
SEMI-LAGRANGIAN COMPUTATIONS IN THE CYCLE 44

OF ARPEGE/IFS.

YESSAD K. (METEO-FRANCE/CNRM/GMAP/ALGO)

March 6, 2017

Abstract:
The general purpose of this documentation is to describe the set of equations used, and also the way to integrate

the dynamics of the model with the semi-Lagrangian method currently implemented in ARPEGE/IFS. The
following points will be described: semi-Lagrangian formulation and discretisation for different sets of equations,
semi-Lagrangian trajectory research, horizontal and vertical interpolations done in the semi-Lagrangian scheme,
specific geometric problems met in this type of discretisation. An organigramme is provided. An example of
namelist is provided. An introduction to tangent linear and adjoint code is provided.

Résumé:
Le but général de cette documentation est de décrire le jeu d’équations utilisé, et également la façon de discrétiser

ces équations avec un schéma d’advection semi-Lagrangien tel qu’il est utilisé dans ARPEGE/IFS. On décrit les
points suivants: formulation lagrangienne des équations, leur discrétisation avec un schéma semi-lagrangien,
recherche de trajectoire, interpolations horizontales et verticales faites dans le schéma semi-lagrangien, problèmes
de géométrie spécifiques. On fournit un organigramme et un exemple de namelist. Une introduction au code
tangent linéaire et adjoint est également proposée.

1

Contents

1 Introduction. 5

2 Definition of Eulerian and semi-Lagrangian schemes. 6
2.1 Eulerian scheme. 6
2.2 Semi-Lagrangian scheme. 6

3 The 2D equations. 7
3.1 Denotations for the 2D equations. 7
3.2 The 2D shallow-water system of equations in spherical geometry. 7

3.2.1 Momentum equation. 7
3.2.2 Continuity equation. 7

4 The 3D equations in spherical geometry (ARPEGE/IFS). 8
4.1 Denotations for the 3D equations. 8
4.2 The thin layer 3D primitive equation model. 9

4.2.1 Momentum equation. 9
4.2.2 Thermodynamic equation. 9
4.2.3 Continuity equation. 9
4.2.4 Advectable GFL variables. 10
4.2.5 Non advectable pseudo-historic GFL variables: . 10

4.3 The deep layer 3D primitive equation model according to White and Bromley, 1995. 10
4.3.1 Deep layer equations: basics and new features. 10
4.3.2 Momentum equation. 10
4.3.3 Thermodynamic equation. 10
4.3.4 Continuity equation. 11
4.3.5 Advectable GFL variables and non advectable pseudo-historic GFL variables. 11

4.4 The thin layer 3D NH-PDVD fully elastic non-hydrostatic model. 11
4.4.1 Basics about NH equations. 11
4.4.2 Momentum equation. 11
4.4.3 Thermodynamic equation. 11
4.4.4 Continuity equation. 12
4.4.5 Advectable GFL variables and pseudo-historic non-advectable GFL variables equations. . . 12

4.4.6 Pressure departure variable Q̂ equation. 12
4.4.7 Vertical velocity w and vertical divergence d equations. 12

4.5 The deep layer NH-PDVD non-hydrostatic model according to Wood and Staniforth, 2003. 13
4.5.1 Basics deep layer equations. 13
4.5.2 Momentum equation. 13
4.5.3 Thermodynamic equation. 14
4.5.4 Continuity equation. 14
4.5.5 Advectable GFL variables and pseudo-historic non-advectable GFL variables equations. . . 14

4.5.6 Pressure departure variable Q̂ equation. 14
4.5.7 Vertical velocity w and vertical divergence d equations. 14

5 Discretisation of the equations: general aspects. 15
5.1 Denotations. 15
5.2 Generalised formulation of extrapolations (SL2TL schemes). 15
5.3 Uncentering coefficients. 16
5.4 Discretisation for a 3D variable in a 3D model: general case where the RHS has non-zero linear

and non-linear terms (GMV variables). 16
5.4.1 Introduction and preliminary remarks. 16
5.4.2 3TL vertical interpolating SL scheme. 17
5.4.3 2TL vertical interpolating SL scheme: conventional extrapolation. 17
5.4.4 2TL vertical interpolating SL scheme: stable extrapolation. 18
5.4.5 Specific treatment for some options in the vertical divergence equation. 18

5.5 Discretisation for a 3D variable in a 3D model: particular case where the RHS has zero linear and
non-linear terms (advectable GFL variables). 19
5.5.1 Introduction and preliminary remarks. 19
5.5.2 3TL vertical interpolating SL scheme. 20
5.5.3 2TL vertical interpolating SL scheme. 20
5.5.4 Non advectable pseudo-historic GFL variables. 20

5.6 Discretisation for a 2D variable in a 3D model (GMVS variables, for example continuity equation). 21
5.6.1 Introduction and preliminary remarks. 21
5.6.2 3TL vertical interpolating SL scheme. 22
5.6.3 2TL vertical interpolating SL scheme: conventional extrapolation. 22
5.6.4 2TL vertical interpolating SL scheme: stable extrapolation. 23

5.7 Discretisation for a 2D variable in a 2D model. 23
5.8 Additional remarks. 24

2

6 Computation of medium and origin points. 25
6.1 Medium point M and origin point O. 25

6.1.1 Conventional algorithm. 26
6.1.2 “SETTLS” stable algorithm for SL2TL scheme. 27
6.1.3 “LELTRA” alternate stable algorithm for SL2TL scheme. 27
6.1.4 Algorithm used with the iterative centred-implicit schemes. 28
6.1.5 Compute origin point O from medium point M . 29

6.2 Refined recomputation of point O. 29
6.3 Trajectory going out of atmosphere or underground, and algorithms to prevent that. 30
6.4 Remarks. 30

7 The SL discretisation of the 2D shallow-water system of equations (spherical geometry). 32
7.1 Momentum equation. 32
7.2 Continuity equation: conventional formulation (NVLAG>0). 32
7.3 Continuity equation: Lagrangian formulation (NVLAG<0). 32
7.4 Quantities to be interpolated. 32

8 The SL discretisation of the 3D primitive equation model. 33
8.1 Thin layer formulation of the momentum equation. 33
8.2 White and Bromley deep layer formulation of the momentum equation. 33
8.3 Thermodynamic equation. 34
8.4 Thin layer formulation of the continuity equation. 34
8.5 White and Bromley deep layer formulation of the continuity equation. 34
8.6 Moisture equation. 35
8.7 Other advectable GFL variables. 35
8.8 Case of lagged physics. 35
8.9 Quantities to be interpolated (computation under subroutine LACDYN). 35

8.9.1 Research of trajectory. 35
8.9.2 RHS of equations. 35
8.9.3 Additional quantities to be interpolated at O if RW2TLFF>0. 35

9 The SL discretisation of the fully elastic non hydrostatic model. 36
9.1 Thin layer formulation of the momentum equation. 36
9.2 Wood and Staniforth deep layer formulation of the momentum equation. 36
9.3 Temperature equation. 36
9.4 Thin layer formulation of the continuity equation. 36
9.5 Wood and Staniforth deep layer formulation of the continuity equation. 37
9.6 Moisture and other advectable GFL variables equations. 37
9.7 Thin layer formulation of the pressure departure variable equation. 37
9.8 Wood and Staniforth deep layer formulation of the pressure departure variable equation. 37
9.9 Thin layer formulation of the vertical divergence variable equation. 37
9.10 Wood and Staniforth deep layer formulation of the vertical divergence variable equation. 38
9.11 Case of lagged physics. 38
9.12 Quantities to be interpolated (computation under subroutine LACDYN). 38

10 R operator. 39
10.1 No tilting. 39
10.2 Tilting. 39
10.3 Plane geometry (LAM models). 39

11 Computation of longitudes and latitudes on the computational sphere. 40

12 Computation of η̇ at full levels. 40

13 Interpolations and weights computations. 41
13.1 Interpolation grid and weights (subroutine LASCAW). 41

13.1.1 Horizontal interpolation grid and weights for bi-linear interpolations. 41
13.1.2 Vertical interpolation grid and weights for vertical linear interpolations. 41
13.1.3 Horizontal interpolation grid and weights for 12 points cubic interpolations. 41
13.1.4 Vertical interpolation grid and weights for vertical cubic 4 points interpolations. 43
13.1.5 Vertical interpolation grid and weights for vertical cubic Hermite interpolations. 43
13.1.6 Vertical interpolation grid and weights for vertical cubic spline interpolations. 45
13.1.7 Interpolation grid and weights for tri-linear interpolations. 45
13.1.8 Interpolation grid and weights for 32 points interpolations. 45
13.1.9 Horizontal interpolation grid and weights for 16 points linear least-square fit interpolations. 46
13.1.10 Horizontal interpolation grid and weights for 32 points linear least-square fit interpolations. 46
13.1.11 Modified weights for COMAD interpolations. 46
13.1.12 Plane geometry (LAM models). 46

13.2 Interpolations. 47
13.2.1 Bilinear interpolation (subroutine LAIDLI). 47
13.2.2 Tri-linear interpolation (subroutine LAITLI). 47
13.2.3 Horizontal 12 points interpolation (subroutine LAIDDI). 47
13.2.4 Cubic 4 points vertical interpolation. 47

3

13.2.5 Cubic Hermite vertical interpolation. 47
13.2.6 Spline cubic 4 points vertical interpolation. 48
13.2.7 32 points 3D interpolation with vertical cubic 4 points interpolation (subroutine LAITRI). 48
13.2.8 32 points 3D interpolation with vertical cubic Hermite interpolation (subroutine LAIHVT). 48
13.2.9 48 points 3D interpolation with vertical cubic spline interpolation (subroutine

LAITVSPCQM). 48
13.2.10 Horizontal 16 points linear least-square fit interpolation. 48
13.2.11 32 points 3D interpolation with linear least-square fit horizontal interpolations and vertical

linear interpolations (subroutine LAISMOO). 49
13.3 Code structures to store weights. 49

14 Lateral boundary conditions. 54
14.1 Extra longitudes. 54
14.2 Extra latitudes. 54
14.3 Vertical boundary conditions in the 3D model. 54

15 2D shallow water and 3D models organigrammes. 55
15.1 Interpolation and weight calculation routines. 55
15.2 Routines specific to 2D organigramme. 55
15.3 Routines used in 3D organigramme. 55
15.4 Set-up routines. 57
15.5 Main features of organigramme for setup. 57
15.6 Organigramme for 2D model. 57
15.7 Organigramme for 3D model. 58

16 Tangent linear and adjoint codes. 59
16.1 3D hydrostatic model. 59

16.1.1 Available options. 59
16.1.2 Basics about TL code. 59
16.1.3 Organigramme of TL code. 60
16.1.4 Basics about AD code. 61
16.1.5 Organigramme of AD code. 62

16.2 3D non hydrostatic model. 63
16.3 2D shallow-water model. 63

16.3.1 Available options. 63
16.3.2 Basics about TL code. 63
16.3.3 Organigramme of TL code. 63
16.3.4 Basics about AD code. 64
16.3.5 Organigramme of AD code. 65

17 Some distributed memory features. 66
17.1 Distributed memory features common to Eulerian and semi-Lagrangian advections. 66
17.2 Transmission of data for horizontal interpolations. 66

18 Specific SL variables in pointer modules, modules and namelists. 67

19 An example of operational SL2TL namelist for ARPEGE. 69

20 Bibliography. 77
20.1 Publications. 77
20.2 Some internal notes and other ARPEGE notes. 82
20.3 Workshop proceedings. 83

4

1 Introduction.

The general purpose of this documentation is to describe the set of equations used, and also the way to integrate the
dynamics of the model with the semi-Lagrangian method currently implemented in ARPEGE/IFS. Equations will
be written without horizontal diffusion scheme (which is treated in spectral computations), and without Rayleigh
friction (which is done in grid-point space) in order to give a clearer presentation of the discretised equations.
For additional information about horizontal diffusion scheme, report to documentation (IDDH). Extensions to
limited area models (LAM) are not described in detail, but differences are briefly mentioned.

The following sets of equations will be described in this documentation:

• The primitive equations hydrostatic model (configuration 1): thin layer and deep layer (according to White
and Bromley, 1995) formulations.

• The fully elastic non-hydrostatic equations model (configuration 1): uses Q̂ and d (or d4) as NH prognostic
variables; thin layer and deep layer (according to Wood and Staniforth, 2003) formulations. It is sometimes
denoted NH-PDVD in this documentation.

• The 2D shallow-water equations model (configuration 201).

5

2 Definition of Eulerian and semi-Lagrangian schemes.

2.1 Eulerian scheme.

In Eulerian form of equations, the time dependency equation of a variable X writes:

∂X

∂t
= −U.∇3X + Ẋ (1)

where U is the 3D wind, ∇3 is the 3D gradient operator, Ẋ is the sum of the dynamical and physical contributions.
X(t+ ∆t) is computed knowing X(t−∆t) at the same grid-point. Eulerian technique obliges to use a time-step
that matches the CFL (Courant Friedrich Levy) condition everywhere.

• For global variable-mesh spectral global models, the horizontal CFL condition writes:

M
| V |
r

Dt

2

√
N(N + 1) < 1 (2)

where M is the mapping factor, Dt is the time-step at the first integration step and twice the time-step
otherwise (leap-frog scheme), | V | is the horizontal wind modulus, N is the truncation, r is the distance
between the point and the centre of the Earth.

• For spectral limited area models (LAM), the horizontal CFL condition writes:

M
| V |
r

Dt

2
(2π)

√
1

L2
x

a2N2
m

+
L2

y

a2N2
n

< 1 (3)

See above for denotations M , Dt, | V |, a, r. Nm is the zonal truncation, Nn is the meridian truncation,
Lx (resp. Ly) is the zonal (resp. meridian) length of the LAM domain taken on a surface iso r = a.

The vertical CFL condition writes:

| η̇ | Dt
2

∆η < 1 (4)

2.2 Semi-Lagrangian scheme.

In semi-Lagrangian form of equations, the time dependency equation of a variable X writes:

dX

dt
= Ẋ (5)

In a three-time level semi-Lagrangian scheme X(t + ∆t) is computed at a grid-point F knowing X(t − ∆t) at
the point O (not necessary a grid-point) where the same particle is at the instant t − ∆t. In a two-time level
semi-Lagrangian scheme X(t + ∆t) is computed at a grid-point F knowing X(t) at the point O (not necessary
a grid-point) where the same particle is at the instant t. The semi-Lagrangian technique is more expensive for
one time-step than the Eulerian technique because it is necessary to compute the positions of the origin point O
along the trajectory and to interpolate some quantities at this point. But it allows to use larger time-steps: the
stability condition is now the Lipschitz criterion (trajectories do not cross each other) and is less severe than the
CFL condition.
D is the divergence of the horizontal wind on the η-coordinates, η̇ = dη

dt
. Lipschitz criterion writes for a three-time

level semi-Lagrangian scheme:

| D +
∂η̇

∂η
| Dt

2
< 1 (6)

Lipschitz criterion writes for a two-time level semi-Lagrangian scheme:

| D +
∂η̇

∂η
| ∆t

2
< 1 (7)

Expressions “semi-Lagrangian scheme”, “three-time level semi-Lagrangian scheme” and “two-time level semi-
Lagrangian scheme” will be from now on abbreviated into “SL scheme”, “SL3TL scheme” and “SL2TL scheme”.

6

3 The 2D equations.

3.1 Denotations for the 2D equations.

• V is the horizontal wind. Zonal and meridian components on computational grid are respectively denoted
by U and V .

• D is the horizontal wind divergence.

• ζ is the horizontal wind vorticity.

• Φ is the equivalent height. Φs is the surface geopotential height (i.e. the orography). Φ∗ is a reference
equivalent height which is only used in the semi-implicit scheme and the linear model.

• Ω is the Earth rotation angular velocity.

• ∇ is the first order horizontal gradient on η-surfaces.

• a is the Earth radius.

• (λbne, θbne) are the longitude-latitude coordinates on a tilted and not stretched geometry, the tilting being
the same as the one of the computational sphere.

