the vertical integral buoyancy

ZS17 ≡ Ib ≡
φ1∫
φL

(had − h)dφ (42)

where the integral extends over all model levels and had ≡ ZHSE AD(JLON, JLEV) is the profile of a not
entraining saturated adiabatic ascent:

hl = cpT
l + φl + Lbudq

l , ZHSE ADl = max(ZHSE ADl+1, h) , ZS17l =
l∑
L

(had − h)l

(i.e. the ascent follows a moist adiabat, with constant h, unless a warmer environment brings the necessary
heat to pass on a warmer moist adiabat: in this case, the difference had−h becomes zero, i.e. there is no further
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5 CLOUD PROFILES 5.1 Thermodynamic variables sc, qc

contribution to the integrated CAPE, until the environment curve comes back below of the moist adiabat).
The dependency of the entrainment on Ib is chosen so that the same correction applies to the inverses of the
minimum and the maximum entrainment rates:

1
λmin

− 1
En

=
1

λmax
− 1
Ex

≈ αIb
En
Ex

If Ex/En has been chosen large, we avoid this ratio being cancelled too fast by buoyancy corrections.
To avoid numerical problems the RHS is replaced by the expression below, where at the denominator αIb
addresses the case of an excessively small 1/Ex while the “1+” avoids problems of a too small 1/En.
At the LHS we also had to introduce a limit preventing the entrainment rates becoming too small, as this
induced sometimes oscillations from one step to the following, between a very small and a maximum entrain-
ment.

1
λmin − λlim

− 1
En − λlim

=
1

λmax − λlim
− 1
Ex − λlim

=
αIb

1 + 1/En

1/Ex+αIb

with ZENTRN ≡ λlim = En

(
En
Ex

)0.25

or

λmin = λlim +
En − λlim

1 + (En − λlim) α IbEn

En+ Ex
1+α IbEx

, λmax = λlim +
Ex − λlim

1 + (Ex − λlim) α IbEn

En+ Ex
1+α IbEx

(43)

The tunable parameter α ≡ GCVALFA, has the dimension of the inverse of the moist static energy (or 1/φ,
same as λ), setting it to zero brings back the original formulation, with constant λmax and λmin.

This formulation ensures a smooth transition from small entrainment rates for deep clouds to bigger ones for
thinner or less buoyant clouds.
Currently (“cycora-bis” tuning of Autumn 2000) recommended values are GCVALFA = 4.5 · 10−5[s2/m2],
TENTR = 2.5 · 10−6[s2/m2], TENTRX = 8. · 10−5[s2/m2].

5.1.1.2 Saturated adiabat computation

For simplicity, we may assume first that the geopotential inside the cloud is the same as in the environment.
Relaxing of this hypothesis is explained in §5.1.1.4.
Starting at the lowest model level,

• Compute cloud base value T lu, q
l
u by solving iteratively

hlu − φl = cpT
l
u + Lqlu = cpT

l + Lql so that qlu = qsat
(
T lu
)

(44)

This gives you the blue point (i.e. wet bulb temperature and moisture) at this level.

• We need also a diagnostic value of the cloud condensate, obtained with the previously (part II) mentioned
formula:

∂qu + `u
∂φ

= − `u
φ0

where the critical thickness φ0 represents the critical depth above which the cloud starts to precipitate.

• Construct the moist adiabat from level l to level l − 1, taking into account the entrainment:

cpT
l−1
u + Lql−1

u + φl−1 =

cpT
l
u + Lqlu + φl − λu

l−1+λ
u
l

2

(
φl−1 − φl

) [
cp
(
T lu − T l

)
+ L

(
qlu − ql

)]
so that ql−1

u = qsat
(
T l−1
u

)
(45)

• Test if the cloud moist static energy at level l − 1 is larger than the environment: if yes, continue, else
recompute the blue point at level l − 1

After this, compute the buoyancy at each level to see if there is or not instability:

T lvu = T lu

[
1 +

(
Rv
Ra

− 1
)
qlu

]
(46)
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5 CLOUD PROFILES 5.1 Thermodynamic variables sc, qc

5.1.1.3 Cloud ensemble entrainment

Our parameterization reduces the convective clouds inside a mesh to one single updraught and one single
downdraught.
In reality, a grid box may contain several types of clouds at the same time. Observations show that for a single
plume, the entrainment rate is inversely proportional to the plume section: less entraining clouds reach higher
and are more buoyant. So, as less entraining clouds find themselves alone at higher levels, the mesh-averaged
cloud moist static energy could increase with height, not through a non physical energy creation process, but
through this selective sampling effect.

To parameterize this effect in a simple manner, we may apply a relaxation of the cloud moist static energy
towards that of a fictive non entraining ascent.
We computed above (42)the non entraining ascent moist static energy had. The effective entraining profile
constructed afterwards is put into ZHS REE ≡ hu.
The relaxation term will actually be hidden in one block inside the cloud geopotential increment from one
level to the next:

4′φ =
4φ

1 + GCVNU(1− ZFRAA) max(0, (had − hu))

1− ZFRAA being the completed fraction of the ascent.

So the effect is applied through reducing the in-cloud thickness of lower pressure (=higher) buoyant layers of
the ascent used in the cloud profile computation, yielding a slower decrease of the moist static energy with
height.

The relaxation coefficient GCVNU has the same physical dimensions as an entrainment rate, and should be
of the same order of magnitude: presently recommended value is GCVNU ∼ 2.5 · 10−5[s2/m2] (“cycora bis”,
Autumn 2000).

Nothing is done to try to simulate the interaction of this change with the momentum convective redistribution,
as it would be very difficult to estimate the cloud base velocity for a non entraining plume, and the effect is
anyhow likely to have no systematic direction, unlike what happens for T and q.

This development is also quasi-irrelevant for downdraughts, as it would require very high entrainment rates
to prevent any type of downdraught to reach the surface: this is also a justification for keeping downdraught
entrainment and detrainment rates independent of height up to now (see below).

5.1.1.4 Cloud-environment pressure gradient

(Note: This development is also related to the momentum profile, see §5.2 )

In the saturated adiabat cpT +L q+φ = const, dφ is actually computed (see appendix) taking the temperature
and moisture values of the cloud, so that the cloud merges the environment at equal pressure but will have a
different geopotential.

The opposite situation is to take for dφ the value of the environment, so that the cloud will merge the envi-
ronment at equal geopotential but will have a different pressure.
A continuous transition between “equi-geopotential” and “equi-pressure” treatments is allowed by a free pa-
rameter: 0 ≤ GCVADS ≤ 1, the value 0 corresponding to the “equi-pressure” situation, and the value 1 to the
“equi-geopotential” situation.

When taking into account the cloud-environment pressure difference in the momentum entrainment parame-
terization (§5.2), together with the effect of the “ensembling” entrainment (§5.1.1.3), the intermediate solution
seems more logical.

Practical use of GCVADS appears in §5.1.3.

When using the non hydrostatic large scale dynamical equations, the model variable P̂ represents the (reduced)
pressure departure from the hydrostatic value. It would then seem logical to make use of this variable within
this part of the convection parameterization.
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5.1.2 Downdraught profiles

For sd and qd we follow the moist adiabat downwards, assuming entrainment of the environmental air, but
this time with a constant value of the parameter λd, namely the minimum entrainment computed for the
updraught, and passed as argument to the downdraught routine.

λd = λt ≡ λmin (47)

We never introduce the buoyancy dependency GCVALFA for the downdraught.

5.1.3 Construction of the updraught profile for thermodynamical variables

We need to compute the three local variables ZQN ≡ qu, ZTN ≡ Tu, ZLN ≡ `u.
The updraught condensed water contents is presently simply diagnosed with

∂ (qu + `u)
∂φ

= − `u
φ0

(48)

where the critical thickness φ0 ≡ ECMNP is the equivalent depth around which the convective clouds start to
be fully precipitating ones. Recommended value is around ECMNP = 3000 [J/kg].