• k is the unit vertical vector. One can write:

k =
r

| r | =
r

a

3.2 The 2D shallow-water system of equations in spherical geometry.

3.2.1 Momentum equation.

Coriolis force can be treated explicitly (δV=0) or implicitly (δV=1) in the Lagrangian equation.

d (V + δV(2Ω ∧ r))

dt
= −2(1− δV)(Ω ∧V)−∇Φ (8)

3.2.2 Continuity equation.

• Conventional formulation.

d(Φ− (1− δTR)Φs)

dt
= −(Φ− Φs)D + δTRV∇(Φs) (9)

• Lagrangian formulation.
d((Φ− Φs)J)

dt
= 0 (10)

J is a “Jacobian” quantity which matches:

dJ

dt
= −JD (11)

7

4 The 3D equations in spherical geometry (ARPEGE/IFS).

4.1 Denotations for the 3D equations.

• V is the horizontal wind. Zonal and meridian components on computational grid are respectively denoted
by U and V .

• D is the horizontal wind divergence.

• ζ is the horizontal wind vorticity.

• T is the temperature.

• q is the humidity.

• qr is the rain.

• Π is the hydrostatic pressure.

• Πs is the hydrostatic surface pressure.

• Ω is the Earth rotation angular velocity.

• (λbne, θbne) are the longitude-latitude coordinates on a tilted and not stretched geometry, the tilting being
the same as the one of the computational sphere.

• (λ, θ) are the geographical longitude-latitude coordinates.

• (Λ,Θ) are the computational sphere longitude-latitude coordinates.

• w is the z-coordinate vertical velocity: w = dz
dt

.

• ω = dΠ
dt

is the total temporal derivative of the hydrostatic pressure.

• gz is the geopotential height.

• Φ is the total geopotential. Φ = gz in the thin layer equations. Φ is different from gz in the deep layer
equations formulation of White and Bromley.

• Φs = gzs is the surface geopotential (i.e. the orography).

• r is the vector directed upwards, the length of which is the Earth radius. The length of this vector is r.
In the deep layer equations according to (White and Bromley, 1995), one uses an approximation of this
radius, only depending on the hydrostatic pressure (“pseudo-radius”).

• a is the average Earth radius near the surface.

• i (resp. j) is the unit zonal (resp. meridian) vector on the Gaussian grid.

• k is the unit vertical vector. One can write:

k =
r

r
=

r

r

• g is the gravity acceleration constant.

• In the case where vertical variations of g are taken into account, we denote by G the reference value of g
at r = a.

• R is the gas constant for air and Rd the gas constant for dry air.

• cp is the specific heat at constant pressure for air and cpd is the specific heat at constant pressure for dry
air.

• cv is the specific heat at constant volume for air and cvd is the specific heat at constant volume for dry air.

• ∇ is the first order horizontal gradient on η-surfaces.

• αT is a vertical-dependent coefficient used to define a thermodynamic variable T + δTR
αTΦs
RdTst

less sensitive

to orography than temperature T . Expression of αT is:

αT = B

(
−Rd

g

[
dT

dz

]
st

)
Tst

(
Πst

Πsst

)(−Rd
g [dTdz]

st
−1
)

(12)

where B is a vertically dependent and horizontally constant quantity which defines the vertical hybrid
coordinate (see later paragraph “Definition of the vertical coordinate η”, subsection (6.1)): B varies from
1 to 0 from bottom to top. Subscript “st” stands for “standard atmosphere”.

• ρ is the mass per volume unit of air.

• M is the mapping factor.

• M is a reference mapping factor for the semi-implicit scheme.

8

• τ , γ, ν are linear operators used in the semi-implicit scheme (for more details, see documentation (IDSI)
about semi-implicit scheme).

• T ∗ is a vertically-constant reference temperature which is used in the semi-implicit scheme.

• Tst is the reference standard atmosphere surface temperature (288.15 K).
[
dT
dz

]
st

is the standard atmosphere

tropospheric gradient of temperature (-0.0065 K/m).

• Π∗ is a reference hydrostatic pressure and Πs
∗ is a reference hydrostatic surface pressure, which are used in

the semi-implicit scheme. These reference quantities are vertically dependent and “horizontally” (i.e. on η
surfaces) constant. ∆Π∗ are layer depths corresponding to a surface hydrostatic pressure equal to Πs

∗.

• Πsst is a reference hydrostatic pressure equal to the surface pressure of the standard atmosphere (101325 Pa,
variable VP00). Πst is a reference hydrostatic pressure defined at full levels and half levels corresponding
to the surface reference hydrostatic pressure Πsst (stored in array STPRE).

• ∆Φ∗ is a reference geopotential depth computed on model layers. ∆Φ∗ is vertically dependent and
“horizontally” (i.e. on η surfaces) constant.

Additional quantities for deep-layer formulations and non-hydrostatic models:

• p is the pressure, ps is the surface pressure.

• W = dr
dt

is the pseudo-vertical velocity used in some Coriolis and curvature terms in the deep layer equations
according to (White and Bromley, 1995). W = 0 in the thin layer equations.

• D3 is the 3D divergence used in the NH model. Its expression is given by equation (25).

• L∗ is a linear operator used in the NH semi-implicit scheme (for more details, see documentation (IDSI)
about semi-implicit scheme).

• T ∗a is a cold vertically-constant reference temperature which is used in the semi-implicit scheme in the NH
vertical divergence equation; it is recommended to have T ∗a lower than the current temperature.

• In the Wood and Staniforth deep-layer NH equations, a mass vertically integrated quantity Π̃ is introduced,
in order to hide some metric terms, especially in the continuity equation: Π̃ replaces Π in the adiabatic
equations (Π becomes, if needed, a diagnostic quantity). The definition of the hybrid vertical coordinate

applies for Π̃, not for Π. Quantities δ and α (depths of logarithm of hydrostatic pressure) are replaced by

δ̃ and α̃ (depths of logarithm of Π̃).

∂Π̃

∂Π
=
r2

a2

G

g

4.2 The thin layer 3D primitive equation model.

4.2.1 Momentum equation.

Vectorial form of momentum equation is used. Coriolis force can be treated explicitly (δV=0) or implicitly (δV=1).

d (V + δV(2Ω ∧ r))

dt
= −2(1− δV)(Ω ∧V)−∇Φ−RT∇(log Π) + FV (13)

FV is the physical contribution on horizontal wind.

4.2.2 Thermodynamic equation.

d
(
T + δTR

αTΦs
RdTst

)
dt

=
d
(
δTR

αTΦs
RdTst

)
dt

+
RT

cp

ω

Π
+ FT (14)

FT is the physical contribution on temperature. When δTR = 1 the Eulerian treatment of orography is applied
and the prognostic variable is replaced by one variable less sensitive to the surface orography. This modification

has been proposed by Ritchie and Tanguay (1996). See equation (12) for definition of αT. Term
d
(
δTR

αTΦs
RdTst

)
dt

only contains advection terms linked to horizontal variations of orography and vertical variations of the coefficient
αT.

4.2.3 Continuity equation.

The equation which is discretised is the vertically integrated Lagrangian formulation of continuity equation.∫ η=1

η=0
∂B
∂η

d
[
log Πs+δTR

Φs
RdTst

]
dt

dη =∫ η=1

η=0
∂B
∂η

[
− 1

Πs

∫ η=1

η=0
∇
(
V ∂Π
∂η

)
dη + V∇

(
log Πs + δTR

Φs
RdTst

)
− 1

Πs

[
η̇ ∂Π
∂η

]
η=1

+ 1
Πs

[
η̇ ∂Π
∂η

]
η=0
− 1

Πs
g [Fm]η=1

]
dη(15)

9

Details leading to this formulation is given in part 5 of the documentation (IDEUL) about model equations and
Eulerian dynamics.
Variable δTR is 0 or 1; when δTR = 1 the new variable is less sensitive to the orography (new variable proposed
by Ritchie and Tanguay (1996) to reduce orographic resonance).
If one assumes that a volume of air occupied by rainfall drops is not replaced by dry air when drops are falling
(case δm = 0, variable NDPSFI is 0 in NAMPHY), Fm is replaced by zero and

[
η̇ ∂Π
∂η

]
η=1

is equal to zero.

If one assumes that a volume of air occupied by rainfall drops is replaced by dry air when drops are falling (case

δm = 1, variable NDPSFI is 1 in NAMPHY), Fm (diabatic flux) has to be taken in account and
[
η̇ ∂Π
∂η

]
η=1

is

non-zero (more details are given in documentation (IDEUL)).[
η̇ ∂Π
∂η

]
η=0

is non-zero only when there is an upper radiative boundary condition (LRUBC=.TRUE.).

4.2.4 Advectable GFL variables.

Equation is written for moisture q, and is the same for the other advectable GFL variables (for example ozone,
liquid water, ice, cloud fraction, TKE, aerosols and extra GFL variables).

dq

dt
= Fq (16)

Fq is the physical contribution on moisture.

4.2.5 Non advectable pseudo-historic GFL variables:

Equation is written for rain qr, and is the same for the other non-advectable GFL variables. Since there is no
advection, the SL equation is identical to the Eulerian equation.

∂qr
∂t

= Fqr (17)

4.3 The deep layer 3D primitive equation model according to White and
Bromley, 1995.

4.3.1 Deep layer equations: basics and new features.

The following modifications are done, according to (White and Bromley, 1995):

• One takes account to the fact, that the distance to the Earth centre is no longer a but a radius varying with
the vertical. For convenience (with the η vertical coordinate), one approximates the radius by a pseudo-
radius r which depends only on the hydrostatic pressure Π. Two vertical lines are no longer parallel, so
the section of a vertical column varies with the hydrostatic pressure.

• The vertical velocity is now taken in account in the Coriolis term through a pseudo-vertical velocity W
defined by W = dr

dt
. W also appears in some new curvature terms.

• The total geopotential Φ, which appears in the RHS of the wind equation, is no longer equal to the
geopotential height gz.

Details about deep layer equations (definition and expression of r, W , geopotential relationships) is given in
the documentation (IDEUL) about model equations and Eulerian dynamics and is not detailed again here. All
calculations giving the below formulation of primitive equations is also given in the documentation (IDEUL).

4.3.2 Momentum equation.

Coriolis force can be treated explicitly (δV=0) or implicitly (δV=1) in the Lagrangian equation.

d (V + δV(2Ω ∧ r))

dt
= (1− δV)(−2Ω ∧V − 2Ω ∧Wk)− W

r
V −∇Φ− (RT + µsRdTr)∇(log Π) + FV (18)

FV is the physical contribution on horizontal wind. See documentation (IDEUL) for definition of Φ and µs.

4.3.3 Thermodynamic equation.

Lagrangian tendency:

d
(
T + δTR

αTΦs
RdTst

)
dt

=
d
(
δTR

αTΦs
RdTst

)
dt

+
RT

cp

ω

Π
+ FT (19)

FT is the physical contribution on temperature. When δTR = 1 the Eulerian treatment of orography is applied
and the prognostic variable is replaced by one variable less sensitive to the surface orography. This modification
has been proposed by Ritchie and Tanguay (1996).
This equation is unchanged compared to its expression in the thin layer equations. The only change is the
diagnostic expression of ω (see documentation (IDEUL) for details about expression and discretisation of ω).

10

4.3.4 Continuity equation.

The equation which is discretised is the vertically integrated Lagrangian formulation of continuity equation.∫ η=1

η=0
r2

a2
∂B
∂η

d
[
log Πs+δTR

Φs
RdTst

]
dt

dη =∫ η=1

η=0
r2

a2
∂B
∂η

∂ log(Πs)
∂t

dη +
∫ η=1

η=0
r2

a2
∂B
∂η

a
r
V
[
r
a
∇
] [

log Πs + δTR
Φs

RdTst

]
dη (20)

where ∂ log(Πs)
∂t

is given by equation:

∂ log(Πs)
∂t

= −
[
a2

r2

]
η=1

1
Πs

∫ η=1

η=0

[
r
a
∇
] (

r
a
V ∂Π

∂η

)
dη

− 1
Πs

[
η̇ ∂Π
∂η

]
η=1

+ 1
Πs

[
a2

r2

]
η=1

[
r2

a2

]
η=0

[
η̇ ∂Π
∂η

]
η=0
− 1

Πs
g [Fm]η=1

[
a2

r2

]
η=1

(21)

4.3.5 Advectable GFL variables and non advectable pseudo-historic GFL variables.

These equations are identical to the thin layer model ones.

4.4 The thin layer 3D NH-PDVD fully elastic non-hydrostatic model.

4.4.1 Basics about NH equations.

The system of equations uses an idea of Laprise (1992) to be consistent with the hydrostatic equations: pressure p
is split into an hydrostatic contribution (hydrostatic pressure Π) and an anhydrostatic departure (p−Π). Π is still
used as an independent prognostic variable. This way of treating the non-hydrostatic equations is compatible with
the use of a terrain-following vertical coordinate (η). For NPDVAR=2 and NVDVAR=3 the non-hydrostatic

system of equations includes two additional prognostic variables: a variable Q̂ linked to the pressure departure

(its expression is Q̂ = log p
Π

), and a vertical divergence d. Details about these equations (choice of the two
additional prognostic variables, discretisations, linearisation for semi-implicit scheme) can be found in (Bubnová
et al., 1995), (Geleyn and Bubnová, 1995), (IDNHPB), (IDVNH1), (IDVHN2) and (IDVNH3). For the vertical
divergence equation, it is also possible to use the prognostic variable:

d4 = d+ X

where:

X =
p

∂Π
∂η
RT
∇Φ

(
∂V

∂η

)
4.4.2 Momentum equation.

Vectorial form of momentum equation is used. Coriolis force can be treated explicitly (δV=0) or implicitly (δV=1).

d (V + δV(2Ω ∧ r))

dt
= [−2(1− δV)(Ω ∧V)]− ∂p

∂Π
∇Φ−RT ∇(p)

p
+ FV (22)

The pressure gradient term is modified compared to the hydrostatic case. One can see that both non-hydrostatic

pressure p and hydrostatic pressure Π are used in the RHS (right hand side) of equation (22). Term ∇(p)
p

replaces

∇(log p), the discretisation of this term is no longer a discretisation of ∇(log p) and is slightly more complicated
(more details are given in documentation (IDEUL)).

4.4.3 Thermodynamic equation.

dT

dt
=
RT

cp

(
dp
dt

)
p

+ FT (23)

The RHS of equation (23) now uses the total pressure p. This equation can be rewritten in order to use the true
3D divergence D3 in the RHS.

dT

dt
= −RT

cv
D3 +

[
cp
cv
FT

]
(24)

Expression of D3 is:

D3 = ∇V +
p

∂Π
∂η
RT
∇Φ

(
∂V

∂η

)
− gp

∂Π
∂η
RT

(
∂w

∂η

)
(25)

11

As for hydrostatic temperature equation, this equation can be modified by replacing temperature T by
T + δTR

αTΦs
RdTst

which is less sensitive to orography.

d
(
T + δTR

αTΦs
RdTst

)
dt

=
d
(
δTR

αTΦs
RdTst

)
dt

− RT

cv
D3 +

[
cp
cv
FT

]
(26)

See equation (12) for definition of αT. Term
d
(
δTR

αTΦs
RdTst

)
dt

only contains advection terms linked to horizontal
variations of orography and vertical variations of coefficient αT.

4.4.4 Continuity equation.

This equation is unchanged compared to the hydrostatic case and only uses the hydrostatic pressure Π.

4.4.5 Advectable GFL variables and pseudo-historic non-advectable GFL variables
equations.

These equations are unchanged compared to the hydrostatic case.

4.4.6 Pressure departure variable Q̂ equation.

This part is valid for NPDVAR=2.

Definition of Q̂ is:

Q̂ = log
p

Π
(27)

Equation of Q̂ is:

dQ̂

dt
= −cp

cv
D3 −

ω

Π
+

cp
cvT

FT (28)

where D3 is defined by equation (25). The physical contribution of Q̂ is linked to the physical contribution of T .

4.4.7 Vertical velocity w and vertical divergence d equations.

∗ Using d as prognostic variable: This part is valid for NVDVAR=3.

The relationship between d and w writes:

d = − gp

RdT
∂Π
∂η

(
∂w

∂η

)
(29)

Equation of d is:

dd

dt
= −dD3 + d∇V − gp

RdT
∂Π
∂η

∂
[
dw
dt

]
ad

∂η
+

gp

RdT
∂Π
∂η

(∇w)

(
∂V

∂η

)
+ Fd (30)

The physical contribution of d is linked to Fw which is the physical contribution of w, and also to F
′
m (continuity

equation for NDPSFI=1) by the following relationship:

Fd = − d[
∂Π
∂η

]F ′m − [gp

RdT
∂Π
∂η

∂Fw

∂η

]
(31)

One can notice that the RHS of equation (30) contains the term
∂[dwdt]

ad
∂η

which requires the computation of dw
dt

(at least its adiabatic part).

Equation of w is:
dw

dt
= g

∂(p−Π)

∂Π
+ Fw (32)

At the surface we have to use another equation (which requires some assumptions about the surface wind):

g
dwsurf

dt
=
dVsurf

dt
∇Φs + Vsurf [Vsurf∇(∇Φs)] + Fwsurf (33)

12

Value of term dVsurf
dt
∇Φs + Vsurf [Vsurf∇(∇Φs)] contains the horizontal second derivatives of surface orography

and Coriolis term (cf. equation (32) of Geleyn and Bubnová, 1995). Its calculation is rather tricky and is not
detailed in this documentation (for more details, see documentation (IDEUL)).

Remark: an alternative formulation is to mix the w equation in the advection scheme and the d equation in the
other parts of the code.

∗ Using d4 as prognostic variable: This part is valid for NVDVAR=4.

Equation of d4 is:
dd4

dt
=
dd

dt
+
dX

dt
(34)

where dX
dt

is the Lagrangian total derivative of the quantity (X = p
∂Π
∂η
RT
∇Φ

(
∂V
∂η

)
). The calculation of dX

dt
is not

done by a semi-Lagrangian temporal advection but simply by a diagnostic.

4.5 The deep layer NH-PDVD non-hydrostatic model according to Wood
and Staniforth, 2003.

4.5.1 Basics deep layer equations.

∗ New features brought in the deep layer equations: The following modifications are done:

• One takes account to the fact, that the distance to the Earth centre is no longer a but a radius r varying
with the vertical. No specific approximation is done on this radius. Two vertical lines are no longer parallel,
so the section of a vertical column varies with the altitude.

• The vertical velocity w is now taken into account in the Coriolis term. w also appears in some new curvature
terms.

• Relationship between r and w is dr
dt

= w.

• The total geopotential Φ does not appear in the adiabatic equations (it is replaced by Gz = G(r − a)); it
may appear in some energetic quantities; Φ is not always equal to Gz.

• A mass vertically integrated quantity Π̃ is introduced, in order to hide some metric terms, especially in the
continuity equation: Π̃ replaces Π in the adiabatic equations (Π becomes, if needed, a diagnostic quantity).

The definition of the hybrid vertical coordinate applies for Π̃, not for Π. Quantities δ and α (depths of

logarithm of hydrostatic pressure) are replaced by δ̃ and α̃ (depths of logarithm of Π̃). The relationship

between Π̃ and Π is:
∂Π̃

∂Π
=
r2

a2

G

g

and:
Π̃top = Πtop

• The vertical variations of g may be taken into account (optionally): we denote by g the vertically-dependent
value and by G the constant reference value (g = G where r = a).

• ω is now ω = dΠ̃
dt

.

See documentation (IDEUL) for more details about the calculation of r and Π̃.

4.5.2 Momentum equation.

Modifications brought by the deep-layer formulation are:

• Additional Coriolis w terms and curvature w terms: they are similar to those of the White and Bromley
formulation, but this is w and not W which appears.

• Φ is replaced by Gr, and Π is replaced by Π̃ in the pressure gradient term: these modifications explain
why some metric terms appear.

• Contrary to the White and Bromley formulation, there are no µs terms appearing in the pressure gradient
term (it appears in the w equation instead).

The momentum equation writes:

d (V + δV(2Ω ∧ r))

dt
= [−2(1− δV)(Ω ∧V + 2Ω ∧ wk)]− w

r
V − r2

a2

∂p

∂Π̃
∇[Gr]−RT ∇(p)

p
+ FV (35)

13

4.5.3 Thermodynamic equation.

Equation (26) is still valid, but the calculation of D3 is modified (see documentation (IDEUL) for more details).

4.5.4 Continuity equation.

Nature of changes:

• Π is changed into Π̃.

• Some metric terms appear: replace ∇
(
V ∂Π

∂η

)
by ∇

(
a
r
V ∂Π̃

∂η

)
.

• G appears in factor of the diabatic term.

For example, the vertically integrated Lagrangian formulation of continuity equation writes:∫ η=1

η=0
∂B
∂η

d
[
log Π̃s+δTR

Φs
RdTst

]
dt

dη =∫ η=1

η=0
∂B
∂η

(
− 1

Π̃s

∫ η=1

η=0
∇
(
a
r
V ∂Π̃
∂η

)
dη + V∇

[
log Π̃s + δTR

Φs
RdTst

]
− 1

Π̃s

[
η̇ ∂Π̃
∂η

]
η=1

+ 1
Π̃s

[
η̇ ∂Π̃
∂η

]
η=0
− 1

Π̃s
G [Fm]η=1

)
dη(36)

4.5.5 Advectable GFL variables and pseudo-historic non-advectable GFL variables
equations.

Cf. thin layer equations.

4.5.6 Pressure departure variable Q̂ equation.

This part is valid for NPDVAR=2.

Definition of Q̂ is modified:

Q̂ = log
(
p

Π̃

)
+ δP log

(
Π̃ref

Πref

)
(37)

where Π̃ref and Πref are reference values based on the standard atmosphere (log(Π̃ref/Πref) is temporally constant
and constant along the η surfaces). It is desirable to take a value of δP close to 1.

Equation of Q̂ is:

dQ̂

dt
= −cp

cv
D3 −

ω

Π̃
+ δPη̇

∂ log(Π̃ref/Πref)

∂η
+

cp
cvT

FT (38)

where D3 is defined by equation (25). The physical contribution of Q̂ is linked to the physical contribution of T .

4.5.7 Vertical velocity w and vertical divergence d equations.

Equation of w is:
dw

dt
= −Gµs − (g −G) +G

(
r2

a2
− 1

)
∂p

∂Π̃
+G

∂(p− Π̃)

∂Π̃
+ Fw (39)

The surface condition writes:
wsurf = Vsurf∇r

and this relationship can be used to compute dwsurf
dt

. Currently only the diagnostic calculation of wsurf is used in
the code.

Lagrangian tendency of d equation:

dd

dt
= −dD3 + d∇V − Gp

RdT
∂Π̃
∂η

∂[d[r
2/a2w]
dt

]ad

∂η
+

Gp

RdT
∂Π̃
∂η

(
∇
[
r2

a2
w

])(
∂V

∂η

)
+ Fd (40)

14

5 Discretisation of the equations: general aspects.

This section does not describe in detail iterative centred-implicit schemes and describes only non-iterative schemes
in detail. For more details about iterative centred-implicit schemes, see documentation (IDSI).

5.1 Denotations.

∗ Upper index:
• First integration step: + (resp. m, o, −) for t+ ∆t (resp. t+ 0.5∆t, t, t) quantity.

• Following integration steps: + (resp. m, o, −) for t+ ∆t (resp. t+ 0.5∆t, t, t−∆t) quantity.

∗ Lower index: F (resp. M and O) for final (resp. medium and origin) point.

∗ Particular case of the first timestep in a SL3TL scheme: Written discretisations are valid
from the second integration step. ∆t has to be replaced by 0.5∆t for the first integration step (in this case the
t−∆t quantities are equal to the t quantities).

∗ The different classes of prognostic variables: Prognostic variables can be split into different
classes:

• 3D variables, the equation RHS of which has a non-zero adiabatic contribution and a non-zero semi-
implicit correction contribution. They are called “GMV” in the code (“GMV” means “grid-point model
variables”). This class of variables includes wind components, temperature (and two additional variables
in a non-hydrostatic model). The sub-class of thermodynamic variables includes T , and two additional
variables in a non-hydrostatic model. There are NFTHER thermodynamic variables.

• 3D advectable “conservative” variables. The equation RHS of these variables has a zero adiabatic
contribution, only the diabatic contribution (and the horizontal diffusion contribution) can be non-zero.
They are called “GFL” in the code (“GFL” means “grid-point fields”). This class of variables includes
for example humidity, liquid water, ice, cloud fraction, ozone, TKE, aerosols, and some extra fields. See
documentation (IDEUL) for a comprehensive list of advectable GFL.

• 3D non advectable pseudo-historic variables. The equation RHS of these variables looks like the one of the
3D advectable “conservative” variables, but there is no advection. They are included in the GFL variables.
This class of variables includes for example rain, snow, graupels, hail, convective precipitation flux,
stratiform precipitation flux, SRC (second-order flux for AROME), forcings, easy diagnostics, greenhouse
gases, moisture convergence, total humidity variation, standard deviation of the saturation depression,
convective vertical velocity. See documentation (IDEUL) for a comprehensive list of non advectable pseudo-
historic GFL.

• 2D variables, the equation RHS of which mixes 3D and 2D terms, has a non-zero adiabatic contribution
and a non-zero semi-implicit correction contribution. They are called “GMVS” in the code (“GMVS”
means “grid-point model variables for surface”). This class of variables includes the logarithm of surface
pressure (continuity equation).

5.2 Generalised formulation of extrapolations (SL2TL schemes).

In theory, the RHS in SL2TL schemes would require to evaluate quantities at t + 0.5∆t. This is replaced by
an extrapolation using quantities at t and t − ∆t. The simplest way to extrapolate is the non extrapolating
formulation (replace X(t+ 0.5∆t) by X(t)).

One writes a general formulation, including non extrapolating formulation (NESC), stable extrapolation
(SETTLS), conventional extrapolation, and formulation of (Gospodinov et al., 2001). For a quantity X (X

stands for example for A− βL, V/r or η̇), and if X̃ is an extrapolated value of X which represents the value of

X at t+ 0.5∆t and at location M (half location between O and F), X̃ writes:

X̃ = [0.5Xo
F + 0.5Xo

O] + Cγ [0.5Xo
O + 0.5X−O] + Cγ(0.25− Cα)[(Xo

F −X−F)− (Xo
O −X−O)]

• Cγ=0 yields the non-extrapolated way to compute X̃ (NESC).

• Cγ=1, Cα=0.25 yields the stable extrapolation (SETTLS).

• Cγ=1, Cα=0 yields the conventional extrapolation.

For more details about stable extrapolation, see (Hortal, 1998), (Hortal, 2002).

Discretisations below will be given for conventional and stable (SETTLS) extrapolations. For non-extrapolating
formulation (NESC), start from formulations with stable extrapolations; replace:

[Ao − βLo]O − 0.5[A− − βL−]O

15

by:
0.5[Ao − βLo]O

Non-extrapolating formulation is generally used in the predictor step when an ICI (PC) scheme is switched on.
See documentation (IDSI) for more details.

5.3 Uncentering coefficients.

Two kinds of uncentering coefficients have been introduced in the code in the 1990s.

• First order uncentering: it is applied to both non-linear terms and linear terms in the RHS of equations.
It is implemented for both SL3TL and SL2TL advections.

– multiply A and βL evaluated at origin point O by (1− ε).
– multiply A and βL evaluated at final point F by (1 + ε).

– no change for X and term containing F .

• Pseudo-second order uncentering: it is applied only to linear terms containing βL. It is implemented for
SL2TL advection. For more details see part 5 (equations (37) and (38)) of (Simmons and Temperton,
1996). After calculations not detailed there, one can show that it is equivalent to replace β by (1 + εX)β.

Uncentering allows to remove the noise due to gravity waves (orographic resonance). SL2TL discretisations below
will be given with second order uncentering. SL3TL discretisations below will be given with first order uncentering.

5.4 Discretisation for a 3D variable in a 3D model: general case where the
RHS has non-zero linear and non-linear terms (GMV variables).

5.4.1 Introduction and preliminary remarks.

List of equations:

• Momentum equation.

• Temperature equation.

• Pressure departure variable (non-hydrostatic model only).

• Vertical divergence variable (non-hydrostatic model only).

Generic notation N(X)LAG stands for:

• NWLAG for momentum equation.

• NTLAG for temperature equation.

• NSPDLAG for pressure departure variable (non-hydrostatic model only).

• NSVDLAG for vertical divergence variable (non-hydrostatic model only).

Generic notation P(X)L0, P(X)L9, P(X)T1 stands for:

• PUL0, PUL9, PUT1 for U-momentum equation.

• PVL0, PVL9, PVT1 for V-momentum equation.

• PTL0, PTL9, PTT1 for temperature equation.

• PSPDL0, PSPDL9, PSPDT1 for Q̂ equation.

• PSVDL0, PSVDL9, PSVDT1 for d equation.

Generic notation P(X)NLT9 stands for:

• PUNLT9 for U-momentum equation.

• PVNLT9 for V-momentum equation.

• PTNLT9 for temperature equation.

• PSPDNLT9 for Q̂ equation.

• PSVDNLT9 for d equation.

Generic notation for total term, linear term, non linear term, physics: A is the total term (sum of dynamical
contributions), L is the linear term (treated in the semi-implicit scheme), the difference A− βL is the non-linear
term. F is the sum of contributions computed in the physical parameterizations.

Description stands for the general case where linear and non-linear terms are gathered in the same buffer, and
where no additional splitting is required to do diagnostics or to apply SLHD interpolations to a subset of the
terms interpolated by a high-order interpolation. In some particular cases, additional splitting involving separate
buffers may be required:

16

• In the NH model for options where linear terms must be separately interpolated (controlled by variables
LSLINL and LSLINLC2). Linear terms are stored in arrays, the name of them has appendix SI, or in
parts of PB1 with pointers, the name of them has appendix SI.

• Splitting between linear and non-linear terms may have to be done for some DDH diagnostics too (if
LRSIDDH=T).

• When some diagnostics (for example DDH) impose that evaluation of the dynamics and of the physics at
the origin point of the SL trajectory must be done separately in two different buffers (controlled by variable
NSPLTHOI set to -1). Buffer P(X)LF9 is used instead of P(X)L9 to store quantities, the interpolation
of which is a non-SLHD high-order one.

• When SLHD interpolations, if switched on, are applied only to a subset of the quantities interpolated
by a high order interpolation (applied to X(t) or X(t − ∆t) but not to the other terms); in particular
physics does not use a SLHD interpolation in this case (controlled by variable NSPLTHOI set to 1).
Buffer P(X)LF9 is used instead of P(X)L9 to store quantities, the interpolation of which is a non-SLHD
high-order one.

Only case N(X)LAG=3 is described in detail, and content of P(X)L0, P(X)L9 and P(X)T1 given below is
valid for N(X)LAG=3; code also contains cases N(X)LAG=2 and N(X)LAG=4 for a subset of options:

• N(X)LAG=2: P(X)L0 is not used; P(X)L9 contains the sum of what is spread among P(X)L9 and
P(X)L0 when N(X)LAG=3, and is used for high-order interpolation at the origin point O.

• N(X)LAG=4: in this case diabatic terms are interpolated by trilinear interpolations and they enter
the buffer containing terms interpolated by trilinear interpolations. Start from discretisations given for
N(X)LAG=3 and move term ∆tF from P(X)L9 to P(X)L0.

High-order interpolations: in the following discretisations, “high-order interpolations” means 32 points
interpolations for 3D terms (vertical interpolations are cubic), 12 points interpolations for 2D terms.

Vectorial variables: the following discretisations are written for scalar variables. For vectorial variables (for
example the horizontal wind) a rotation operator R has to be applied from interpolation point to final point:

• expression interpolated at O has to be replaced by ROF {this expression}O.

• expression interpolated at M has to be replaced by RMF {this expression}M .