The idea of this diagnostic equation originated from Arakawa and Schubert [1974]’s appendix; physically,
it writes that the total water decreases of an amount equal to its condensed fraction `u over a depth φ0, which
is conceivable if the precipitation flux is proportional to the condensate `u.
For the entrainment effect, we have the 3 equations:

∂qu
∂φ

= λu (q − qu) ,
∂Tu
∂φ

= λu (T − Tu) ,
∂`u
∂φ

= −λu (`u)

with λu given by (40) and (43).
We want to construct the moist pseudo-adiabat from model level b to the level h ≡ b− 1, immediately above
it.
To compute the saturated values Th, qh, we must follow the saturated pseudo-adiabat q = qs(T ) which is non
linear. To solve this, we use a Newton algorithm which linearizes qs in the neighbourhood of the preceding
iteration:

qk+1 = qs
(
T k
)

+
∂qs
∂T k

(
T k+1 − T k

)
(49)

Of course, we must have saturation at level h: qh = qs.
The lower level b considered at one step is the previously computed level l + 1 modified at once to take into
account the entrainment of environmental air: so the mixing is performed “at level l+ 1” (instead of between
two levels) by writing (using an implicit formulation for stability):

ξ′
l ≡ λl+1

u (φl − φl+1) > 0

ψl+1
b − ψl+1

u = ξ′
l(ψl+1 − ψl+1

b ) = ξ′
l [(ψl+1 − ψl+1

u ) + (ψl+1
u − ψl+1

b )
]

=
ξ′
l

1 + ξ′l
(ψl+1 − ψl+1

u ) = ξl(ψl+1 − ψl+1
u )

where we define ZRMIXl ≡ ξl as the coefficient to apply (actually at level l + 1 but) when computing the
entrainment from level l + 1 to level l.
Note the use of λl+1 instead of a more logical λl in the estimation of ξ′l, to avoid exaggerated complication in
the algorithms.

ξ′
l ≡ λl+1

u (φl − φl+1) > 0 , ZRMIXl ≡ ξl = ξ′

1+ξ′

Tb = T l+1
u + ξl(T l+1 − T l+1

u )

qb = ql+1
u + ξl(ql+1 − ql+1

u )

`b = `l+1
u · (1− ξl)

(50)
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We know that along the pseudo-adiabat, h is conserved:

dh = cpdT + Ldq + dφ = 0 (51)

and we express cp ≡ cp(q) and L ≡ L(T ) by (see Part II)

cp = cpb +
(
cpv − cw|i

)
(q − qb) = cpb + γ 4q (52)

L = Lb +
(
cpv − cw|i

)
(T − Tb) = Lb + γ 4T (53)

where we defined γ ≡
(
cpv − cw|i

)
.

Note that those relations suppose that

q + ` ≡ q + `w + `i = qb + `wb + `ib

i.e. that all moisture stays in the system, but only for the crossing of the layer; (48) is then applied for “cross
layer” calculations of the condensate’s departure: in other words, the total water for a layer is estimated using
(48) but the result is then assumed constant along the whole layer height while calculating the moist adiabat
segment crossing it.

dcp = γdq , dL = γdT =⇒ γdh = cp dL+ L dcp + γ dφ = d(Lcp) + γdφ = 0

L cp − Lb cpb + γ 4φ = 0 (54)

Multiplying (52) by (53), and combining with (54) yields

Lcp = Lbcpb + γ 4T cpb + γ 4q Lb + γ24T 4q =⇒ 4T cpb +4q Lb + γ4T 4q +4φ = 0

hence
cpb (T − Tb) + Lh (q − qb) +4φ = 0
cph (T − Tb) + Lb (q − qb) +4φ = 0 (55)

if we neglect the second order term.

To estimate 4φ we have, for the “equi-pressure cloud” approach (GCVADS = 0):

dφ = −dp
ρ

= −RT dp
p

Noting i ≡ h̄ the interface between the two full model levels b and h ≡ b−1:

(4 ln p)b = ln
pb
pi

(4 ln p)h = ln
pi
ph

4φ = Rb Tb (4 ln p)b +Rh Th (4 ln p)h
= Rb Tb (4 ln p)b + (Rb +Rv(qh − qb))Th (4 ln p)h
≡ R̃−

b Tb + R̃+
b Th + R̃+

v Th (qh − qb) (56)

The three coefficients R̃−
b , R̃+

b , R̃+
v are independent of the subsequent computations of qh and Th. Practically

in the routine, we have:

l

l ≡ b

l − 1 ≡ i

l − 1 ≡ h

l − 2

6 (4 ln p)b

6 (4 ln p)h
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PALPH(KLON,KLEV) ≡ ln
pl−1

pl−1
= (4 ln p)h and ln

pl
pl−1

= (4 ln p)b

PLNPR(KLON,KLEV) ≡ ln
pl̄
pl−1

= (4 ln p)b − (4 ln p)h+1

ZRBB(KLON) ≡ R̃−
b = Rb (4 ln p)b = Rb ln

pl
pl−1

ZRBH(KLON) ≡ R̃+
b = Rb (4 ln p)h = Rb ln

pl−1

pl−1

ZRVH(KLON) ≡ R̃+
v = Rv (4 ln p)h = Rv ln

pl−1

pl−1

with Rb = Ra (1− lb − qb) +Rv qb

= Ra (1− lb) + (Rv −Ra) qb

For the “equi-geopotential cloud” approach (GCVADS = 1), we take directly 4φ from the environment. Mod-
ulation between both cases with parameter GCVADS, is obtained by

ZRBB = (1− GCVADS) · ZRBB + GCVADS · φ
l − φl+1

Tb
ZRBH = (1− GCVADS) · ZRBH

ZRVH = (1− GCVADS) · ZRVH

For the “ensemblist” formulation, the relaxation to the not entraining profile is performed by multiplying by
the fraction of buoyancy-excess with respect to the not entraining, undiluted plume:

ZFFAND =
1

1 + GCVNU(1− ZFRAA) max(0, had − hu)
(57)

ZRBB = ZRBB · ZFFAND , ZRBH = ZRBH · ZFFAND , ZRVH = ZRVH · ZFFAND

We need to diagnose the cloud liquid water `b in order to compute the effective gas constant Rb.
Using equation(48) we get:

ZLN ≡ `lu = `be
−1/χ −

(
qlu − qb

)
χ(1− e−1/χ) (58)

with ZLIQ ≡ χ ≡ φ0

4φlu
=

φ0

R̃−
b Tb +

(
R̃+
b + R̃+

v (qlu − qb)
)
T lu

and equation (50) gives us `b.
Combining (55) and (56):

cpb (T − Tb) + L (q − qb) + R̃−
b Tb + R̃+

b T + R̃+
v T (q − qb) = 0(

cpb + R̃+
b

)
(T − Tb) +

[
R̃+
v Tb + R̃+

v (T − Tb) + L
]
(q − qb) +

(
R̃+
b + R̃−

b

)
Tb = 0 (59)

Let be
ZCP ≡ C̃p ≡ cp + R̃+

b + R̃+
v (q − qb)

ZLH ≡ L̃ ≡ L+ R̃+
v Tb + R̃+

v (T − Tb) = L+ R̃+
v T

(60)

The last term of C̃p makes that we still have:

∂C̃p
∂q

=
∂L̃

∂T
= γ + R̃+

v

(while the double use of the non linear term is avoided by using C̃pb and not C̃p in the next equations).
Introducing an iterative process (Newton’s loop), represented by control variable k:

C̃pb
(
T k − Tb

)
+ L̃k

(
qk − qb

)
+

(
R̃+
b + R̃−

b

)
Tb = 0

C̃pb
(
T k+1 − Tb

)
+ L̃k+1

(
qk+1 − qb

)
+

(
R̃+
b + R̃−

b

)
Tb = 0

C̃pb
(
T k+1 − T k

)
+ L̃k+1

(
qk+1 − qb

)
− L̃k

(
qk − qb

)
= 0

(61)
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For the iterative process, we make a first guess with:

T k=0 = Tb + (T l − T l+1)

qk=0 = qb − 1

L̃

{
C̃pb

(
T k=0 − Tb

)
+
(
R̃+
b + R̃−

b

)
Tb

} (62)

This way we include the term R̃+
b + R̃−

b (and the first equation (61)) in the jump from b to k = 0. The
subsequent iterations provide adjustments starting from this level k = 0. Replacing b by k = 0 in the previous
set and then setting q = qk=0, T = T k=0 in the first equation, yields:

R̃+
b + R̃−

b = 0 (63)

(it corresponds to setting q = qb and T = Tb in equation (55) which implies 4φ = 0 for a moist adiabat).
And we have also

L̃k+1 = Lk+1 + R̃+
v T k+1 = Lk + γ

(
T k+1 − T k

)
+ R̃+

v T k+1 = L̃k +
(
γ + R̃+

v

) (
T k+1 − T k

)
(64)

C̃k+1
p = ck+1

p + R̃+
b + R̃+

v (qk+1 − qk) = ckp + γ
(
qk+1 − qk

)
+ R̃+

b + R̃+
v (qk+1 − qk)

= C̃kp +
(
γ + R̃+

v

) (
qk+1 − qk

)
(65)

Replacing b successively by k and k + 1 in the third euqtion (61) yields

C̃kp
(
T k+1 − T k

)
+ L̃k+1

(
qk+1 − qk

)
= 0 (66)

C̃k+1
p

(
T k+1 − T k

)
+ L̃k

(
qk+1 − qk

)
= 0 (67)