5.4.2 3TL vertical interpolating SL scheme.

Equation
dX

dt
= A+ F (41)

is discretised as follows:

(X − (1 + ε)∆tβL)+
F = {X− + (1− ε)∆t[A− βL]o + [(1− ε)∆tβL+ 2∆tF]−}O + {(1 + ε)∆t[A− βL]o}F (42)

Buffers content before interpolations for N(X)LAG=3:

• P(X)L0: (1− ε)∆t[A− βL]o + [(1− ε)∆tβL]− for trilinear interpolation at O.

• P(X)L9: X− + [2∆tF]− for high-order interpolation at O.

• P(X)T1: (1+ε)∆t[A−βL]o then provisional add of quantity [(1+ε)∆tβL]o before t+dt physics; evaluated
at the final point F .

5.4.3 2TL vertical interpolating SL scheme: conventional extrapolation.

The t + 0.5∆t non-linear term Am − (1 + εX)βLm used in the SL2TL scheme is replaced by a linear temporal
extrapolation using the t and t−∆t quantities at the same location. At the first time integration step, values at
t+0.5∆t are set equal to initial values. This discretisation of the SL2TL scheme follows (Mc Donald and Haugen,
1992). Quantity Ao − (1 + εX)βLo has to be saved in a buffer P(X)NLT9 to be available as A− − (1 + εX)βL−
for the following timestep.
Equation (41) is discretised as follows:

(X − (1 + εX)
∆t

2
βL)+

F = {Xo +
∆t

2
[A− (1 + εX)βL]m + [(1 + εX)

∆t

2
βL+ ∆tF]o}O + {

∆t

2
[A− (1 + εX)βL]m}F (43)

which can be rewritten, once expanded the extrapolation:

(X − (1 + εX) ∆t
2
βL)+

F = [Xo + ∆t
2
Ao + ∆tFo]O + 0.5 ∆t

2
[(A− (1 + εX)βL)o − (A− (1 + εX)βL)−]O

+ ∆t
2

[1.5(A− (1 + εX)βL)o − 0.5(A− (1 + εX)βL)−]F (44)

Buffers content before interpolations for N(X)LAG=3:

17

• P(X)L0: ∆t
2
Ao + 0.5 ∆t

2
[(A− (1 + εX)βL)o − (A− (1 + εX)βL)−] for trilinear interpolation at O.

• P(X)L9: Xo + [∆tF]o for high-order interpolation at O.

• P(X)T1: ∆t
2

[1.5(A−(1+εX)βL)o−0.5(A−(1+εX)βL)−] then provisional add of quantity [(1+εX) ∆t
2
βL]o

before t+dt physics; evaluated at the final point F .

5.4.4 2TL vertical interpolating SL scheme: stable extrapolation.

At the first time integration step, values at t+ 0.5∆t are set equal to initial values. Quantity Ao − (1 + εX)βLo
has to be saved in a buffer P(X)NLT9 to be available as A− − (1 + εX)βL− for the following timestep.
Equation (41) is discretised as follows:

(X − (1 + εX) ∆t
2
βL)+

F = {Xo + ∆t[A− (1 + εX)βL]o − ∆t
2

[A− (1 + εX)βL]− + [(1 + εX) ∆t
2
βL+ ∆tF]o}O

+{∆t
2

[A− (1 + εX)βL]o}F (45)

which can be rewritten, once expanded the extrapolation:

(X − (1 + εX) ∆t
2
βL)+

F = [Xo + ∆t
2
Ao + ∆tFo]O

+ ∆t
2

[(A− (1 + εX)βL)o − (A− (1 + εX)βL)−]O + [∆t
2

(A− (1 + εX)βL)o]F (46)

Buffers content before interpolations for N(X)LAG=3:

• P(X)L0: ∆t
2
Ao + ∆t

2
[(A− (1 + εX)βL)o − (A− (1 + εX)βL)−] for trilinear interpolation at O.

• P(X)L9: Xo + [∆tF]o for high-order interpolation at O.

• P(X)T1: ∆t
2

(A − (1 + εX)βL)o then provisional add of quantity [(1 + εX) ∆t
2
βL]o before t+dt physics;

evaluated at the final point F .

5.4.5 Specific treatment for some options in the vertical divergence equation.

∗ Option LGWADV=.T. . When this option is activated, the SL scheme treats the Lagrangian equation
of w instead of the one of d (or d4). That implies the following steps in the code:

• Change of variable from d or d4 to w.

• SL explicit treatment of the w equation. For finite difference vertical discretisation (LVFE GW=F) w is
given at half levels: that means that the SL trajectory must be computed also for trajectories ending at
half levels. For finite element vertical discretisation (LVFE GW=T) w is given at full levels. There is a
specific treatment for wsurf (diagnostic condition at t+ ∆t).

• Calculation of the linear terms of the d equation for the semi-implicit scheme.

• Conversion from w+ into d+ or d4
+. If LVFE GW=T, this conversion is done by applying the vertical

derivation to the temporal increment of w to obtain the temporal increment of d.

• Add the linear terms to d+ or d4
+.

It is necessary to keep the prognostic variable d or d4 in the linear model: w in the linear model would lead to
linear instabilities.

This option allows to remove spurious chimneys above slopes, and also spurious noise in some “bubble” tests.

∗ Option NVDVAR=4. In this case we must discretise the term dX
dt

, and this is not done by a SL
treatment of the equation of X (the RHS of this equation is not easy to compute).
If there is no predictor-corrector scheme activated, this term is diagnosed as follows:

• Three-time level semi-Lagrangian scheme: dX/dt = [0.5XoF + 0.5XoO − X−O]/[∆t].

• Two-time level semi-Lagrangian scheme: dX/dt = [XmM − XoO]/[0.5∆t].
XmM is a symbolic denotation for the extrapolated t+ 0.5∆t value of X. The way of extrapolating depends
on LSETTLS and LNESC and is the same as for the other terms evaluated at t + 0.5∆t (there is no
interpolation at M).

If LPC FULL=.T. these discretisations also apply to the predictor step; in this case there are two options:

• Option 1 (ND4SYS=1): include all the contributions of the evolution of X in the predictor-corrector
scheme iterations.

• Option 2 (ND4SYS=2): include only the advective contributions evolution of X in the predictor-corrector
scheme iterations; after the last step of the corrector step, include the non advective processes.

18

∗ Assumptions at the surface (velocities). Calculation of dd
dt

for the layer l = L requires the

calculation of dwsurf
dt

. There are two options to compute dwsurf
dt

, controlled by variable LRDBBC.

• For LRDBBC=.F., one simply discretises equation (33) with a SL treatment. The RHS of this equation

contains dVsurf
dt

and Vsurf , and the assumptions currently done about these quantities are:

. Vsurf = Vl=L

. dVsurf
dt

=
[
dV
dt

]
l=L,adiab

, with an explicit treatment of the Coriolis term, even if LADVF=.T. or

LIMPF=.T. .

• An alternate discretisation (option LRDBBC=.T.) is to evaluate dwsurf/dt by:

– SL3TL: dwsurf/dt = (w+
F − w

−
O)/(2∆t)

– SL2TL: dwsurf/dt = (w+
F − w

o
O)/(∆t)

which requires additional interpolations to compute wO.

This option allows to remove spurious chimneys above slopes.

w+ is computed by:
w+ = V+

l=L,prov∇Φs

where V+
l=L,prov is the provisional t+ ∆t value of Vl=L computed just after the interpolations (this is this

provisional value which is used as input for the lagged physics).

The treatment of dd
dt

for the layer l = L is done according to the following steps:

– Calculation of
[
dd
dt

]
l=L,lrdbbc=F

(as if LRDBBC were .F.),
[
dwsurf
dt

]
lrdbbc=F

and
[
dwsurf
dt

]
lrdbbc=T

.

– Calculation of
[
dd
dt

]
l=L,lrdbbc=T

by the following formula:[
dd

dt

]
l=L,lrdbbc=T

=

[
dd

dt

]
l=L,lrdbbc=F

−
([

dwsurf

dt

]
lrdbbc=T

−
[
dwsurf

dt

]
lrdbbc=F

)[
gp

RdT∆Π

]o
l=L,MM

(47)

where MM is the decentered middle of O and F (that requires a specific interpolation of
[

gp
RdT∆Π

]
l=L

at O).

For more details about these calculations and the additional interpolations required, see documentation
(IDVNH3), especially the parts 1 to 3.

The above formulae are valid for thin layer equations. For WS2003 deep-layer equations change Π into Π̃,
g into G, w into (r2/a2)w in the above formulae.

∗ Numerical stability.

• NVDVAR=4 is more stable than NVDVAR=3.

• ND4SYS=2 is more stable than ND4SYS=1.

• For refined horizontal resolution (∆x < 1km) we recommend to use NVDVAR=4, LGWADV=.T.,
ND4SYS=2.

5.5 Discretisation for a 3D variable in a 3D model: particular case where the
RHS has zero linear and non-linear terms (advectable GFL variables).

5.5.1 Introduction and preliminary remarks.

List of equations: humidity equation, and for example:

• Ozone equation.

• Liquid water equation.

• Ice equation.

• Cloudiness equation.

• TKE.

• Aerosols equation.

• Extra GFL variables equations.

19

See documentation (IDEUL) for a comprehensive list of advectable GFL variables.

Generic notation P(X)L9, P(X)T1 stands for:

• PGFLL9, PGFLT1 for GFL variables.

Generic notation for total term, linear term, non linear term, physics: A is the total term (sum of dynamical
contributions), L is the linear term (treated in the semi-implicit scheme), the difference A− βL is the non-linear
term. F is the sum of contributions computed in the physical parameterizations. In the present case A and L
are equal to zero.

Description stands for the general case where diabatic and adiabatic terms are gathered in the same buffer, and
where no additional splitting is required to do diagnostics or to apply SLHD interpolations to a subset of the
terms interpolated by a high-order interpolation. In some particular cases, additional splitting involving separate
buffers may be required:

• When some diagnostics (for example DDH) impose that evaluation of the dynamics and of the physics at
the origin point of the SL trajectory must be done separately in two different buffers (controlled by variable
NSPLTHOI set to -1). Buffer P(X)LF9 is used instead of P(X)L9 to store quantities, the interpolation
of which is a non-SLHD high-order one.

• When diabatic terms use a different interpolation from the adiabatic one. That can be the case for non-zero
values of NSPLTHOI, attribute LTDIABLIN set to T. Buffer P(X)LF9 is used instead of P(X)L9 to
store diabatic terms to be interpolated.

High-order interpolations: in the following discretisations, “high-order interpolations” means: 32 points
interpolations for 3D terms (vertical interpolations are cubic), 12 points interpolations for 2D terms. For ozone,
vertical cubic interpolations can be replaced by vertical Hermite cubic interpolations (switch YO3 NL%LHV
in NAMGFL), or vertical spline cubic interpolations (switch YO3 NL%LVSPLIP in NAMGFL).

5.5.2 3TL vertical interpolating SL scheme.

Equation (41) is discretised as follows:

X+
F = {X− + [2∆tF]−}O (48)

Buffers content before interpolations:

• P(X)L9: X− + [2∆tF]− for high-order interpolation at O.

• P(X)T1 contains zero; evaluated at the final point F .

5.5.3 2TL vertical interpolating SL scheme.

At the first time integration step, values at t + 0.5∆t are set equal to initial values. This discretisation of the
SL2TL scheme follows (Mc Donald and Haugen, 1992).

Equation (41) is discretised as follows:

X+
F = {Xo + [∆tF]o}O (49)

Buffers content before interpolations:

• P(X)L9: Xo + [∆tF]o for high-order interpolation at O.

• P(X)T1 contains zero; evaluated at the final point F .

∗ Remark for iterative centred-implicit schemes: For options where this type of scheme involves
the momentum equation (this is the case for the option LPC FULL=.T.) X+

F has to be recomputed at all
iterations of the iterative centred-implicit scheme since the origin point O is recomputed at each iteration.

5.5.4 Non advectable pseudo-historic GFL variables.

For these variables the discretisation always writes (SL3TL and SL2TL):

X+
F = {Xo + [∆tF]o}F (50)

and there are never interpolations.

20

5.6 Discretisation for a 2D variable in a 3D model (GMVS variables, for
example continuity equation).

5.6.1 Introduction and preliminary remarks.

The equation which is now discretised is:

[Rinte](top,surf)

〈
Wvei

∆η

dX

dt

〉
= [Rinte](top,surf)

〈
Wvei

∆η
A
〉

+ [Rinte](top,surf)

〈
Wvei

∆η
F
〉

(51)

where:

[Rinte](top,surf)

〈
Wvei

∆η

〉
= 1 (52)

and [Rinte](top,surf) is the vertical integral matricial operator (the scalar product [Rinte](top,surf)〈X〉 is the

discretisation of
∫ η=1

η=0
Xdη, 〈X〉 is the vector containing the layer values of X: (X1;X2; ...;Xl; ...;XL)).

In the thin layer equations or in the Wood and Staniforth formulation of deep-layer equations, expression of Wvei

at full levels is:
[Wvei]l = ∆Bl (53)

In the deep layer equations (White and Bromley, 1995), expression of Wvei at full levels is:

[Wvei]l =

 ∆Bl

[
r2

a2

]
l

[Rinte](top,surf)

〈
∆B
∆η

r2

a2

〉
 (54)

When the finite element vertical discretisation is activated (LVERTFE=.T.), [Rinte](top,surf) is a vector tricky
to compute, it is precomputed in the setup code under SUVERTFE and stored in the array RINTE or
RINTBF11. Vertical integrations are done in routine VERINT. For more details see the part of the appendix
of documentation (IDEUL) which explains the computation of matrix [Rinte].

When the finite difference vertical discretisation is activated (LVERTFE=.F.), [Rinte](top,surf) is simply the
vector of coordinates ([∆η]1; [∆η]2; ...; [∆η]l; ...; [∆η]L) so:

• equation (51) rewrites:
L∑
l=1

[Wvei]l

(
dX

dt

)
l

=

L∑
l=1

[Wvei]lAl +

L∑
l=1

[Wvei]lFl (55)

• equation (54) rewrites:

[Wvei]l =

 ∆Bl

[
r2

a2

]
l∑k=L

k=1
[∆Bk]

[
r2

a2

]
k

 (56)

• routine VERINT is not used in this case.

List of equations:

• Continuity equation.

Generic notation N(X)LAG stands for:

• NVLAG for continuity equation.

Generic notations P(X2D)9 (2D term), P(X)T1 (2D term), P(X3D)L9 (3D term), stand for:

• PX9, PSPT1, PCL9 for continuity equation.

Generic notation P(X)NLT9 (3D term) stands for:

• PSPNLT9 for continuity equation.

Generic notation for total term, linear term, non linear term, physics:

• A is the total term (sum of dynamical contributions): it is assumed to be a 3D term (sum of 3D and 2D
contributions).

• L is the linear term (treated in the semi-implicit scheme): it is assumed to be a 2D term (vertical integral
of a 3D term).

21

• the difference A− βL is the non-linear term, considered as a 3D term.

• F is the sum of contributions computed in the physical parameterizations; it is assumed to be a 2D term
(vertical integral of a 3D term).

Description stands for the general case where linear and non-linear terms are gathered in the same buffer, and
where no additional splitting is required to do diagnostics or to apply SLHD interpolations to a subset of the
terms interpolated by a high-order interpolation. In some particular cases, additional splitting involving separate
buffers may be required (see in part 5.4).

Buffers content for N(X)LAG=2 is the same one as for N(X)LAG=3 but trilinear interpolations are replaced
by high-order ones. Only N(X)LAG=3 is described below.

High-order interpolations: in the following discretisations, “high-order interpolations” means: 32 points
interpolations for 3D terms (vertical interpolations are cubic), 12 points interpolations for 2D terms.