Transforming equation (59) for iteration k + 1, with b=k and (63):(
ckp + R̃+

b

) (
T k+1 − T k

)
+
[
R̃+
v T k + R̃+

v

(
T k+1 − T k

)
+ Lk + γ

(
T k+1 − T k

)](
qs(T k) +

∂qs
∂T k

(
T k+1 − T k

)
− qk

)
= 0

Dismissing the second degree terms in
(
T k+1 − T k

)
(
T k+1 − T k

) [
R̃+
b + ckp +

(
Lk + R̃+

v T k
)
∂qs

∂Tk +
(
R̃+
v + γ

) (
qs(T k)− qk

)]
+
(
Lk + R̃+

v T k
) (
qs(T k)− qk

)
= 0

⇐⇒
(
T k+1 − T k

) [
C̃kp + L̃k ∂qs

∂Tk +
(
R̃+
v + γ

) (
qs(T k)− qk

)]
+ L̃k

(
qs(T k)− qk

)
= 0

Using (64): (
T k+1 − T k

) [
C̃kp + L̃k

∂qs
∂T k

]
+ L̃k+1

(
qs(T k)− qk

)
= 0 (68)

Using (66) to replace L̃k+1 yields

(
T k+1 − T k

) [
C̃kp + L̃k

∂qs
∂T k

− C̃kp
qs(T k)− qk

qk+1 − qk

]
= 0

⇒ qk+1

(
C̃kp + L̃k

∂qs
∂T k

)
− C̃kp qs(T

k)− L̃k
∂qs
∂T k

qk = 0

hence

ZDELQ ≡
(
qk+1 − qk

)
=
qs(T k)− qk

1 + L̃k

C̃k
p

∂qs

∂Tk

(69)

(67) gives

ZDELT ≡
(
T k+1 − T k

)
= − L̃k

C̃k+1
p

(
qk+1 − qk

)
(70)
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We use also equations (64) and (65):

C̃k+1
p − C̃kp =

(
γ + R̃+

v

) (
qk+1 − qk

)
(71)

L̃k+1 − L̃k =
(
γ + R̃+

v

) (
T k+1 − T k

)
(72)(

γ + R̃+
v

)
is the variable ZDCP in the code.

The Newton algorithm uses successively (69), (71), (70), (72) in NBITER iterations.
The above somehow complex development has the big advantage of its precision, so that NBITER may be kept
as low as 2, as it was for the calculation of condensation without vertical motion.

5.2 Momentum profiles

5.2.1 Theory

Applying the development of §1.1, equation (19) writes, for momentum:(
∂V
∂t

)conv

= ω
∧
∗ ∂V
∂p︸ ︷︷ ︸

pseudo subs

+Ku(Vu −V)︸ ︷︷ ︸
Detrainment

+ ω
∨
∗ ∂V
∂p︸ ︷︷ ︸

pseudo asc

+Kd(Vd −V)︸ ︷︷ ︸
Detrainment

≡ −g ∂F
u
V

∂p
− g

∂F dV
∂p

(73)

In Bougeault’s initial approach, it was decided to subtract the vertical turbulent diffusion scheme at this stage,
in order to compensate it in the final recombination. However, it doesn’t seem very physical to replace friction
(expressed by this turbulent diffusion in arrays PSTRTU, PSTRTV of APLPAR) by an acceleration term due
to convection. So following Ph. Bougeault’s advice, we do not include those terms.

The vertical budget over the vertical (using Bougeault’s hypothesis that the convective process only produces
a reorganization of moisture, heat and momentum over a same vertical), writes:

pb∫
pt

(
∂V
∂t

)↑

conv

dp

g
= 0 =

pb∫
pt

ω
∧
∗ ∂V
∂p

+Ku (Vu −V)
dp

g

pb∫
pt

(
∂V
∂t

)↓

conv

dp

g
= 0 =

pb∫
pt

ω
∨
∗ ∂V
∂p

+Kd (Vd −V)
dp

g

and gives us one element of the velocity profile, namely the velocity at its initial point.

To build the profile, we must consider the effect of the entrainment of environmental air into the draught, and
the effect of a possible pressure gradient between the cloud and the environment:

ω
∧
∗ ∂Vu

∂p
= − (∇φ)u +

λu
ρ
ω
∧
∗ (Vu −V) ω

∨
∗ ∂Vd

∂p
= − (∇φ)d +

λd
ρ
ω
∨
∗ (Vd −V) (74)

The entrainment coefficients λu and λd are the same as for the thermodynamical variables s and q, as the air
is entrained with all its properties together, see above equations (40) and (47).
Kershaw and Gregory [1997] have shown that the horizontal pressure gradient between the cloud and
the environment is proportional to the draught mass flux and to the large scale vertical shear. With this, we
parameterize (74):

∂Vu

∂p
=
λu
ρ

(Vu −V) + Gu
∂V
∂p

or
∂Vu

∂φ
= −λu (Vu −V) + Gu

∂V
∂φ

(75)

for the updraught, and

∂Vd

∂p
= −λd

ρ
(Vd −V) + Gd

∂V
∂p

or
∂Vd

∂φ
= +λd (Vd −V) + Gd

∂V
∂φ

(76)

for the downdraught.
Kershaw and Gregory [1997] found nearly the same proportionality coefficient for the updraught and
the downdraught: Gd ' Gu ' 0.7. The adequate value might however be affected by the context (other
parameterisations and feedbacks) of the particular model where the parameterisation is integrated.
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5.2.2 Building the momentum profile

We develop here the calculation for the updraught, the same method being applied to the downdraught, with
a few appropriate sign differences.

To discretize equation (75) in Arpège-Aladin we must beware that the entrainment equations for q and s
were discretized as:

∂ψc
∂φ

= −λ(ψc − ψ) (77)

ψlc = ψl+1
c +

(
φl − φl+1

)
λl+1

(
ψl+1 − ψl+1

c

)
(78)

instead of using values at the interface level:

ψlc = ψl+1
c +

(
φl − φl+1

)
λl
(
ψl − ψlc

)
To avoid this approximation, we would have to compute first a value of ψl, based itself on the value of ψlc into
the Newton loop, so a double iterative process would be necessary.

To keep consistent, we merely do the same approximation for equation (75):

Vl
c −Vl+1

c − Gu
(
Vl −Vl+1

)
= −

(
φl − φl+1

)
λl+1

(
Vl+1
c −Vl+1

)
Let be

ξl ≡
(
φl − φl+1

)
λl+1 > 0 (79)

=⇒ Vl
c = Vl+1

c

(
1− ξl

)
+ GuVl −

(
Gu − ξl

)
Vl+1

We impose the speed at the cloud base Vb
c = Vc0.

Searching for an expression in the form:

Vl
c = βlVc0 + (1− βl)V

l
or Vl+1

c = βl+1Vc0 + (1− βl+1)V
l+1

(80)

we get

Vl
c =

(
1− ξl

){
βl+1Vc0 + (1− βl+1)V

l+1
}

+ GuVl −
(
Gu − ξl

)
Vl+1

=⇒ βl =
(
1− ξl

)
βl+1 (81)

βb = 1

(1− βl)V
l

=
(
1− ξl

)
(1− βl+1)V

l+1
+ GuVl −

(
Gu − ξl

)
Vl+1

=⇒ V
l

=
(
1− ξl

) (1− βl+1)
(1− βl)

V
l+1

+
GuVl −

(
Gu − ξl

)
Vl+1

(1− βl)

= V
l+1

(
1− ξl

)
− βl

(1− βl)
+
GuVl −

(
Gu − ξl

)
Vl+1

(1− βl)

= V
l+1

+
ξl
(
Vl+1 −V

l+1
)

+ Gu
(
Vl −Vl+1

)
(1− βl)

(82)

At the cloud base:

βb = 1 =⇒ βb−1 =
(
1− ξb

)
⇐⇒ (1− βb−1) = ξb−1

V
b−1

= Vb +
Gu
(
Vb−1 −Vb

)
ξb−1

(83)
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if Gu = 0 we find:

V
b−1

= Vb and V
l
= V

l+1
+
ξl
(
Vl+1 −V

l+1
)

(1− βl)
(84)

which is exactly the parameterization implemented before we introduced the horizontal pressure gradient effect.
The auxiliary variables are

ZRMIX(JLON, JLEV) ≡ ξl

ZBET(JLON, JLEV) ≡ βl (ZUM(JLON, JLEV),ZVM(JLON, JLEV)) ≡ V

The pressure gradient coefficients are in the code Gu ≡ TUDGP and Gd ≡ TDDGP.
It appears logical to take the same value for both, and also for GCVADS (see §5.1.1.4):