Horizontal interpolation of 2D terms: since the horizontal position of the interpolation point is vertical
dependent, horizontal interpolations of 2D quantities have to be done for each layer. For example,

when interpolating a 2D surface variable at the origin point, [Rinte](top,surf)

〈[Wvei
∆η

]
F

[surface quantity]O

〉
has no reason to be equal to [surface quantity]O(η=1), these quantities are generally different: this is

[Rinte](top,surf)

〈[Wvei
∆η

]
F

[surface quantity]O

〉
which has to be computed.

〈[Wvei
∆η

]
F

[surface quantity]O

〉
is the vector containing

[
[Wvei]l
[∆η]l

]
F

[surface quantity]O(l), l = 1 to L. For LVERTFE=.F. this is∑L

l=1
[[Wvei]l]F [surface quantity]O(l).

5.6.2 3TL vertical interpolating SL scheme.

Equation (51) is discretised as follows:

(X − (1 + ε)∆tβL)+
F = {(1 + ε)∆t[A− βL]o}F

+[Rinte](top,surf)

〈[Wvei
∆η

]
F
{X− + (1− ε)∆t[A− βL]o + [(1− ε)∆tβL+ 2∆tF]−}O

〉
(57)

Buffers content before interpolations for N(X)LAG=3:

• P(X3D)L9: (1− ε)∆t[A− βL]o + [(1− ε)∆tβL]− for trilinear interpolation at O(l).

• P(X2D)9: [X− + 2∆tF]− for horizontal high-order interpolation at O(l).

• P(X)T1: (1+ε)∆t[A−βL]o then provisional add of quantity [(1+ε)∆tβL]o before t+dt physics; evaluated
at the final point F .

5.6.3 2TL vertical interpolating SL scheme: conventional extrapolation.

The t + 0.5∆t non-linear term Am − (1 + εX)βLm used in the SL2TL scheme is replaced by a linear temporal
extrapolation using the t and t − ∆t quantities at the same location. At the first time integration step, values
at t+ 0.5∆t are set equal to initial values and second-order uncentering is replaced by a first order uncentering.
This discretisation of the SL2TL scheme follows (Mc Donald and Haugen, 1992). Quantity Ao− (1 + εX)βLo has
to be saved in a buffer P(X)NLT9 to be available as A− − (1 + εX)βL− for the following timestep.
Equation (51) is discretised as follows:

(X − (1 + εX) ∆t
2
βL)+

F = {∆t
2

[A− (1 + εX)βL]m}F

+[Rinte](top,surf)

〈[Wvei
∆η

]
F
{Xo + ∆t

2
[A− (1 + εX)βL]m + [(1 + εX) ∆t

2
βL+ ∆tF]o}O

〉
(58)

which can be rewritten, once expanded the extrapolation:

(X − (1 + εX) ∆t
2
βL)+

F = [Rinte](top,surf)

〈[Wvei
∆η

]
F
{Xo + ∆t

2
Ao + ∆tFo}O

〉
+0.5[Rinte](top,surf)

〈[Wvei
∆η

]
F

∆t
2
{(A− (1 + εX)βL)o − (A− (1 + εX)βL)−}O

〉
+ ∆t

2
[1.5(A− (1 + εX)βL)o − 0.5(A− (1 + εX)βL)−]F (59)

Buffers content before interpolations for N(X)LAG=3:

• P(X3D)L9: ∆t
2

[1.5(A− (1+ εX)βL)o−0.5(A− (1+ εX)βL)−]+ [(1+ εX) ∆t
2
βL]o for trilinear interpolation

at O(l).

• P(X2D)9: Xo + [∆tF]o for horizontal high-order interpolation at O(l).

• P(X)T1: ∆t
2

[1.5(A−(1+εX)βL)o−0.5(A−(1+εX)βL)−] then provisional add of quantity [(1+εX) ∆t
2
βL]o

before t+dt physics; evaluated at the final point F .

22

5.6.4 2TL vertical interpolating SL scheme: stable extrapolation.

At the first time integration step, values at t+ 0.5∆t are set equal to initial values and second-order uncentering
is replaced by a first order uncentering. Quantity Ao − (1 + εX)βLo has to be saved in a buffer P(X)NLT9 to
be available as A− − (1 + εX)βL− for the following timestep.
Equation (51) is discretised as follows:

(X − (1 + εX) ∆t
2
βL)+

F = {∆t
2

[A− (1 + εX)βL]o}F

+[Rinte](top,surf)

〈[Wvei
∆η

]
F
{Xo + ∆t[A− (1 + εX)βL]o − ∆t

2
[A− (1 + εX)βL]− + [(1 + εX) ∆t

2
βL+ ∆tF]o}O

〉
(60)

which can be rewritten:

(X − (1 + εX) ∆t
2
βL)+

F = {∆t
2

[A− (1 + εX)βL]o}F

+[Rinte](top,surf)

〈[Wvei
∆η

]
F
{Xo + ∆t

2
A+ ∆tF]o}O

〉
+[Rinte](top,surf)

〈[Wvei
∆η

]
F

∆t
2
{[A− (1 + εX)βL]o − [A− (1 + εX)βL]−}O

〉
(61)

Buffers content before interpolations for N(X)LAG=3:

• P(X3D)L9: ∆t[A− (1 + εX)βL]o − ∆t
2

[A− (1 + εX)βL]− + [(1 + εX) ∆t
2
βL]o for trilinear interpolation at

O(l) (which can be rewritten: ∆t
2
A+ ∆t

2
{[A− (1 + εX)βL]o − [A− (1 + εX)βL]−}).

• P(X2D)9: Xo + [∆tF]o for horizontal high-order interpolation at O(l).

• P(X)T1: ∆t
2

[A − (1 + εX)βL]o then provisional add of quantity [(1 + εX) ∆t
2
βL]o before t+dt physics;

evaluated at the final point F .

• P(X3D)L0 and P(X2D)0 are not used.

5.7 Discretisation for a 2D variable in a 2D model.

The content of the part (5.4) is generally valid, but there are particular remarks.

List of equations:

• Momentum equation.

• Continuity equation.

Generic notation N(X)LAG stands for:

• NWLAG for momentum equation.

• NVLAG for continuity equation. Negative values of NVLAG are used for Lagrangian formulation
of continuity equation (the following discretisations apply to the absolute value of NVLAG), only
NVLAG=-2 is available in this case.

Generic notation P(X)L0, P(X)L9, P(X)T1 stands for:

• PUL0, PUL9, PUT1 for U-momentum equation.

• PVL0, PVL9, PVT1 for V-momentum equation.

• PSPL0, PSPL9, PSPT1 for continuity equation.

Generic notation P(X)NLT9 stands for:

• PUNLT9 for U-momentum equation.

• PVNLT9 for V-momentum equation.

• PSPNLT9 for continuity equation.

Generic notation for total term, linear term, non linear term: A is the total term (sum of dynamical contributions),
L is the linear term (treated in the semi-implicit scheme), the difference A− βL is the non-linear term.

There is no diabatic term: F is replaced by zero.

High-order interpolations: “high-order interpolations” means 12 points interpolations.

Uncentering: only first-order uncentering is coded.

Vectorial variables: for vectorial variables (for example the horizontal wind) a rotation operator R has to be
applied from interpolation point to final point:

• expression interpolated at O has to be replaced by ROF {this expression}O.

• expression interpolated at M has to be replaced by RMF {this expression}M .

For momentum equation: if β = 1 the non-linear term A− L is zero.

23

5.8 Additional remarks.

∗ Additional vertical derivatives: if δTR is non-zero, discretisation of temperature equation needs to
compute the vertical advection

(
η̇ dαT
dη

)
(at full levels) of αT. Layers values of αT (array RCORDIF) are used

to define T + δTR
αTΦs
RdTst

, but half level values of αT (array RCORDIH) are used to compute vertical advection.

There is something similar in the Q̂ equation if δP is non-zero (Wood and Staniforth deep-layer version of the
NH-PDVD model, use of an array RCORPDH).

∗ Case when some variables are evaluated at half levels: the prognostic variables and the
RHS of equations are generally evaluated at full levels in the discretisation. In the NH-PDVD non-hydrostatic
model there is an option allowing to advect w (at half levels) instead of d (at full levels). The previous general
considerations valid to layer variables also apply to half level variables, but a “half level” trajectory has now to
be computed (the origin O now matches a half level final point F).

• Horizontal displacement at half levels: the coordinates of the half level-trajectory interpolation point are
computed as the average (with a vertical weight taking account of η) of the coordinates of the adjacent
full level-trajectory interpolation points; this average is a lon-lat average on the computational sphere in
spherical geometry, and a x-y average on the projection plane in plane geometry (LAM models).

• Vertical displacement at half levels: the vertical coordinate of the half level-trajectory interpolation point
is computed as the average (with a vertical weight taking account of η) of the vertical coordinates of
the adjacent full level-trajectory interpolation points; no vertical displacement if there is no vertical
displacement for the two adjacent full levels.

• No complete iterative recalculation of trajectory is done for half-level trajectories.

∗ Remarks for spline cubic vertical interpolations: in this case the vertical interpolation uses
all model levels and can be written as the product of two vertical interpolations: the first one uses all model levels
and can be done at F in the unlagged grid-point calculations (the intermediate quantity obtained is stored in the
array P(X)SPL9), the second one is a 4 points interpolation, done in the lagged grid-point calculations in the
interpolation routine. Interpolation routine uses both P(X)SPL9 (for interpolations) and P(X)L9 to apply a
monotonicity constraint.

24

6 Computation of medium and origin points.

Preliminary remark: the subsections (6.1) and (6.2) are detailed for a spherical geometry and for the trajectory
which is used in the advection of full level variables; the subsection (6.4) gives informations about the other cases
(for example plane geometry and half level variables).

6.1 Medium point M and origin point O.

Trajectories are great circles on the geographical sphere. The computation of the medium point M and the
origin point O locations of the Lagrangian trajectory is performed by an iterative method described by Robert
(1981) and adapted to the sphere by M. Rochas. In a SL3TL scheme, the particle is at the point M at the instant
t (t+ 0.5∆t for the first integration step) and at the point O at the instant t−∆t (t for the first integration step).
In a SL2TL scheme, the particle is at the point M at the instant t + 0.5∆t and at the point O at the instant t.
M is at the middle position of the origin point O and the final point F . Algorithm is described for deep layer
equations; in the thin layer equations, replace simply r by a in formulae. For convenience equations are written
with the angular velocity V/r but actually this is rather (a/r)V which is used in the code. Parts (6.1.1), (6.1.2)
and (6.1.3) are valid for non implicit iterative schemes. Part (6.1.4) is valid for a class of iterative centred-implicit
schemes where the momentum equation is treated in an iterative centred-implicit manner (this is the case of the
option LPC FULL).

∗ Denotations:

• RMF is the rotation operator from medium point to final point (see section 10).

• ROF is the rotation operator from origin point to final point (see section 10).

• rF = CF (C Earth centre, F final point).

• rM = CM (M medium point).

• r = rk.

• φMF : angle (̂CM,CF).

• θF ,λF : latitude, longitude on the geographical sphere of F .

• θM ,λM : latitude, longitude on the geographical sphere of M .

• VM : interpolated horizontal wind at M (wind at t in SL3TL scheme, t+ 0.5∆t in SL2TL scheme).

• VO: interpolated horizontal wind at O (wind at t in SL3TL scheme, t+ 0.5∆t in SL2TL scheme).

• a is the average Earth radius near the surface.

• ∆t: time-step.

• δt:

– In a SL3TL scheme, δt = 0.5∆t at the first integration step, δt = ∆t at the following integration
steps (leap-frog scheme).

– In a SL2TL scheme, δt = 0.5∆t.

• L: number of layers of the model.

• A, B define hydrostatic pressure on the η levels (Π = A + BΠs, where Πs is the hydrostatic surface
pressure).

• Πsst is a reference hydrostatic pressure equal to the surface pressure of the standard atmosphere (variable
VP00).

• Πst is a reference hydrostatic pressure defined at full levels and half levels corresponding to the surface
reference hydrostatic pressure Πsst (Πst = A+BΠsst): stored in array STPRE.

∗ Definition of the vertical coordinate η: Research of medium point needs an exact definition of

the vertical coordinate η. For the half level number l (l between 0 and L), η
l

is defined by:

• Regular spacing (LREGETA=.T.): η
l

= l/L.

• Irregular spacing (LREGETA=.F.): η
l

= A
l
/Πsst +B

l
.

For the layer number l (l between 1 and L), ηl is defined by: ηl = 0.5(η
l
+ η

l−1
).

A specific definition of η may be required for the VFE operators if LVERTFE=.T.: it is controlled by the key
LVFE REGETA.

25

6.1.1 Conventional algorithm.

∗ Algorithm: The medium point is computed by the following iterative scheme: for the iteration k + 1:

[r/r]Mk+1 = [r/r]F cosφk −
RMF ([V/r]Mk)

| [V/r]Mk |
sinφk (62)

where:
φk = δt | [V/r]Mk | (63)

φ is a small angle:

sinφ ' φ− φ3

6
(64)

and:

cosφ ' 1− φ2

2
(65)

This approximation allows to simplify some calculations and avoids the occurrence of a division by 0 in the formula
defining rMk+1. Of course:

sinφ ' φ
(

1− φ2

6

)
'| [V/r] | δt

(
1− φ2

6

)
(66)

thus:

[r/r]Mk+1 = [r/r]F
(

1− φ2
k

2

)
−RMF ([V/r]Mk)δt

(
1− φ2

k

6

)
(67)

On the vertical, for 3D model:
ηMk+1 = ηF − δtη̇Mk (68)

∗ First iteration: Let us start with M0 = F , [V/r]M0 = [V/r]F , φ0 = δt | [V/r]F |, η̇M0 = η̇F . Horizontal
wind V has components (u,v). Thus

sin θM1 = sin θF cosφ0 −
[v/r]F

| [V/r]F | cos θF sinφ0 (69)

cos θM1 cos(λM1 − λF) = cos θF cosφ0 +
[v/r]F

| [V/r]F | sin θ
F sinφ0 (70)

cos θM1 sin(λM1 − λF) = − [u/r]F

| [V/r]F | sinφ0 (71)

ηM1 = ηF − δtη̇F0 (72)

This defines the coordinates of M1. Then [u/r], [v/r], η̇ are interpolated at this point, that gives [V/r]M1 and
η̇M1 . Tri-linear interpolations are used in the 3D primitive equation model, horizontal 12 points interpolations are
used in the 2D shallow-water model (see section 13).

∗ Following iterations: Let us denote by V
′
(u
′
, v
′
) = RMF (VM

k).

sin θMk+1 = sin θF cosφk −
[v
′
/r]

| [V′/r] |
cos θF sinφk (73)

cos θMk+1 cos(λMk+1 − λF) = cos θF cosφk +
[v
′
/r]

| [V′/r] |
sin θF sinφk (74)

cos θMk+1 sin(λMk+1 − λF) = − [u
′
/r]

| [V′/r] |
sinφk (75)

ηMk+1 = ηF − δtη̇Mk (76)

This defines coordinates of Mk+1. Then, if it is not the last iteration, [u/r], [v/r], η̇ are interpolated at this point,
that gives [V/r]Mk+1 and η̇Mk+1. Tri-linear interpolations are used in the 3D primitive equation model, horizontal
12 points interpolations are used in the 2D shallow-water model (see section 13).

∗ Remarks:
• Calculation of M is done for the SL3TL advection. SL2TL advection directly computes the origin point
O (replace δt by 2δt and superscript M by O in the above formulae).

• Extrapolation of the wind for SL2TL scheme: the quantity [V/r] at t+ 0.5∆t used in the SL2TL scheme
is computed by a conventional linear temporal extrapolation using the t and t − ∆t winds at the same
location.

26

6.1.2 “SETTLS” stable algorithm for SL2TL scheme.

∗ Extrapolation of the wind: The previous algorithm with a conventional extrapolation can sometimes
generate instability (especially when applied to the vertical displacement). The quantity [V/r] at t + 0.5∆t is
now replaced by a stable (SETTLS) extrapolation.

0.5[V/r]F (t) + 0.5ROF (2[V/r]O(t)− [V/r]O(t−∆t))

The same type of extrapolation is done for the η-coordinate vertical velocity. The algorithm of research of
trajectory directly computes the origin point O.

∗ Algorithm: The origin point is computed by the following iterative scheme: for the iteration k + 1:

[r/r]Ok+1 = [r/r]F cosφk −
0.5[V/r]F (t) + 0.5ROF (2[V/r]Ok (t)− [V/r]Ok (t−∆t))

| 0.5[V/r]F (t) + 0.5ROF (2[V/r]Ok (t)− [V/r]Ok (t−∆t)) |
sinφk (77)

where:
φk = 2δt | 0.5[V/r]F (t) + 0.5ROF (2[V/r]Ok (t)− [V/r]Ok (t−∆t)) | (78)

Approximations given by equations (64), (65) and (66) are still valid (change δt by 2δt in (66)), thus:

[r/r]Ok+1 = [r/r]F
(

1− φ2
k

2

)
− (0.5[V/r]F (t) + 0.5ROF (2[V/r]Ok (t)− [V/r]Ok (t−∆t)))(2δt)

(
1− φ2

k

6

)
(79)

On the vertical, for 3D model:

ηOk+1 = ηF − 2δt(0.5η̇F (t) + 0.5(2η̇Ok (t)− η̇Ok (t−∆t))) (80)

∗ First iteration: One starts with M0 = F , [V/r]F (t) as a first guess for the spatio-temporally extrapolated
horizontal angular velocity, φ0 = 2δt | [V/r]F (t) |, η̇F (t) as a first guess for the spatio-temporally extrapolated
η-coordinate vertical wind. Remark that quantities at t are taken as a first guess and not quantities at (t+0.5∆t),
contrary to the case with conventional extrapolations. Use equations (69) to (72) replacing δt by 2δt and the
superscript M by O. This defines the coordinates of O1; (2[V/r](t)− [V/r](t−∆t)) and (2η̇(t)− η̇(t−∆t)) are
interpolated at this point, that allows to compute the wind components which will be used for the next iteration.

∗ Following iterations: [V
′
/r] (of coordinates ([u

′
/r], [v

′
/r])) is a generic notation for (0.5[V/r]F (t) +

0.5ROF (2[V/r]Ok (t) − [V/r]Ok (t − ∆t))). For horizontal displacement use equations (73) to (75) replacing δt by
2δt and the superscript M by O. For vertical displacement use equation

ηOk+1 = ηF − 2δt(0.5η̇F (t) + 0.5(2η̇Ok (t)− η̇Ok (t−∆t))) (81)

6.1.3 “LELTRA” alternate stable algorithm for SL2TL scheme.

Extrapolation of the horizontal angular velocity: the quantity [V/r] at t + 0.5∆t used in the SL2TL scheme is
computed using the RHS of the [V/r] equation with explicit formulation of Coriolis term. We denote this RHS
by RHSAV in subsubsection (6.1.3). The extrapolated value of [V/r] is given by:

[V/r]ext = [V/r](t) + 0.5∆tRHSAV (82)

Extrapolation of the vertical velocity: the RHS is assumed to be zero, so:

η̇ext = η̇(t) (83)

In fact, there is no extrapolation at all.

The algorithm of research of trajectory directly computes the origin point O.

∗ Algorithm: The origin point is computed by the following iterative scheme: for the iteration k + 1, a
provisional position of the origin point is computed using equations (62) to (68), replacing “M” by “O” and “δt”
by “∆t”.

∗ First iteration: Let us start with O0 = F , [V/r]O0 = [V/r]Fext, φ0 = ∆t | [V/r]Fext |, η̇O0 = η̇Fext. Horizontal
angular velocity [V/r]ext has components (u/r,v/r). Use equations (69) to (72), replacing “M” by “O” and “δt”
by “∆t” to define coordinates of O1. Then u/r,v/r,η̇ are interpolated at this point, that gives [V/r]O1 and η̇O1
(subscript “ext” is omitted). Tri-linear interpolations are used in the 3D primitive equation model, horizontal 12
points interpolations are used in the 2D shallow-water model (see section 13).

27

∗ Following iterations: Use equations (73) to (76), replacing “M” by “O” and “δt” by “∆t” to define
coordinates of Ok+1. Then u/r,v/r,η̇ are interpolated at this point, that gives [V/r]Ok+1 and η̇Ok+1 (subscript
“ext” is omitted). Tri-linear interpolations are used in the 3D primitive equation model, horizontal 12 points
interpolations are used in the 2D shallow-water model (see section 13). This iterative algorithm quickly converges:
3 iterations are generally enough.

6.1.4 Algorithm used with the iterative centred-implicit schemes.

∗ Preliminary remarks: Iterative centred-implicit schemes are used to improve stability and it has
been shown that this type of scheme has to be used when non-hydrostatic equations are advected by a SL2TL
scheme. There are several manners to do iterative centred-implicit schemes. For description of those coded in
ARPEGE/IFS, see documentation (IDSI). When the momentum equation is treated by an iterative centred-
implicit scheme, the semi-Lagrangian trajectory has to be recomputed at each iteration of the iterative centred-
implicit scheme and interpolations have to be done again. In this case the algorithm of research trajectory
is modified. The case is currently encountered with a SL2TL scheme and LPC FULL=.T. . The following
algorithm will be described for a SL2TL scheme but it can be extended to a SL3TL scheme (replacing instant t
by instant t−∆t).

∗ Extrapolation of the wind if non-extrapolating option: No extrapolation is done. The first
iteration of the iterative centred-implicit scheme uses [V/r](t) and η̇(t). The following iterations of the iterative
centred-implicit scheme use the [V/r](t + ∆t) and η̇(t + ∆t) of the previous iteration to start the research of
trajectory. As for the “SETTLS”-stable extrapolating option, the algorithm computes the origin point O.

∗ Extrapolation of the wind if “SETTLS”-stable extrapolating option: The only
difference with the previous case is for the first iteration of the iterative centred-implicit scheme: the wind
which is used is now 1.5[V/r](t)− 0.5[V/r](t−∆t) and 1.5η̇(t)− 0.5η̇(t−∆t).

∗ Algorithm: One denotes by index “k” the numbering of the SL-trajectory research algorithm iteration, and
by index “(i)” the number of the iterative centred-implicit scheme iteration (in variable NCURRENT ITER).
The origin point is computed by the following iterative scheme: for the iteration k+1 of the SL-trajectory research
algorithm:

[
[r/r]Ok+1

]
(i)

= [r/r]F [cosφk](i) −
0.5ROF [V/r]Ok (t) + 0.5

[
[V/r]F (t+ ∆t)

]
(i−1)

| 0.5ROF [V/r]Ok (t) + 0.5 [[V/r]F (t+ ∆t)](i−1) |
[sinφk](i) (84)

where:
[φk](i) = 2δt | 0.5ROF [V/r]Ok (t) + 0.5

[
[V/r]F (t+ ∆t)

]
(i−1)

| (85)

Approximations given by equations (64), (65) and (66) are still valid (change δt by 2δt in (66)), thus:

[
[r/r]Ok+1

]
(i)

= [r/r]F

(
1−

[
φ2
k

]
(i)

2

)
−
(

0.5ROF [V/r]Ok (t) + 0.5
[
[V/r]F (t+ ∆t)

]
(i−1)

)
(2δt)

(
1−

[
φ2
k

]
(i)

6

)
(86)

On the vertical, for 3D model:[
ηOk+1

]
(i)

= ηF − 2δt
(

0.5η̇Ok (t) + 0.5
[
η̇F (t+ ∆t)

]
(i−1)

)
(87)

For i = 0: [[V/r](t+ ∆t)](i=0) = [V/r](t) and [η̇(t+ ∆t)](i=0) = η̇(t) for non-extrapolating option;

[[V/r](t+ ∆t)](i=0) = 2[V/r](t) − [V/r](t − ∆t) and [η̇(t+ ∆t)](i=0) = 2η̇(t) − η̇(t − ∆t) for “SETTLS”-stable

extrapolating option.

∗ First iteration
of the research of SL trajectory: One starts with M0 = F ,

[
[V/r]F (t+ ∆t)

]
(i−1)

as a first guess

for the spatio-temporally extrapolated horizontal wind, [φ0](i) = 2δt |
[
[V/r]F (t+ ∆t)

]
(i−1)

|,
[
η̇F (t+ ∆t)

]
(i−1)

as a first guess for the spatio-temporally extrapolated η-coordinate vertical wind. Use equations (69) to (72)
replacing δt by 2δt and the superscript M by O in the SL-trajectory research. This defines the coordinates of
[O1](i); [V/r](t) and η̇(t) are interpolated at this point, that allows to compute the wind components which will

be used for the next iteration of the research of SL trajectory.

28

∗ Following iterations of the research of SL trajectory: [V
′
/r] (of coordinates ([u

′
/r], [v

′
/r])

is a generic notation for 0.5ROF [V/r]Ok (t) + 0.5
[
[V/r]F (t+ ∆t)

]
(i−1)

. For horizontal displacement use equations

(73) to (75) replacing δt by 2δt and the superscript M by O otherwise. For vertical displacement use equation[
ηOk+1

]
(i)

= ηF − 2δt
(

0.5η̇Ok (t) + 0.5
[
η̇F (t+ ∆t)

]
(i−1)

)
(88)

∗ “LELTRA” alternate stable algorithm for SL2TL scheme: For each iteration of the
iterative centred-implicit scheme the algorithm is the same as for explicit schemes; at each iteration the RHS of
the momentum equation is updated with the “provisional” t+∆t information computed at the previous iteration.

6.1.5 Compute origin point O from medium point M .

When the position of M is computed, the position of O can be computed with the following algorithm.

O is on the same great circle arc (on the geographical sphere) as M and F and the length of OF is twice the

length of MF . If angle ̂([r/r]O, [r/r]F) is small (less than 10o, what is generally matched), one can write for
horizontal displacement:

[r/r]O − [r/r]F ' 2([r/r]M − [r/r]F) (89)

For vertical displacement on can always write:

ηO − ηF = 2(ηM − ηF) (90)

One denotes by:

• φ = ̂([r/r]M , [r/r]F)

• [V
′
/r] (of coordinates ([u

′
/r], [v

′
/r])) the last interpolated horizontal velocity.

Using the following identities:
cos 2φ = 2 cos2 φ− 1 (91)

sin 2φ = 2 sinφ cosφ (92)

the origin point horizontal coordinates can be computed by:

sin θO = sin θF cos 2φ− 2 cosφ

[
[v
′
/r]

| [V′/r] |
cos θF sinφ

]
(93)

cos θO cos(λO − λF) = cos θF cos 2φ+ 2 cosφ

[
[v
′
/r]

| [V′/r] |
sin θF sinφ

]
(94)

cos θO sin(λO − λF) = −2 cosφ

[
[u
′
/r]

| [V′/r] |
sinφ

]
(95)

Terms in brackets are already computed to determine M .

6.2 Refined recomputation of point O.

∗ Option L2TLFF for RW2TLFF=1: This option controls recomputation of the origin point using
the average between the angular velocity at the origin point and the provisional t+∆t angular velocity, according
to the algorithm previously described. Only term (2Ω ∧ ak) is computed (always analytically) at this improved
position of O (so L2TLFF is active only if LADVF=.T. or LADVFW=.T.). Refined recomputation of point O
is available only in a limited set of options. In the following sections 7, 8 and 9 discretised equations are written
with notation O for all quantities. Equations system is integrated to find a first guess of VF (t+ ∆t) and also a
first guess of Πs(t + ∆t) which provides r(t + ∆t), then 0.5([V/r]F + ROF [V/r]O) is used to recompute O. A
correction (2Ω ∧ ak)(Oimproved)− (2Ω ∧ k)(O) is analytically computed and added to wind equation to find the
“improved” value of VF (t+ ∆t). In the deep layer equations and in the cases where a multiplicative factor r/a is
required, this factor remains interpolated at O and is never re-interpolated at the refined origin point (this is too
tricky to code and too expensive also). Computations are currently done in routine LAPINEB and LADINE.

∗ Options L2TLFF for RW2TLFF between 0 and 1: In this case the improved position ON
of the origin point O is computed as a linear interpolation between O and its position for RW2TLFF=1 on a
great circle bow on geographical sphere. For RW2TLFF=0. ON=O.

29

6.3 Trajectory going out of atmosphere or underground, and algorithms to
prevent that.

∗ Trajectory going out of atmosphere for trajectories ending at a layer final point:
If the origin point O is found above the top of the atmosphere (resp. under the ground) it is put on the top
of the atmosphere (resp. on the ground). Then the position of the medium/origin point is recomputed (when
necessary), that gives necessary a point between the bottom and the top of the atmosphere. At last the origin
point is bounded by a vertical position ηO between the top of the atmosphere and the layer l = 1, according
to the namelist variable VETAON (resp. between the layer l = L and the ground, according to the namelist
variable VETAOX). Upper bound of O is ηO = ηl=1 + (VETAON − 1)(ηl=1 − ηl=0

). Lower bound of O is
ηO = ηl=L + (1−VETAOX)(η

l=L
− ηl=L).

∗ Alternate treatment of vertical displacement (LRALTVDISP=T): The algorithm
proposed is an extension of an algorithm described in (Wood et al., 2009). We propose to compute two vertical
displacements, one with η and one with log((η − ηN)/(ηX − η)), and we finally take the shorter displacement
computed.

• ηN is a lower boundary for η which matches 0 ≤ ηN < ηl=1 (currently taken equal to VETAON).

• ηX is an upper boundary for η which matches ηl=L < ηX ≤ 1 (currently taken equal to VETAOX).

The vertical displacement computed with log((η − ηN)/(ηX − η)) yields, in a 2TLSL scheme (replace ∆t by 2∆t
for a SL3TL scheme):

log
(ηO − ηN)

(ηX − ηO)
= log

(ηF − ηN)

(ηX − ηF)
−∆t

d(log((η − ηN)/(ηX − η)))

dt
(96)

This equation can be rewritten:

log
(ηO − ηN)

(ηX − ηO)
= log

(ηF − ηN)

(ηX − ηF)
−∆t

(
1

η − ηN
+

1

ηX − η

)
η̇ (97)

The solution of this equation ensures that:
ηN < ηO < ηF

For η < 0.5 the vertical displacement computed with log((η − ηN)/(ηX − η)) computes lower displacements if
the trajectory is descending (this is the case where the origin point may be out of the atmosphere), and bigger
displacements if the trajectory is ascending.
For η > 0.5 the vertical displacement computed with log((η− ηN)/(ηX − η)) computes lower displacements if the
trajectory is ascending (this is the case where the origin point may be under the ground), and bigger displacements
if the trajectory is descending.
In both cases the origin point remains in the atmosphere.

This algorithm can be done for non extrapolating or “SETTLS” extrapolation in a 2TLSL scheme.

6.4 Remarks.

∗ Shallow water model: Computations remain valid for horizontal coordinates (there is no vertical
movement, equations containing η have not to be considered). There are remaining some old features (compute
M in LARMES2 even for options where O is directly computed in the 3D model, then O in LAINOR2).

∗ Case of interpolations applied to half level variables: That occurs for example in the non-
hydrostatic scheme when the half level variable w is advected instead of the full level vertical divergence variable
(option LGWADV=.T.). In this case one needs to define an origin O(l) for a half level trajectory (which ends

at a half level final point F (l)). The following rules are applied to compute such a kind of trajectory:

• The horizontal displacement from F (l) is a weighted average of the horizontal displacements from F (l− 1)
and F (l) (see below for vertical displacement).

• At the top (resp. bottom) the horizontal displacement from F (l = 0) (resp. F (l = L)) is equal to the
horizontal displacement from F (l = 1) (resp. F (l = L)).

• The rule applied to the horizontal displacement is also applied to the vertical displacement for l between
1 and L− 1. For example, if l is between 1 and L− 1:

η
O(l)

= +

(
1−

η
O(l)
− ηO(l)

ηO(l+1) − ηO(l)

)
ηO(l) +

η
O(l)
− ηO(l)

ηO(l+1) − ηO(l)

ηO(l+1)

30

• A particle coming from the top or the bottom has no vertical displacement (that assumes that η̇ = 0 at
the top and the bottom, and so that excludes the options LRUBC=.T., NDPSFI=1 and Πtop > 0 which
are not consistent with the constraint (η̇top = 0; η̇surf = 0)).