TUDGP = TDDGP = GCVADS = 0.8

5.2.3 Computing the cloud base velocity

We write the conservation of momentum along the vertical:

pb∫
pt

(
∂V
∂t

)u
conv

dp = 0 =

pb∫
pt

ω
∧
∗ ∂V
∂p

+Ku (Vu −V)dp

=

pb∫
pt

(
∂V
∂t

)u
ps

dp+

 pb∫
pt

KuVudp−
pb∫
pt

KuVdp



=⇒ Vc0 =

−
pb∫
pt

(
∂V
∂t

)u
ps
dp+

pb∫
pt

KuV dp−
pb∫
pt

Ku(1− β)V dp

pb∫
pt

Kuβ dp

(85)

Note that the use of a detrainment rate varying over the vertical:

Kl
u4t = ZALFP(JLON) + ZALFPB(JLON, JLEV)

imposes to leave it under the integrals. The routine computes:

(ZS3,ZS4) =
lt∑
L

δstab4pl(Vl
ps −Vl) (ZS10,ZS11) =

lt∑
L

δstab4plVlKl
u

(ZS13,ZS14) =
lt∑
L

δstab4pl(1− βl)V
l

ZS12 =
lt∑
L

δstab4plβlKl
u

5.2.4 Practical implementation: CAS calculation

The vertical integrals in previous sections concern actually the convectively active layers.
For the thermodynamic variables, the active layers alone were contributing to vertical integrals through the
use of the activity index δstab ≡ KNLAB(JLON, JLEV) equal to 1 in the active layers and 0 elsewhere.
But as the active regions may not be connected over the vertical, this would be very hazardous in the mo-
mentum calculation, as we need to accumulate the auxiliary variables β and V, the latter depending on the
vertical shear when we take into account the pressure gradient term (max(Gu,Gd) > 0).
In this case, a global treatment of the vertical leads to some oscillating uncomfortable behaviours.

The remedy we found was to introduce a specific treatment for momentum terms, considering individual
Connected Active Segments over the vertical, and reinitializing the auxiliary β and V at the bottom of each
connected active segment. Computation proceeds as follows:

• The entrainment terms ξl were saved at the time of entrainment computations for the thermo-dynamical
variables in the first vertical loop, into variable ZRMIX(JLON,JLEV).
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6 CLOSURE HYPOTHESES

• We build an array of activity transitions ZTRAN(JLON,JLEV) such that

ZTRAN =
{

1 at the lowest level of each recognized connected active segment over the vertical
0 elsewhere

The CAS computation can be switched off (LCVCAS=.FALSE.), in this case we impose

ZTRAN =
{

1 at the lowest model level
0 elsewhere

This should not be done as soon as pressure gradient coefficients TUDGP and TDDGP are not both zero.

• We perform an upward vertical loop, building the profile:

– reset ZBET = 1 and (ZUM,ZVM) = (PU,PV) each time we meet ZTRAN = 1 over the vertical, else
apply equations (81) and (82).

– compute provisional values for cloud base velocities with equation (85) into arrays (ZA13(JLON,JLEV),
ZA14(JLON,JLEV)): both are reset to zero at the lowest level of the active segments, and they reach
the needed value of the cloud base velocity when arriving at the top level of an active segment; for
the inactive layers above, they keep their current value.

– propagate downwards the values of (ZA13(JLON,JLEV), ZA14(JLON,JLEV)) reproducing the values
obtained just below the transition levels, so that they keep the connected segment base velocity
along the whole height of each connected active segment.

Equation (80) defines completely the cloud velocity profile from variables β = ZBET, V = (ZUM,ZVM), and
Vc0 = (ZA13,ZA14).
We developed the above calculation – which may not seem the most direct – to get best performance of the
parallelized and vectorized code.

6 Cloud mass flux: the closure hypotheses

6.1 Updraught mass flux by Kuo closure

6.1.1 Formulation

To go further we need to introduce an additional expression for the updraught and downdraught mass fluxes.
Following developments in [Levine , 1959], [Simpson and Wiggert, 1969] and [Simpson, 1971], we can
express the vertical velocity in a single cumulus tower (actually the rate of rise of the tower) as

dW

dt
=

gB

1 + γ︸ ︷︷ ︸
buoyancy

− 1
M

dM

dz
W 2︸ ︷︷ ︸

entrainment

−Kd W 2︸ ︷︷ ︸
drag

= −1
g

dωc/ρc
dt

(86)

Where gB is the buoyancy per unit mass, γ the apparent mass coefficient due to acceleration of the surrounding
fluid, M the mass of the rising tower, and Kd a drag coefficient.
Applying this to our context in pressure coordinates,

ρc
∂ωc/ρc
∂t

+ ρcωc ·
∂ωc/ρc
∂p

= −ρcg2 B

1 + γ
− 1
Mc

dMc

dp
ω2
c −Kd ω2

c

The buoyancy term is evaluated as follows:

gB = g
Tvc − T v −4Tv(LWC)

T v
(87)

where 4Tv(LWC) is the buoyancy reduction due to the weight of suspended liquid water.
Using Mc = −σc · ωc we write:

∂ωc
∂t

+ ωc ·
∂ωc
∂p

' −β · Tvc − T v
(1 + γ′)

− ωc
∂ωc
∂p

−Kd · ω2
c (88)

∂ωc
∂t

' −β · Tvc − T v
(1 + γ′)

− ∂ω2
c

∂p
−Kd · ω2

c (89)

β =
ρc · g2

T v
(90)
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6 CLOSURE HYPOTHESES 6.1 Updraught mass flux by Kuo closure

Chen and Bougeault [1990] express the relative updraught mass flux as

ω
∧
∗ = σc(ωc − ωe) = σc · ω∗c (91)

They then approximate roughly equation (88) with

∂ω∗c
∂t

' Cf ·
ω∗2c

Pb − Pt
− β ·

(
Tvc − T v

)
1 + γ′

(92)

where Pb − Pt is the total thickness of the convective layer, and the dissipation coefficient Cf includes effects
of drag and entrainment (optimal value Cf ∼ 50).
In the buoyancy term, γ′ = 0.5 is the so-called virtual mass parameter (linked to the acceleration of the
surrounding fluid).

The time change of the cloud scale vertical velocity results from a balance between the dissipative processes at
smaller scales and the buoyancy effects (the CAPE is the vertical integral of the buoyancy term).

The convective mass flux ω
∧
∗ = α∗ · ω∗c , where α∗ ≡ σc is the fractional area of the grid box covered by

updraughts.

The lifetime of a single cell is about 1 hour (say half an hour for development, half an hour for dissipation):
for a large scale NWP (4t ≥ 20 min) it is acceptable to neglect storage and vertical acceleration terms within
cumulus clouds. This is not true for a meso-scale model.

To estimate α∗ consistently with the closure hypothesis and supposing that the convective updraughts are
not in stationary equilibrium with the large-scale forcing, we need to introduce an equation representing the
storage of moist static energy in the cloud updraughts:

∂α∗

∂t
·
pb∫
pt

(
hc − h

) dp
g

= L

pb∫
pt

α∗ω∗c
∂q

∂p

dp

g
+ L ·

pb∫
pt

CVGQ
dp

g
(93)

Note that this equation does not embody the conservation of moist static energy by the convective process,
which will be insured by the computation of the Kc factor (equation 35).

In the case there is no storage in the closure (which is Arpège-Aladin’s current status), ∂α
∗

∂t = 0 and (93)
reduces to Kuo’s 1965 hypothesis:

Total M oisture Convergence = rate of cloud water production
= Rained out water + Detrained water

expressing that cloud water has either to be disposed by precipitation or recycled in the environment by the
detrainment term (detrainment of moisture means that the environmental air is evaporating some cloud water,
moistening by this the environment).

In equation (92), assuming that the convective updraughts are stationary (∂ω
∗
c

∂t = 0) and replacing (Tvc − T v)
by
(
hc−h
cp

)
, yields

ω
∧
∗
2

' α∗2ρc
(
hc − h

){pb − pt
Tv

g2

cpCf (1 + γ′)

}
= ρc

(
hc − h

)
α2 (94)

or, as ω
∧
∗ ≤ 0 :

−ω
∧
∗ = α

√
ρc
(
hc − h

)
(95)

In the code, we neglect furthermore the difference between ρ and ρc, and use actually p
T , rejecting a value of

Rc into the α coefficient.

−ω
∧
∗ = α′

√
ρ
(
hc − h

)
= α

√
p

T

(
hc − h

)
(96)

Coefficient α is dimensional, and is determined by expressing Kuo’s 1965 hypothesis:
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6 CLOSURE HYPOTHESES 6.1 Updraught mass flux by Kuo closure

Total M oisture Convergence = rate of cloud water production
= Rained out water + Detrained water

expressing that as there is no storage within the closure, cloud water has either to be disposed by precipitation
or recycled in the environment by the detrainment term (detrainment of moisture means that the environmental
air is evaporating some cloud water, moistening by this the environment).
We may express those two effects as:

• Rainfall rate (rough value produced by the updraught, before evaporating some of it either below the
cloud or in the downdraught):

P ≡
pb∫
pt

Qcu2
cp
L

dp

g
= −

pb∫
pt

[
ω
∧
∗ ∂q

∂p
+K (qu − q)

]
dp

g
− (Jq(pb)− Jq(pt)) (97)

• Detrained moisture: environment moistening + moisture taken away by the divergence of the turbulent
diffusion flux:

Mdetr =

pb∫
pt

K (qu − q)
dp

g
+ (Jq(pb)− Jq(pt)) (98)

The turbulent vertical diffusion term, if used, has to appear in both expressions, in order to close the moisture
budget. So it disappears when adding P +Mdetr.

For the total moisture convergence, the scheme’s important idea is to add the effect of turbulent vertical
diffusion to the dynamical convergence. This was suggested by Kuo and validated by several long term
measurements over the tropics.

TMC =

pb∫
pt

CVGQ
dp

g
= −

pb∫
pt

R
[
V · ∇q + ω

∂q

∂p

]
dp

g
+ (Jq(pt)− Jq(pb)) + δsrcon (PLS(pt)− PLS(pb)) (99)

where the modulation factor R was introduced in §2 to take into account mesh size effects, and δsrcon is 1 if
LSRCON = .TRUE. and 0 otherwise.

Writing TMC = P +Mdetr yields

−
pb∫
pt

ω
∧
∗ ∂q

∂p

dp

g
= −

pb∫
pt

R
[
V · ∇q + ω

∂q

∂p

]
dp

g
+ (Jq(pt)− Jq(pb)) + δsrcon (PLS(pt)− PLS(pb)) (100)

In a convective situation, Jq is pointing upwards, i.e. has a negative value, more negative near the surface,
and the divergence term (Jq(pt)− Jq(pb)) should be positive.

As the horizontal advection terms for moisture are generally small, if we consider the reference case where

R = 1, we can see that it is this vertical turbulent diffusion term that will render |ω
∧
∗| > |ω|, allowing some

absolute subsidence outside the convective clouds, which is physically needed for having convection rather than
stratiform rain.

In this way, we simulate the (observed) fact that it is the surface evaporation (or rather its part not converted
in stratiform precipitation) which is the main responsible item for the cloud vertical velocity excess, rather than
a mere channelling of the large scale mass convergence.

The “smart” method (LSRCON=.TRUE.) for taking into account the mesh size effects subtracts the (down-
ward) divergence of large scale precipitation from the moisture convergence CVGQ (so reducing the moisture
convergence amount actually feeding the convective process). When the large scale precipitation increases
downwards, PLS(pt)−PLS(pb) < 0 and the effect will be to reduce available moisture convergence as intended.

α is then obtained from (100):

α =

pb∫
pt

CVGQdp
g

pb∫
pt

[ρ(hu − h)]1/2 ∂q
∂pdp

(101)
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6 CLOSURE HYPOTHESES 6.2 Downdraught mass flux by Kuo Closure

6.1.2 Convective activity index

For Kuo’s closure, the layer is declared active when the two conditions: moisture convergence and positive
buoyancy, are both satisfied. We write the buoyancy force as

ZKUO1 ≡ [Ra(1− `u) + (Rv −Ra)qu]Tu −RT = RaTvu −RaTv > 0 (102)

while the convergence is assessed through

ZKUO2 ≡
l∑

KLEV

4plLleffCVGQl (103)

and the activity index is defined by

KNLAB(JLON, JLEV) ≡ δlstab = max
(
δl+1
stab,

{
1 where min(ZKUO1,ZKUO2) > 0
0 elsewhere

)
(104)

Note that there is at this stage of the computation no test of the capacity to reach the Lifting Condensation
Level: see §7.3.

6.1.3 Kuo closure: Discretization

The first vertical loop computes

ZHCMHL ≡ (hc − h)l = clp(T
l
c − T lw) + Lleff(qlc − qlw) (105)

and keeps the memory of (hc − h)l+1 = ZHCMH(JLON), so we can estimate the value at the interface level l.
We store then

ZFORM(JLON, JLEV) = δlstab

√(
ZHCMHl + ZHCMHl+1

) pl

T l + T l+1
(106)

= µ δlstab

√
(hc − h)l ρl , µ =

√
2Rl (107)

To compute α we use local integrals:

ZFMDQL =
ZFORMl

2
(
ql+1 − ql

)
ZS6 =

l∑
L

δl+1
stab (ZFMDQl + ZFMDQl+1)Ll+1

eff =
l∑
L

δl+1
stab

{
µ
√

(hc − h) ρ 4q
}l+1

ZS1 =
l∑
L

δl+1
stabZICVGl+1 =

l∑
L

δl+1
stab {Leff CVGQ 4p}l+1

yielding finally

ZALF(JLON) ≡ α = 4tphys
ZS1

ZS6
(108)

with usual precautions in the code against a null value of ZS6. The final value of the updraught mass flux is
then

ZFORM(JLON, JLEV) ≡ (−ω
∧
∗4t)l = ZALF(JLON) ∗ ZFORM(JLON, JLEV) (109)

Note that we use here the local effective latent heat, as we are assessing intra cloud water transformations.

6.2 Downdraught mass flux by Kuo Closure

6.2.1 Formulation

The magnitude of the downdraught mass flux ω
∨
∗ should depend on static stability and of the amount of

available precipitation to initiate and maintain the downdraught. We postulate an expression similar to the
one obtained for the updraught:

ω
∨
∗ ∝ (hd − h)1/2 (110)
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6 CLOSURE HYPOTHESES 6.3 Updraught mass flux by CAPE Closure

To modulate the discontinuity as the downdraught reaches the ground, a shaping function will be applied.

The closure hypothesis states now that a fraction ε of the total available precipitation for the downdraught is
used to moisten the environment through the pseudo ascent:

pb∫
pt

ω
∨
∗ ∂qd
∂p

dp

g
= ε P (111)

The resulting net precipitation is therefore (1− ε)P , and the evaporation rate ε represents a degree of freedom
of the parameterization (GDDEVA).

A second tunable parameter was introduced: GDDSDE, the exponent of the modulation function applied to
the downdraught mass flux to attenuate the full breaking of the draught as it meets the ground:

F(p) =
(
ps − p

ps − pt

)GDDSDE

where pt is the pressure at the top level of the downdraught and ps the surface pressure.
Experiments showned a better behaviour when applying the shaping function before the computations of (111).
The recommended values for the two parameters are: GDDEVA = 0.25 and GDDSDE = 0.5.
Remark: In presence of downdraught parameterization (LCVDD=.TRUE.), the sub-cloud evaporation correc-
tion has to be switched off (LCVEVAP=.FALSE.) (§7.1.2).

6.2.2 Downdraught activity index

Symmetrically to the updraught, we diagnose the downdraught activity through a double Kuo test: negative
buoyancy and precipitation flux convergence. Negative buoyancy is diagnosed by

ZKUO1 = (Ra + (Rv −Ra)qld)T
l
d −RlT l = RaTvd −RaTv < 0

and precipitation convergence with

ZKUO2 =
l∑

k=1

g
(
Pk−1 − Pk

)
Lkeff

where both KUO1 and KUO2 are estimated at full model levels. The activity index is then given by

INLAB(JLON, JLEV) ≡ δ↓lstab = max
(
δ↓l−1
stab , δ

l−1
stab ·

{
1 where max(ZKUO1,ZKUO2) < 0
0 elsewhere

)
so if present, downdraught activity extends down to the ground.

6.3 Updraught mass flux by CAPE Closure

6.3.1 Theory

CAPE = −
pb∫
pt

Tvc − T v

T v

dp

ρ
= −

pb∫
pt

Ra(Tvc − T v)
dp

p
(112)

The cloud-scale virtual temperature Tvc should take into account the liquid water suspended into the cloud:

Tvc = Tc

[
1 +

Rc −Ra
Ra

qc

]
− L

cp
` (113)

Note that Bougeault [1985]’s scheme uses an approximation of the CAPE based on moist static energy:
Tvc − T v is replaced by hc−h

cp
, yielding a much larger estimate than the previous expression, which results in

an adaptation of the magnitude of the parameters.