• If the trajectory goes above the top of the atmosphere, it is bounded at the top of the atmosphere.

• If the trajectory goes below the surface, it is bounded at the surface.

• Computation of the position of O(l) is done in routine LARCINHA.

∗ Plane geometry (LAM models): Computation of the SL trajectory is done on the projected plane
geometry. ELARMES and ELARMES2 are called instead of LARMES and LARMES2.

∗ Treatment of η̇ in the upper stratosphere: For some options of the code the horizontal
interpolations applied on η̇ are replaced by “least-square” interpolations; that allows to remove some instabilities.
See documentation (IDSVTSM) for more details.

∗ Option LSETTLSVF (SL2TL schemes): When the “SETTLS” stable extrapolation is applied
to η̇, and when LSETTLSVF=T, the stable extrapolation is replaced by a non-extrapolating evaluation of η̇ at
locations matching:

| η̇(t, F)− η̇(t−∆t, F) | /[| η̇(t, F) | + | η̇(t−∆t, F) |] > Csettlsvf

Csettlsvf is a vertical dependent coefficient, equal to 1 in the lower atmosphere and slightly below 1 in the upper
atmosphere; Csettlsvf is stored in the array RSETTLF.

∗ Variable NFOST (SL2TL schemes): When the “SETTLS” stable extrapolation is applied, by
default it is applied to all timesteps. When setting NFOST to a positive non-zero value, “NESC” extrapolation
is done for timesteps 0 to NFOST-1, “SETTLS” extrapolation is done for timesteps from NFOST.

31

7 The SL discretisation of the 2D shallow-water system of
equations (spherical geometry).

7.1 Momentum equation.

∗ Definition of X, A and L.
X = V + δV(2Ω ∧ r) (98)

A = −2(1− δV)(Ω ∧V)−∇Φ (99)

L = −∇Φ + βCo[−2(1− δV)(Ω ∧V)] (100)

∗ Remarks.
• Coriolis term can be treated explicitly (δV = 0) or implicitly (δV = 1). Use key LADVF. LADVF=.F.

matches with (δV = 0). LADVF=.T. matches with (δV = 1). If LADVF=.T., term (2Ω ∧ r) is
analytically computed.

• For a limited set of options, term (2Ω ∧ r) can be recomputed at an improved position of the origin point
(RW2TLFF>0).

• Coriolis term can also be put in the semi-implicit scheme by tuning βCo (which has a sense only
if LADVF=.F.). Caution: do not use LIMPF=.T. in variable resolution (formulation of spectral
computations is not correct in this case for the semi-implicit scheme).

• If β=1, the non linear term (−2(1− δV)(Ω ∧V)−∇Φ)− β(−∇Φ + βCo[−2(1− δV)(Ω ∧V)]) is zero.

7.2 Continuity equation: conventional formulation (NVLAG>0).

∗ Definition of X, A and L.
X = (Φ− (1− δTR)Φs) (101)

A = −(Φ− Φs)D + δTRV∇(Φs) (102)

L = −Φ∗M
2
D
′

(103)

δTR = 1 plays the same role as the “Tanguay-Ritchie” modification for 3D model.

7.3 Continuity equation: Lagrangian formulation (NVLAG<0).

∗ Definition of X, A and L.
X = (Φ− Φs)J (104)

A = 0 (105)

L = −Φ∗M
2
D
′
J (106)

where J is a “Jacobian” quantity defined by its Lagrangian derivative (see equation (11)).

∗ Calculation of J .
• SL3TL: J− = (1−∆tDo)/(1 + ∆tDo), Jo = 1/(1 + ∆tDo) and J+ = 1.

• SL2TL: currently not coded.

7.4 Quantities to be interpolated.

When researching the medium/origin point by an iterative algorithm, the interpolation at the medium/origin
point of the two components of the horizontal wind is needed: a 12 points interpolation is used. For other
quantities to be interpolated, see section 5. For more details about interpolations, see section 13.

32

8 The SL discretisation of the 3D primitive equation model.

Remark: the detailed discretisation of each part of the RHS is given in the documentation (IDEUL). Some
notations used in the expression of linear term L (like τ , γ, µ, ν) are given in the documentation (IDSI).

8.1 Thin layer formulation of the momentum equation.

∗ Definition of X, A, L and F , top and bottom values.

X = V + δV(2Ω ∧ r) (107)

A = −2(1− δV)(Ω ∧V)−∇Φ−RT∇(log Π) (108)

L = −∇ [γT +RdT
∗ log(Πs)] + βCo[−2(1− δV)(Ω ∧V)] (109)

F = FV (110)

Top:
Vη=0 = Vl=1 (111)

Bottom if δm = 0:
Vη=1 = Vl=L (112)

Bottom if δm = 1:
Vη=1 = 0 (113)

∗ Remarks.
• Coriolis term can be treated explicitly (δV = 0) or implicitly (δV = 1). Use key LADVF. LADVF=.F.

matches with (δV = 0). LADVF=.T. matches with (δV = 1). If LADVF=.T., term (2Ω ∧ r) is
analytically computed.

• For a limited set of options, term (2Ω ∧ r) can be recomputed at an improved position of the origin point
(RW2TLFF>0).

• Coriolis term can also be put in the semi-implicit scheme by tuning βCo (which has a sense only
if LADVF=.F.). Caution: do not use LIMPF=.T. in variable resolution (formulation of spectral
computations is not correct in this case for the semi-implicit scheme).

8.2 White and Bromley deep layer formulation of the momentum equation.

∗ Definition of X, A, L and F , top and bottom values.

X = V + δV(2Ω ∧ r) (114)

A = (1− δV)(−2Ω ∧V − 2Ω ∧Wk)− W

r
V −∇Φ− (RT + µsRdTr)∇(log Π) (115)

L = −M∇
′
[γT +RdT

∗ log(Πs)] + βCo[−2(1− δV)(Ω ∧V)] (116)

F = FV (117)

Top:
Vη=0 = Vl=1 (118)

Bottom if δm = 0:
Vη=1 = Vl=L (119)

Bottom if δm = 1:
Vη=1 = 0 (120)

∗ Remarks.
• Coriolis term can be treated explicitly (δV = 0) or implicitly (δV = 1). Use keys LADVF and LADVFW.

(LADVF;LADVW)=(.F.;.F.) matches with (δV = 0). (LADVF;LADVW)=(.T.;.T.) matches with
(δV = 1). If (LADVF;LADVW)=(.T.;.F.) term (2Ω∧ak) is treated implicitly and the remaining Coriolis
term is treated explicitly. If (LADVF;LADVW)=(.F.;.T.) term (2Ω ∧ (r − a)k) is treated implicitly
and the remaining Coriolis term is treated explicitly. If at least LADVF=.T. or LADVFW=.T., term
(2Ω ∧ ak) is analytically computed. If LADVFW=.T., r/a (at t−∆t if SL3TL or t if SL2TL) has to be
interpolated at O, and r/a has also to be computed at t+ ∆t using a provisional value of log Πs at t+ ∆t.

• For a limited set of options, term (2Ω∧ak) can be recomputed at an improved position of the origin point
(RW2TLFF>0).

• The horizontal part of the Coriolis term can also be put in the semi-implicit scheme by tuning βCo (which
has a sense only if LADVF=.F.). Caution: do not use LIMPF=.T. in variable resolution (formulation
of spectral computations is not correct in this case for the semi-implicit scheme). The combination
(LIMPF;LADVW)=(.T.;.T.) is possible but does not eliminate completely a residual explicit term linked
to Coriolis force in the RHS of the momentum equation.

33

8.3 Thermodynamic equation.

∗ Definition of X, A, L and F , top and bottom values.

X = T + δTR
αTΦs

RdTst
(121)

A =
RT

cp

ω

Π
+ δTR

αT

RdTst
V∇(Φs) + δTR

Φs

RdTst

(
η̇
dαT

dη

)
(122)

L = −τ(M
2
D
′
) (123)

F = FT (124)

Top:
Tη=0 = Tl=1 (125)

Bottom if δm = 0:
Tη=1 = Tl=L (126)

Bottom if δm = 1 (output of physics):
Tη=1 = Ts (127)

8.4 Thin layer formulation of the continuity equation.

∗ Definition of X, A, L, and F .

X = log Πs + δTR
Φs

RdTst
(128)

A = − 1

Πs

∫ η=1

η=0

∇
(

V
∂Π

∂η

)
dη + V∇

(
log Πs + δTR

Φs

RdTst

)
− 1

Πs

[
η̇
∂Π

∂η

]
η=1

+
1

Πs

[
η̇
∂Π

∂η

]
η=0

(129)

L = −M
2

M2
νD (130)

F =
(
Fm

Πs

)
(131)

∗ Remarks:

• A is a sum of 3D terms (the advection term) and 2D terms (the other terms).

• L and F are 2D terms (vertical integrals).

8.5 White and Bromley deep layer formulation of the continuity equation.

∗ Definition of X, A, L, and F .

X = log Πs + δTR
Φs

RdTst
(132)

A = −
[
a2

r2

]
η=1

1

Πs

∫ η=1

η=0

[
r

a
∇
](

r

a
V
∂Π

∂η

)
dη+

a

r
V

[
r

a
∇
][

log Πs + δTR
Φs

RdTst

]
−

1

Πs

[
η̇
∂Π

∂η

]
η=1

+
1

Πs

[
a2

r2

]
η=1

[
r2

a2

]
η=0

[
η̇
∂Π

∂η

]
η=0

(133)

L = −ν(M
2
D
′
) (134)

F =
(
Fm

Πs

)
(135)

∗ Remarks:

• A is a sum of 3D terms (the advection term) and 2D terms (the other terms).

• L and F are 2D terms (vertical integrals).

34

8.6 Moisture equation.

∗ Definition of X, A, L and F , top and bottom values.

X = q (136)

A = 0 (137)

L = 0 (138)

F = Fq (139)

Top:
qη=0 = ql=1 (140)

Bottom if δm = 0:
qη=1 = ql=L (141)

Bottom if δm = 1 (see CPQSOL, relative humidity is the same for η = ηL and η = 1):

qη=1 = qsurf (142)

8.7 Other advectable GFL variables.

Equations are discretised as for humidity equation. Vertical boundary conditions: quantities are assumed constant
above the middle of the upper layer and below the middle of the lower layer in case δm = 0; quantities are assumed
constant above the middle of the upper layer in case δm = 1; quantities other than q are assumed to be zero at
the surface in case δm = 1.

8.8 Case of lagged physics.

All the previous discretisations have been written with not lagged physics (interpolated at O).

• For lagged physics (LAGPHY=.T., LSLPHY=.F.): the previous discretisations are done without
physics, then the provisional

(X+ − (1 + εX)
∆t

2
βL+ + (1 + εX)

∆t

2
βLo)F

or

(X+ − (1 + ε)
∆t

2
βL+ + (1 + ε)

∆t

2
βLo)F

is used as input to the lagged physics.

• For split physics used at ECMWF (LEPHYS=.T., LAGPHY=.T., LSLPHY=.T.): one part of the
physics is interpolated at O (t or t −∆t physics according to LTWOTL), the remainder is evaluated at
the final point (t+ ∆t physics). The physical contribution is put in a separate interpolation buffer (name
P(X)P9) and tri-linearly interpolated. The way to compute the non-lagged contribution is different than
the way used at METEO-FRANCE: compute it at the previous timestep as a lagged contribution, then
saving it from one timestep to the following one (where it is restored and added to the interpolation buffer
by calling the routine GPADDSLPHY). Partition between the non-lagged and lagged contribution is
done by a linear partition of coefficient RSLWX.

8.9 Quantities to be interpolated (computation under subroutine LACDYN).

8.9.1 Research of trajectory.

When researching the medium/origin point by an iterative algorithm, the interpolation at the medium/origin
point of ([U/r], [V/r], η̇) is needed: a tri-linear interpolation is performed. For more details about interpolations,
see section 13.

8.9.2 RHS of equations.

The list of quantities to be interpolated has been described in subsections 5.4, 5.5 and 5.6 for each type of equation.

8.9.3 Additional quantities to be interpolated at O if RW2TLFF>0.

The two components of the [V/r] at time t (if SL2TL scheme) or t −∆t (if SL3TL scheme) when not available
after the other interpolations (for example if not lagged physics). These additional interpolations are useless if
lagged physics (or adiabatic run) and NWLAG=3.

35

9 The SL discretisation of the fully elastic non hydrostatic
model.

Remarks: Some notations used in the expression of linear term L (like τ , γ, µ, ν) are given in the documentation
(IDSI).

9.1 Thin layer formulation of the momentum equation.

∗ Definition of X, A, L and F , top and bottom values.

X = V + δV(2Ω ∧ r) (143)

A = [−2(1− δV)(Ω ∧V)]− ∂p

∂Π
∇Φ−RT ∇(p)

p
(144)

L = −∇
[
γT − T ∗(γQ̂) +RdT

∗ log(Πs) +RdT
∗Q̂
]

+ βCo[−2(1− δV)(Ω ∧V)] (145)

F = FV (146)

Top:
Vη=0 = Vl=1 (147)

Bottom if δm = 0:
Vη=1 = Vl=L (148)

Bottom if δm = 1:
Vη=1 = 0 (149)

Remarks about implicit formulations of the Coriolis term are generally valid for the non-hydrostatic equations.

9.2 Wood and Staniforth deep layer formulation of the momentum equation.

∗ Definition of X, A, L and F , top and bottom values.

A = [−2(1− δV)(Ω ∧V + 2Ω ∧ wk)]− w

r
V − r2

a2

∂p

∂Π̃
∇[Gr]−RT ∇(p)

p
(150)

Equations (143), (146), (145), (147), (148), (149) remain valid. Replace Π by Π̃ in equation (145).

9.3 Temperature equation.

∗ Definition of X, A, L and F , top and bottom values.

X = T + δTR
αTΦs

RdTst
(151)

A = −RT
cv

D3 + δTR
αT

RdTst
V∇(Φs) + δTR

Φs

RdTst

(
η̇
dαT

dη

)
(152)

L = −RdT
∗

cvd

[
M

2
D
′

+ d
]

(153)

F =
[
cp
cv
FT

]
(154)

Top:
Tη=0 = Tl=1 (155)

Bottom if δm = 0:
Tη=1 = Tl=L (156)

Bottom if δm = 1 (output of physics):
Tη=1 = Ts (157)

9.4 Thin layer formulation of the continuity equation.

Same discretisation as in the hydrostatic case, see part (8.4).

36

9.5 Wood and Staniforth deep layer formulation of the continuity equation.

Start from the equations given in part (8.4), apply the following changes:

• Π is changed into Π̃.

• Some metric terms appear: replace ∇
(
V ∂Π

∂η

)
by ∇

(
a
r
V ∂Π̃

∂η

)
.

• G appears in factor of the diabatic term.

9.6 Moisture and other advectable GFL variables equations.

Same discretisation as in the hydrostatic case, see parts (8.6) and (8.7).

9.7 Thin layer formulation of the pressure departure variable equation.

∗ Definition of X, A, L and F , top and bottom values, case NPDVAR=2.

X = Q̂ (158)

A = −cp
cv
D3 −

ω

Π
(159)

L = −
[
cpd

cvd

(M
2
D
′

+ d)−
cpd

RdT ∗
τ(M

2
D
′
)
]

(160)

F =
cp
cvT

FT (161)

Top:

Q̂η=0 = 0 (162)

Bottom if δm = 0:
Q̂η=1 = Q̂l=L (163)

Bottom if δm = 1: not yet coded.

9.8 Wood and Staniforth deep layer formulation of the pressure departure
variable equation.

∗ Definition of X, A, L and F , top and bottom values, case NPDVAR=2.