Deep Convection / ACCVIMP II – 29



6 CLOSURE HYPOTHESES 6.3 Updraught mass flux by CAPE Closure

We write:

Tvc = Tc(1− `c + µqc) Tv = T (1 + µq)

µ =
Rv −Ra
Ra

R = Ra(1− q − l) +Rvq

From developments of Fritsch and Chappel [1980] and Nordeng [1994]:

∂CAPE

∂t
= −CAPE

τ

Assessing orders of magnitude, yields:

Qcu1 = (ω
∧
∗ ∂s

∂p︸ ︷︷ ︸
103

+K(sc − s)︸ ︷︷ ︸
10

+ g
∂Js
∂p︸ ︷︷ ︸

10−1

) 1
cp

=⇒ ∂T
∂t ' ω

∧
∗

cp

∂s
∂p

−Qcu
2
L = (ω

∧
∗ ∂q

∂p︸ ︷︷ ︸
10

+K(qc − q)︸ ︷︷ ︸
10−6

+ g
∂Jq
∂p︸ ︷︷ ︸

10−10

) 1
cp

=⇒ ∂q
∂t ' ω

∧
∗ ∂q
∂p

We have then

∂CAPE

∂t
= −

t∫
b

∂

∂t

Tvc − Tv
Tv

gdz '
t∫
b

1
Tv

∂Tv
∂t

gdz =

pb∫
pt

Ra
∂Tv
∂t

dp

p

∂Tv
∂t

= (1 + µq)
∂T

∂t
+ µT

∂q

∂t
≈ (1 + µq)(

ω
∧
∗

cp

∂s

∂p
) + µTω

∧
∗ ∂q

∂p

= ω
∧
∗
[
(1 + µq)(

1
cp

∂s

∂p
) + µT

∂q

∂p

]

Keeping the form

ω
∧
∗ = −α

√
ρ(hc − h)

and integrating over the cloud:

−α
pb∫
pt

[
(1 + µq)

√
ρ(hc − h)(

1
cp

∂s

∂p
) + µ

√
ρ(hc − h)T

∂q

∂p

]
dp

p
=

pb∫
pt

∂Tv
∂t

dp

p

α =
1
τ

CAPE

−
pb∫
pt

[
(1 + µq)

√
ρ(hc − h)( 1

cp

∂s
∂p ) + µ

√
ρ(hc − h)T ∂q

∂p

]
dp
p

6.3.2 Convective activity indexes

Unlike Kuo’s closure, we diagnose the layer activity solely through its buoyancy, so the test of equation(104)
uses now ZKUO1 only to diagnose δstab.

6.3.3 Discretization

We compute

ZS15 ≡ CAPE

Ra
=

1∑
L−1

δl+1
stab

4pl+1

pl+1

[
T l+1
vc − T l+1

v

]
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7 TENDENCY AND FLUX

=
1∑

L−1

δl+1
stab

4pl+1

pl+1

[
T l+1
c (1− `l+1

c + ql+1
c µ)− T l+1(1 + ql+1µ)

]
ZS16 = −

1∑
L−1

δl+1
stab

{
(1 + ql+1µ)

1
cl+1
p

[
ZFORM ∗ 4s

4p

]l+1

+ T l+1µ

[
ZFORM ∗ 4q

4p

]l+1
}(

4pl+1

pl+1

)

= −
1∑

L−1

δl+1
stab

{
(1 + ql+1µ)

(
∂T

∂t

)l+1

+ T l+1µ

(
∂q

∂t

)l+1
}(

4pl+1

pl+1

)

= −
1∑

L−1

δl+1
stab

4pl+1

pl+1

∂Tv
∂t

In the code,

• RETV ≡ µ = Rv−Ra

Ra

• PDELP ≡ 4pl ≡ (pl − pl−1) > 0 is layer l’s pressure thickness

• PAPRSF ≡ pl is the pressure at the full level

• ZTNL ≡ T l+1
c , ZQNL ≡ ql+1

c , ZLNL ≡ `l+1
c are the updraught temperature moisture and condensed phase

at the level below current level;

• ZFORM represents the updraught mass flux (not yet normalized)

• PTAUX ≡ τ is defined as

PTAUX(JLON) = RTCAPE ∗
(

PGM(JLON) ∗ 4xref

4xequiv

)GCOMOD

so

(ZFMDQ + ZFMDQL) =
(ZFORM ∗ 4q)l+1 + (ZFORM ∗ 4q)l

2
= ZFORMl+1 ∗ 4q

l+1

4pl+1
4pl+1 ∼ ∂q

∂t
4pl+1

The mass flux normalisation factor is then

α =
4tphys

PTAUX



(
ZS15
ZS16

)
where ZS15 > 0 and ZS16 > 10−6

(
ZS15
10−6

)
where ZS15 > 0 and 0 < ZS16 < 10−6

0 elsewhere

(114)

7 Tendency and flux calculations

Reminder: all fluxes are counted positively downwards.

7.1 Updraught fluxes

The routine has to return the liquid and solid precipitation fluxes: PFPLCL, PFPLCN, the convective moisture
and dry static energy fluxes (linked to pseudo subsidence): PDIFCQ, PDIFCS and the convective horizontal
momentum fluxes: PSTRCU, PSTRCV.

7.1.1 Moisture budget

The different fluxes represented on figure 2 (note that the arrows indicate the probable direction of the fluxes,
while the positive direction is always downwards) are grouped as follows in the calculations:
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7 TENDENCY AND FLUX 7.1 Updraught fluxes

l
l � 1
l

P l�1

P l

F psq l�1

F psq l
4F psq l

F udq l�1

F udq l

J l�1q

J lq
4J lq F detrq l

F udifq l

F udifq l�1

Figure 2: Updraught water budget for a layer

• The moisture advection flux resulting of the updraught and its pseudo subsidence1 (referred as “convective
diffusion flux” by analogy with the “turbulent diffusion flux”).
Note that at this stage the array PDIFCQ contains only the contribution of the updraught (as required
by our budget), while at the end of the routine it will receive the sum of updraught and downdraught
contributions.

PDIFCQl−1 =
(
F udif
q

)l−1
= +

(ω
∧
∗)l−1

g
ql−1
u − (ω

∧
∗)l−1

g
ql−1
ps

=
(−ω

∧
∗)l−1

g
(ql−1
ps − ql−1

u ) (115)

There is downwards moisture advection (PDIFCQ > 0) when the environment corrected by the pseudo
subsidence is moister than the updraught. Reversely, a negative value of PDIFCQ means that pseudo
subsidence brings drier air downwards.

• The precipitation flux from the upper layers

P l−1 = P l−1
w + P l−1

i

• The flux resulting from the updraught activity in layer l (only if it is active, i.e if δstab = 1).

F lqc
= 4F ps

q
l + F detr

q

l −4J lq (116)

where we find:

– the generation of pseudo subsidence (33)

4F psq
l = −δlstab

4pl

g4t
(
qlps − ql

)
– the detrainment effects

F detr
q

l
= −δlstab

4pl

g4t
Ku

(
qlu − ql

)
1see also the preliminary remark in §7.1.3

II – 32 Deep Convection / ACCVIMP



7 TENDENCY AND FLUX 7.1 Updraught fluxes

– subtraction of the local divergence of the vertical turbulent diffusion flux (PDIFTQ):

−4J lq = −δstab [Jq]
l
l−1

This term could be replaced by its mean value over the convective layer, as was found useful for
the divergence of dry static energy turbulent diffusion flux, in order to keep a symmetry between
moisture and energy treatments (see below). Simple averaging is not appropriate as it would mix
very different moisture tendencies between the bases and the tops of the cumulus towers: therefore,
it was proposed to apply a normalization by the saturating humidity:

ZS8S =
ZS8

LbudZS5S
=

L∑
1
δlstab4pl

g4t
4pl q

l
satLbud

[
J l−1
q − J lq

]
Lbud

L∑
1
δlstab4plqlsat

and we introduce a parameter 0 ≤ ZCVPSI ≤ 1 modulating the respective effects of the local
divergence and the mean divergence of the moisture vertical turbulent diffusion flux. Control of
ZCVPSI is discussed farther.

The water substance budget may be written as

ZFTOTQ ≡ F lw tot = (F udif
q )l + P l

= (F udif
q )l−1 + P l−1

−δstab
{
4pl

g4t
{
(qlps − ql) +Ku(qlu − ql)− ZS8S · qlsat(1− ZCVPSI)

}
+ ZCVPSI ·

(
J lq − J l−1

q

)}
ZFTOTQ must be output at the layer bottom, through pseudo subsidence diffusion and precipitation (down-
wards) or a moisture correction upwards in case the budget would yield negative precipitation:

0 ≤ ZFCORQ =


0

F udifl

q − F lw tot

or 0 ≤ P l =


F lw tot − F udifl

q

0
(117)

The correction flux ZFCORQ should be generally zero, but it has to be evaluated exactly to apply the suitable
correction in the enthalpy budget.

The precipitation flux is then parted between solid (Pi) and liquid (Pw) precipitation through the snow rate
αsnow ≡ ZSNP:

PFPLCL ≡ P lw = P l(1− αlsnow) PFPLCN ≡ P li = P lαlsnow (118)

αsnow =



1 if T l ≤ Tt

1− USDMLT

(
T l−Tt

)2

pl
if ≥ 0

0 otherwise

(119)

where Tt ≡ RTT is the triple point temperature, and USDMLT is a constant parameter (∼ 12500[Pa/K2])
representing the speed of solid to liquid transition.
As αsnow depends only of large scale pressure and temperature at the given level, it ignores the nature of the
precipitation coming from the upper levels.
Seen the various computations for the preservation of integral quantities, it was impossible to write even a
simplified microphysical scheme, that would have followed the phase of the precipitation along its fall, as was
done for the large scale precipitation (part II).
Following some problems of unwished freezing of the falling precipitation in the case of inversions, the snow
precipitating fraction αsnow is now computed as

dαsnow

dφ
= GCVMLT · (T − Tt) (120)
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This equation is integrated from the top of the atmosphere to the surface:

αlsnow = αl−1
snow + GCVMLT · (T − Tt) · (φl − φl−1)

imposing at each step of the integration 0 ≤ αsnow ≤ 1.

7.1.2 Evaporation of the precipitation

In absence of downdraught parameterization (LCVDD=.FALSE.), precipitation evaporation in the sub-cloud
(inactive) layers may be introduced, under control of the model key LCVEVAP:{

LCVEVAP and δlstab = 0 and P l > 0
}

=⇒ P l = P l − 4pl

g4t
(1− δlstab)K ′u (qlu − ql

)︸ ︷︷ ︸
ZECORQ

i.e we remove the detrained moisture flux from the precipitation flux (as long as the result stays positive).
When the downdraught parameterization is active, the precipitation evaporation flux is estimated (see §7.2.1)
over the whole downdraught height, which normally extends down to the surface: the simplified scheme must
then be disabled, by setting LCVEVAP = .FALSE..
ZECORQ here represents yet another moisture correction, the removed water being merely evacuated to the
ground, which is very similar to the treatment of ZFCORQ above or the similar corrections in the downdraught
part.

In the updraught ZFCORQ represented a moisture correction to prevent negative precipitation (for instance
after excessive moisture detrainment) in the active layers: ZFCORQ was a local addition to the precipitation
flux to prevent it to be negative. The corresponding water added to the vertical column was taken from the
ground (coherently with the moist adiabatic method), and the the column has to exchange heat to integrate
this new water, so ZFCORQ is multiplied by the budget latent heat in the enthalpy budget (§7.1.3).

In the downdraught (§7.2.1), another ZFCORQ prevents negative precipitation evaporation (for instance after
excessive downdraught air detrainment) by removing excess water and reversely ZFCORQ1 brings the missing
water when the the evaporation would exceed the available precipitation. Again, corresponding corrections in
the enthalpy budget use the budget latent heat - as long as the additions or subtraction to the precipitation
flux occur in draught-active layers.

The final correction of the enthalpy flux where precipitation falls to zero in equation (122) ensures the budget
correction corresponding to excess evaporation.

7.1.3 Enthalpy budget

Preliminary remark: the definition chosen above for PDIFCQ ≡ Fudif
q is in some way arbitrary, although

logical:

Mc(qe − qc)

Once this choice has been made, the calculation of PDIFCS ≡ Fudif
s cannot be obtained by a symmetric

expression, for instance:

Mc(se − sc)

but we must instead compute it by closure of the enthalpy budget, after checking that the precipitation flux
is non negative.
Everything works well as long as the budget of q includes both PDIFCQ and the precipitation flux, the budget
of s both PDIFCS and the precipitation latent heat flux.
Another definition of PDIFCQ could be chosen, for instance zero (irrealistic, even though s would be less
affected than q) or the one corresponding to the expression for PDIFCS below, etc.

The enthalpy flux is computed via the flux latent heat.
The same components are intervening as in the moisture budget, so we have:
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ZFTOTS ≡ F ls tot = (F udif
s )l−1 − Ll−1

flux(P)l−1 − δstab

{
4pl

g4t
(
(slps − sl) +Ku(slu − sl)

)
+ [Js]

l
l−1

}
= (F udif

s )l − Llflux(P)l − Lbud ZFCORQ

Unlike ZFTOTQ, ZFTOTS represents the total sensible heat, hence the minus sign of −LfluxP as its convergence
through evaporation implies a reduction of sensible heat.
For the peace of the computation, we could replace the underlined term by its mean value, in order to avoid
competition between dry instability and convection: without this, the two enthalpy sources compensate but
diverge, leading to explosion. The mean is obtained by dividing the already used ZS9 by the cumulated
pressure thickness of the active layers stored into ZS5(JLON):

ZS9 =
ZS9

ZS5
=

L∑
1
δlstab4pl

g4t
4pl

[
J l−1
s − J ls

]
L∑
1
δlstab4pl

We introduce a free parameter 0 ≤ GCVPSI ≤ 1 allowing a continuous transition from non-averaging state
(GCVPSI = 1) to fully averaging state (GCVPSI = 0).
The complete formulation is then:

ZFTOTS ≡ F ls tot

= (F udif
s )l−1 − Ll−1

flux(P)l−1

−δstab
{
4pl

g4t
{
(slps − sl) +Ku(slu − sl)− ZS9 · (1− GCVPSI)

}
+ GCVPSI ·

(
J ls − J l−1

s

)}
It seems logical to apply the apply the same averaging to fluxes Js and Jq, i.e. to ZCVPSI to GCVPSI. This is
controlled by the model key LCVLIS:

LCVLIS =⇒ {ZCVPSI = GCVPSI}

The historical situation, where the smoothing was applied only to the enthalpy (which was more critical), is
still available:

.NOT.LCVLIS =⇒ {GCVPSI = 0 and ZCVPSI = 1}

With the weighting of the specific moisture by saturating humidity, the symmetrical treatment seems much
more logical, as well as the the choice GCVPSI = 0.5 which avoids a fictive time step dependency in the case
either GCVPSI or 1− GCVPSI would be close to zero.

If the scheme is precipitating, the dry static energy convective diffusion flux is given by

PDIFCS ≡ (F udif
s )l = F ls tot + LlfluxP l (121)

but if not, we have to correct:
(F udif
s )l = F ls tot + Lbud

[
F lw tot − P l

]
(122)

The convective enthalpy flux due to precipitation is obtained through the flux latent heat.

7.1.4 Momentum fluxes

Rewriting equation (73) for the updraught only, and introducing equation (80) for the updraught velocity
profile, (

∂V
∂t

)u
conv

= −g ∂F
u
V

∂p
=

(
∂V
∂t

)
ps

+Ku(Vu −V)

=
Vps −V
4t

−Ku V +Ku(1− β)V + β Ku Vc0

=
Vps −V(1 +K ′

u) +K ′
u(1− β)V + β K ′

u Vc0

4t
(123)
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using the adimensional K ′
u

K ′
u ≡ ZALFS =

Ku 4t
1 +Ku 4t

for stability purpose, i.e. the explicit equation:

V+ −V = K4t(Vu −V)

is replaced by an implicit:

V+ −V = K4t(Vu −V+) =⇒ (V+ −V)(1 +K4t) = K4t(Vu −V)

The horizontal momentum vertical convective diffusion flux (PSTRCU,PSTRCV) ≡ FuV is then

(FuV)l = (FuV)l−1 − δlstab
4pl

g4t

{
Vl
ps −Vl(1 +K ′

u) +K ′
u(1− βl)V

l
+ βl K ′

u Vc0

}
(124)

7.2 Downdraught fluxes

The downdraught routine ACCVIMPD receives on input the diffusive moisture, static energy and momentum
fluxes and the precipitation fluxes computed by the updraught; it has to modify their values, according to
downdraught effects.

7.2.1 Moisture budget

l
l � 1
l

E l�1

E l

F paq l�1

F paq l
4F paq l

F ddq l�1

F ddq l
F ddetrq l

F ddifq l

F ddifq l�1

Figure 3: Downdraught water budget for a layer

The different fluxes represented on figure 3 (again, the arrows indicate the probable direction of the fluxes,
while the positive direction is always downwards) are grouped as follows:

• The moisture advection flux resulting from the downdraught and its associated pseudo ascent, towards
the upper layers

ZDIFCQDl ≡
(
F ddif
q

)l
=
ω
∨
∗
l

g
qld −

ω
∨
∗
l

g
qlpa = −ω

∨
∗
l

g
(qlpa − qld) (125)

There is upwards moisture advection (F ddif
q < 0) when the environment corrected by the pseudo ascent

is moister than the downdraught. Reversely, the rare case of a positive value of F ddif
q means that the
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pseudo ascent brings drier air upwards.

• The precipitation evaporation flux E from the lower layers.
As dry air is entrained upwards to compensate for the downward motion of the rain drop, this air gets
in close contact with the drop and evaporates part of it, inducing the upwards precipitation evaporation
flux. Furthermore, if E was not directed upwards, we would soon have a saturation preventing further
downdraught activity.
E produced at the lower levels enters the layer at the lower side. It doesn’t seem easy to express a
boundary condition at the surface, while E has clearly to be zero at the top of the downdraught, being
near the source of the precipitation hence near to saturation. Therefore, we will perform the computation
from the top downwards along the active layer.

• The downdraught activity generated in current layer (as soon as the downdraught is active in this layer,
i.e. when INLAB ≡ δ↓stab = 1)

Fqd
= 4F pa

c
l + F ddetr

q

l
= −δ↓stab

 4p
g4t

[(qlpa − ql) +


K(qd − q)

0
]

 (126)

where we apply the detrainment term only while the downdraught is dryer than the environment: the
detrainment of downdraught air into the environment implies a reduction of the downdraught section
and the moistening of the corresponding liberated area to the environmental value.

The water substance budget for the layer may be written as

ZFTOTQ ≡ F lw tot = F ddifl−1

q + E l−1 − δ↓stab

 4p
g4t

[(qlpa − ql) +


Kd(qld − ql)

0
]

 = F ddifl

q + E l

F lw tot is the water flux you must input at the lower interface of the layer, as pseudo ascent and precipitation
evaporation fluxes, the saldo of F l−1

w tot being provided by local downdraught activity. This way you get
the upward precipitation evaporation flux at the lower interface, or a downwards moisture correction flux,
depending of the sign of the budget:

0 ≥ ZFCORQ =


0

F ddifl

q − F lw tot

or 0 ≥ E l =


F lw tot − F ddifl

q

0

ZFCORQ is actually a physical security against a downward precipitation evaporation flux: as soon as ZFCORQ <
0 there is no further precipitation evaporation. In this case, the increase of the pseudo ascent between the
bottom and the top of the layer is not compensated completely by the downwards moisture flux in the down-
draught:

• ‖ql+1
pa − ql+1‖ small: generation of compensative ascent is small in the layer, and the mass flux increase

is small: doesn’t seem plausible.

• ‖K(ql+1
d − ql+1)‖ small: small entrainment of ambient moisture, downdraught moisture being close or

even bigger than the environment.

In the case the precipitation evaporation flux obtained from the budget would exceed (in absolute value) the
precipitation flux, we introduce a correction avoiding the physical impossibility:

0 ≤ ZFCORQ1 =


0

−E − P
E = E + ZFCORQ1

Of course, both ZFCORQ and ZFCORQ1, representing corrections respectively against negative and excessive
evaporation, will intervene in the enthalpy budgets.
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7.2.2 Enthalpy budget

With the same ingredients as the moisture budget, we get:

ZFTOTS ≡ F ls tot = (F ddif
s )l−1 − Ll−1

fluxE
l−1 − δ↓stab

{
4pl

g4t
(
(slpa − sl) +Kd(sld − sl)

)}
= (F ddif

s )l − LlfluxE l − Lbud (ZFCORQ + ZFCORQ1)

7.2.3 Momentum fluxes

Similarly to equation(124) the horizontal momentum vertical downdraught diffusion flux (ZSTRCUD,ZSTRCVD) ≡
F dV is given by

(F dV)l = (F dV)l−1 − δ↓lstab
4pl

g4t

{
Vl
pa −Vl(1 +K ′

d) +K ′
d(1− βl)V

l
+ βl K ′

d Vd0

}
(127)

where K ′
d ≡ ZALFS = Kd4t

1+Kd4t and Vd0 ≡ (ZA13,ZA14) is the velocity at the top of the downdraught.

7.3 Lifting Condensation Level

No test was done about the capacity for the ascent (i.e. at least one of the ascents within the grid box) to
actually reach the LCL.
Up to now, we proceeded as follows:

• The cloud profile was built by following an entraining moist adiabat from the blue point of the lowest
“inactive” layer

• the layer activity required:

– that the arrival point (Tu, qu) was warmer than the wet bulb temperature Tu ≥ Tw, qu ≥ qw;

– the buoyancy, i.e. Tvu > Tv;

– large scale moisture convergence.

This does not necessarily imply that Tu > T , so we could have qu = qsat(Tu) < qsat(T ).
In this case, we would have little chance to reach the lifting condensation level, except at some places within
the grid box because of the subgrid variability. The bigger qsat − qu, the smaller the chance of the convection
to take place; but it also depends on the intensity of the motions induced by the potential convection.
From this, it was proposed to compare the corresponding normalized surface precipitation to the minimum
saturation default of the computed profile:

Ps
Pref

↔ min(qsat − qu)

The routine computes the minimum over the vertical of qsat − qu.

• If it is lower than zero, everything is all right.

• If not, we say that convection may take place only if there is sufficient activity to allow subgrid inhomo-
geneities to reach the LCL, and we cut the convective scheme when the computed convective precipitation
at the surface is smaller than a threshold, computed by multiplying the minimum of qsat − qu over the
vertical by a reference precipitation flux (−SCO ≈ 20 kg m−2s−1).

7.4 Net convective fluxes

Contributions from both updraught and downdraught are summed at the end of ACCVIMPD:

PFPLCL ≡ Pw = INND · Ew + Pw
PFPLCN ≡ Pi = INND · Ei + Pi

PDIFCQ ≡ F cdif
q = INND · F ddif

q + F udif
q

PDIFCQ ≡ F cdif
s = INND · F ddif

s + F udif
s

(PSTRCU,PSTRCV) ≡ FV = INND · F dV + FuV
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where INND is the feasibility index equal to zero where the downdraught is not physical and 1 elsewhere (see
§4.2).

7.5 Variable mass effects

A correction is applied to the turbulent diffusion fluxes Jq and Js in order to preserve the boundary condition
at the surface; a correction is also applied above, to keep a reasonable repartition of the correction.
We know from part I that the surface water vapour diffusion flux writes

Jv = E(1− δmq) = (Jv)δm=0 (1− δmq)

So for δm = 1, we must apply a correction to the Jq computed for δm = 0. The correction applied at the
surface impacts on the flux above, while Jq must stay 0 at the top. The diffusive flux is actually the sum of
the turbulent and convective contributions. But to avoid complicating too much, the correction is applied to
the turbulent flux, while encompassing both kinds of fluxes.

At the surface, the convective diffusion flux must be zero, so the correction writes:

JLq
′

= JLq (1− δmqs)

Higher up, we correct also the sole turbulent fluxes, but the correction is computed from the sum of turbulent
and convective diffusion fluxes:

J lq = J lq − δm ql (F cdif
q

l
+ J lq)

The modification of the water vapour flux impacts on the dry static energy flux (similar to what was found in
the flux latent heat):

δJs = δJq · (cpv − cpa)T

Which yields

JLs
′

= JLs − δm qs (cpv − cpa) Ts JLq

J ls = J ls − δm ql (cpv − cpa) T l (F cdif
q

l
+ J lq)

Deep Convection / ACCVIMP II – 39



7 TENDENCY AND FLUX 7.5 Variable mass effects

II – 40 Deep Convection / ACCVIMP



REFERENCES

References

A. Arakawa and W.H. Schubert . Interaction of a cumulus cloud ensemble with the large-scale environment,
part I. J. Atm. Sci., 31:674–701, April 1974.

T. Asai and A. Kasahara . A theoretical study of the compensating downward motions associated with
cumulus clouds. J. Atm. Sci., pages 487–496, September 1967.

P. Bechtold, E. Bazile, F. Guichard, F. Mascar, and E. Richard. A mass-flux convection scheme for
regional and global models. Q.J.R. Met. Soc., 127:869–886, 2001.

Ph. Bougeault. A simple parameterization of the large-scale effects of cumulus convection. Mon.Wea.Rev,
113:2108–2121, 1985.

De-Hui Chen and Ph. Bougeault. A prognostic approach to deep convection parameterization for numerical
weather prediction. submitted to Mon.Wea.Rev, 1990.

V. Ducrocq and Ph. Bougeault . Simulation of an observed squall line with a meso-beta-scale hydrostatic
model. Mon.Wea.Rev, pages 380–399, June 1995.

J.M. Fritsch and C. F. Chappel. Numerical prediction of convectively driven mesoscal pressure systems.
part 1: Convective parameterization. J. Atmos. Sci, 37:1722–1733, 1980.

J.-F. Geleyn, C. Girard, and J.-F. Louis. A simple parameterisation of moist convection for large-scale
atmospheric models. Beitr. Phys. Atmosph., 55(4):325–334, November 1982.

J.F. Geleyn and Aladin Team. Documentation(ter) pour la chaine en double dite “CYCORA”, recent
developments for the deep convection parameterization in the Arpège/Aladin model, October 1999. Aladin
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