X = Q̂+ δP log(Π̃ref/Πref) (164)

A = −cp
cv
D3 −

ω

Π̃
+ δPη̇

∂ log(Π̃ref/Πref)

∂η
(165)

Top:

[Q̂+ δP log(Π̃ref/Πref)]η=0 = 0 (166)

Bottom if δm = 0:
[Q̂+ δP log(Π̃ref/Πref)]η=1 = [Q̂+ δP log(Π̃ref/Πref)]l=L (167)

Bottom if δm = 1: not yet coded.
Equations (160), (161) remain valid.

9.9 Thin layer formulation of the vertical divergence variable equation.

∗ Definition of X, A, L and F , top and bottom values, case NVDVAR=3,
LGWADV=.F. .

X = d (168)

A = −dD3 + d∇V − gp

RdT
∂Π
∂η

∂
[
dw
dt

]
ad

∂η
+

gp

RdT
∂Π
∂η

(∇w)

(
∂V

∂η

)
(169)

L = − g2

RdT ∗a
(L∗Q̂) (170)

F = − d[
∂Π
∂η

]F ′m − [gp

RdT
∂Π
∂η

∂Fw

∂η

]
(171)

Top:
dη=0 = dl=1 (172)

Bottom if δm = 0:
dη=1 = dl=L (173)

Bottom if δm = 1: not yet coded.

37

∗ Definition of X, A, L and F , top and bottom values, case NVDVAR=3,
LGWADV=.T. .

X = w (174)

A = g
∂(p−Π)

∂Π
(175)

L = Lw (176)

where Lw matches the following relationships:

[Lw]surf = 0 (177)

[Lw]
l

= −g T
∗

T ∗a

k=L∑
k=l+1

(
[∆Π∗]k
[Π∗]k

[
L∗Q̂

]
k

)
(178)

[∆Lw]l = g
T ∗

T ∗a

[∆Π∗]l
[Π∗]l

[
L∗Q̂

]
l

(179)

The relationship between Ld and Lw writes:

Ld =

[
− gΠ∗

RdT ∗
∂Π∗
∂η

∂Lw
∂η

]
(180)

Discretisation of equation (180) at full levels writes:

[Ld]l = − g

RdT ∗
[Π∗]l

[∆Π∗]l
[∆Lw]l (181)

F = Fw (182)

Top:

• LVERTFE=.F.: wη=0 is computed by the general formula giving w at half levels.

• LVERTFE=.T.: FD treatment for wη=0 (cf. above).

Bottom if δm = 0:
wη=1 = Vsurf∇zsurf (183)

Bottom if δm = 1: not yet coded.

9.10 Wood and Staniforth deep layer formulation of the vertical divergence
variable equation.

∗ Definition of X, A, L and F , top and bottom values, case NVDVAR=3,
LGWADV=.F. .

X = d (184)

A = −dD3 + d∇V − Gp

RdT
∂Π̃
∂η

∂[d[r
2/a2w]
dt

]ad

∂η
+

Gp

RdT
∂Π̃
∂η

(
∇
[
r2

a2
w

])(
∂V

∂η

)
(185)

Linear terms, physics, top and bottom values: cf. thin layer formulation, simply change Π by Π̃.

∗ Definition of X, A, L and F , top and bottom values, case NVDVAR=3,
LGWADV=.T. .

X = w (186)

A = −Gµs − (g −G) +G

(
r2

a2
− 1

)
∂p

∂Π̃
+G

∂(p− Π̃)

∂Π̃
(187)

Linear terms, physics, top and bottom values: cf. thin layer formulation, simply change Π by Π̃.

9.11 Case of lagged physics.

See part (8.8).

9.12 Quantities to be interpolated (computation under subroutine
LACDYN).

See part (8.9).

38

10 R operator.

10.1 No tilting.

To transport a vector along a trajectory (part of a great circle) from an origin point O to a final point F the
following operator ROF is defined:

V
′

= ROF (V) (188)

where V
′

has coordinates (u
′
, v
′
), V has coordinates (u, v), and the relationship between (u, v) and (u

′
, v
′
) is:(

u
′

v
′

)
=

(
p q
−q p

)(
u
v

)
(189)

where:

p =
iF iO + jF jO

1 + kFkO
=

cos θF cos θO + (1 + sin θF sin θO) cos(λF − λO)

1 + cosφ
(190)

q =
iF jO + jF iO

1 + kFkO
=

(sin θF + sin θO) sin(λF − λO)

1 + cosφ
(191)

(Denotations θO,θF ,λO,λF ,φ: see section 6.).

p and q verify the following identity:
p2 + q2 = 1 (192)

Computation of p and q is done in subroutine LARCHE.

10.2 Tilting.

The coordinates of V
′

and V are linked by the following relationship:(
u
′

v
′

)
=

(
GNORDM GNORDL
−GNORDL GNORDM

)(
p q
−q p

)(
cosα − sinα
sinα cosα

)(
u
v

)
(193)

where:

cosα =
2c

A cos ΘO
[sin θp cos θO − sin θO cos θp cos(λO − λp)] (194)

sinα =
2c

A cos ΘO
[cos θp sin(λO − λp)] (195)

A = (1 + c2) + (1− c2)(sin θp sin θO + cos θp cos θO cos(λO − λp)) (196)

and where:

• c is the stretching coefficient.

• ΘO is the latitude on the computational sphere of the origin point O.

• (θp, λp) are the latitude and longitude on the geographical sphere of the stretching pole.

• p and q are computed like in the not tilted case (in subroutine LARCHE).

• cosα and sinα are also computed in subroutine LARCHE).

• (GNORDL,GNORDM) are the coordinates in the computational sphere of the unit vector directed
towards the true north, computed in subroutine SUGEM2.

10.3 Plane geometry (LAM models).

The curvature of the Earth is now taken into account in computing an operatorROF in the routine ELARCHE
instead of computing curvature terms. Expressions of p and q are different from the global model ones and are
not detailed here.

39

11 Computation of longitudes and latitudes on the
computational sphere.

For interpolations it is necessary to compute (ΘO,ΛO), latitude and longitude of the interpolation point O in
the computational sphere. The iterative algorithm allowing to find O gives (θO, λO), latitude and longitude in
the geographical sphere (more exactly sin θO, cos θO cosλO − λF and cos θO sinλO − λF where (θF , λF) are the
coordinates of the final point on the geographical sphere). Transform formulae giving (Θ,Λ) on the computational
sphere once knowing (θ, λ) on the geographical sphere are given by equations (197) to (199).

sin Θ =
(1− c2) + (1 + c2)(sin θp sin θ + cos θp cos θ cos(λ− λp))

A
(197)

cos Θ cos Λ =
2c(cos θp sin θ − sin θp cos θ cos(λ− λp))

A
(198)

cos Θ sin Λ =
2c cos θ sin(λ− λp)

A
(199)

where:

• A = (1 + c2) + (1− c2)(sin θp sin θ + cos θp cos θ cos(λ− λp))

• c is the stretching coefficient.

• (θp, λp) are the latitude and longitude on the geographical sphere of the stretching pole.

• Computation of Θ, Λ is done in subroutine LARCHE.

∗ Plane geometry (LAM models): The SL trajectory is already computed on the computational grid,
so equivalent transformation formulae from geographical space to computational space are useless.

12 Computation of η̇ at full levels.

∗ General expression: η̇ is needed to find the height of the medium and origin points.
η̇ can be written:

η̇ =

(
η̇
∂Π

∂η

)
∂η

∂Π
(200)

∗ Discretisation at full levels for LVERTFE=.F.:
(
η̇ ∂Π
∂η

)
is provided at half levels, and ∆η and

∆Π are provided at full levels. Discretisation of (200) is:

η̇l = 0.5

[(
η̇
∂Π

∂η

)
l

+

(
η̇
∂Π

∂η

)
l−1

]
[∆η]l
[∆Π]l

(201)

∗ Discretisation at full levels for LVERTFE=.T.:
(
η̇ ∂Π
∂η

)
is provided at full levels, and ∆η and

∆Π are provided at full levels. Discretisation of (200) is:

η̇l =

(
η̇
∂Π

∂η

)
l

[∆η]l
[∆Π]l

(202)

∗ Wood and Staniforth deep-layer NH-PDVD model: Π must be replaced by Π̃ in formulae
(200), (201) and (202).

40

13 Interpolations and weights computations.

13.1 Interpolation grid and weights (subroutine LASCAW).

13.1.1 Horizontal interpolation grid and weights for bi-linear interpolations.

∗ Definitions: A 16 points horizontal grid is defined as it is shown in figure 13.1, but only 4 of these 16
points are used in the interpolations. The interpolation point O (medium or origin point) is between B1, C1, B2

and C2. Λ and Θ are the longitudes and latitudes on the computational sphere. Linear weights are defined as
follows:

• zonal weights for latitudes 1 and 2:
ZDLO1 = (ΛO − ΛB1)/(ΛC1 − ΛB1) and ZDLO2 = (ΛO − ΛB2)/(ΛC2 − ΛB2).

• meridian weight: ZDLAT = (ΘO −ΘB1)/(ΘB2 −ΘB1)

∗ Computations:
• The weights ZDLO1 and ZDLO2 are computed then stored in the array PDLO.

• The weight ZDLAT is computed then stored in the array PDLAT.

• The memory address (in SL arrays) of the data concerning the points A1 and A2 are computed then stored
in the array KL0 or KLH0. Memory address of the data concerning the points B1, B2, C1 and C2 can
be easily computed in interpolations routines knowing these ones of A1 and A2.

• Interpolations use data of points B1, B2, C1 and C2.

13.1.2 Vertical interpolation grid and weights for vertical linear interpolations.

∗ Definitions: A 4 points vertical grid is defined as it is shown in figure 13.2, but only 2 of these 4 points are
used in the interpolations. The interpolation point O (medium or origin point) is between Tl+1 and Tl+2. The
vertical weight is defined by: ZDV ER = (ηO − ηTl+1)/(ηTl+2 − ηTl+1)

∗ Computations:
• The weight ZDV ER is computed then stored in the array PDVER.

• The level number l of Tl is stored in the array KLEV.

• Interpolations use data of points Tl+1 and Tl+2.

∗ Remark: The same formulae and computations are valid for half level data, simply replace the layer index
l by the half level index l.

13.1.3 Horizontal interpolation grid and weights for 12 points cubic interpolations.

∗ Definitions: A 16 points horizontal grid is defined as it is shown in figure 13.3, but only 12 of these 16
points are used in the interpolations. The interpolation point O (medium or origin point) is between B1, C1, B2

and C2. The following weights are defined as follows:

• zonal linear weights for latitudes 0, 1, 2, 3:

ZDLO0 = (ΛO − ΛB0)/(ΛC0 − ΛB0)

ZDLO1 = (ΛO − ΛB1)/(ΛC1 − ΛB1)

ZDLO2 = (ΛO − ΛB2)/(ΛC2 − ΛB2)

ZDLO3 = (ΛO − ΛB3)/(ΛC3 − ΛB3)

• zonal cubic weights for latitude 1:
ZCLO11 = f1(ZDLO1)

ZCLO12 = f2(ZDLO1)

ZCLO13 = f3(ZDLO1)

where:

* f1(α) = (α+ 1)(α− 2)(α− 1)/2

* f2(α) = −(α+ 1)(α− 2)α/2

* f3(α) = α(α− 1)(α+ 1)/6

• zonal cubic weights for latitude 2:
ZCLO21 = f1(ZDLO2)

ZCLO22 = f2(ZDLO2)

ZCLO23 = f3(ZDLO2)

41

• meridian cubic weights:

ZCLA1 = [(ΘO −ΘB0)(ΘO −ΘB2)(ΘO −ΘB3)]/[(ΘB1 −ΘB0)(ΘB1 −ΘB2)(ΘB1 −ΘB3)]

ZCLA2 = [(ΘO −ΘB0)(ΘO −ΘB1)(ΘO −ΘB3)]/[(ΘB2 −ΘB0)(ΘB2 −ΘB1)(ΘB2 −ΘB3)]

ZCLA3 = [(ΘO −ΘB0)(ΘO −ΘB1)(ΘO −ΘB2)]/[(ΘB3 −ΘB0)(ΘB3 −ΘB1)(ΘB3 −ΘB2)]

∗ Computations:
• The zonal linear weights ZDLO0, ZDLO1, ZDLO2 and ZDLO3 are computed then stored in the array

PDLO.

• The zonal cubic weights ZCLO11, ZCLO12, ZCLO13, ZCLO21, ZCLO22, ZCLO23 are computed then
stored in the array PCLO.

• The meridian cubic weights ZCLA1, ZCLA2 and ZCLA3 are computed then stored in the array PCLA.
One can notice that the denominators of ZCLA1, ZCLA2 and ZCLA3 do not depend on coordinates of
O and can be pre-computed in array RIPI.

• The memory address (in SL arrays) of the data concerning the points A0, A1, A2 and A3 are stored in the
array KL0 or KLH0. Once knowing these addresses one can easily retrieve the other points addresses in
the interpolations routines.

• Interpolations use data of the following 12 points B0, C0, A1, B1, C1, D1, A2, B2, C2, D2, B3 and C3.

∗ Extension to diffusive interpolations (SLHD): The way to take account of the diffusive
properties of interpolations has been redesigned, and now it is completely contained in the calculation of cubic
weights: we pass from conventional cubic interpolations to diffusive SLHD cubic interpolations simply by changing
the way of computing the cubic weights. The comprehensive way of computing the SLHD cubic weights is not
provided in this documentation (because it leads to rather tricky formulae), but details about the calculations
can be found in documentation (IDSLIF2) and looking in routine LASCAW (ELASCAW in LAM models).
We just give a sum-up of the way to compute the cubic weights.

• Meridian diffusive cubic weights:

ZCLA1slhd = ZCLA1 + ZINCRM1

ZCLA2slhd = ZCLA2 + ZINCRM2

ZCLA3slhd = ZCLA3 + ZINCRM3

where each of increments ZINCRM1, ZINCRM2 and ZINCRM3 is a linear combination of cubic
Lagrangian weights ZCLA1, ZCLA2 and ZCLA3 and diffusive weights (linear for LSLHD OLD=.T.,
quadratic otherwise).
Coefficients of these linear combinations depend on:

– Constants in time Csldw, describing Laplacian smoother.

– A pre-computed quantity κ (computed in GP KAPPA) depending on horizontal flow deformation,
ranging from 0 to 1; κ is equal to 1 if LSLHD STATIC=T. An alternate expression of κ is computed
in GP KAPPAT if different coefficients are asked for thermic variables.

– Lower and upper bounds (κmin and κmax) respectively stored in variables SLHDKMIN and
SLHDKMAX, used to construct limit interpolators (0 - cubic Lagrange, 1 - linear/quadratic; they
are not restricted to range 0-1).

• Zonal diffusive cubic weights for latitude number 1:

ZCLO11slhd = ZCLO11 + ZINCRL11

ZCLO12slhd = ZCLO12 + ZINCRL12

ZCLO13slhd = ZCLO13 + ZINCRL13

where each of increments ZINCRL11, ZINCRL12 and ZINCRL13 is a linear combination of cubic
Lagrangian weights ZCLO11, ZCLO12 and ZCLO13 and diffusive weights (linear for LSLHD OLD=.T.,
quadratic otherwise).
Coefficients of these linear combinations depend on:

– Constants like Cslhdepsh.

– κ (see above).

– Lower and upper bounds κmin and κmax (see above).

42

• Zonal diffusive cubic weights for latitude number 2:

ZCLO21slhd = ZCLO21 + ZINCRL21

ZCLO22slhd = ZCLO22 + ZINCRL22

ZCLO23slhd = ZCLO23 + ZINCRL23

where each of increments ZINCRL21, ZINCRL22 and ZINCRL23 is a linear combination of cubic
Lagrangian weights ZCLO21, ZCLO22 and ZCLO23 and diffusive weights (linear for LSLHD OLD=.T.,
quadratic otherwise).
Coefficients of these linear combinations depend on Cslddepsh, κ, κmin, κmax like the zonal weights for
latitude number 1.

Several options of SLHD smoothing are available, according to values of the keys LSLHDQUAD and
LSLHD OLD.

In part 13.2, cubic interpolations are written with conventional cubic weights: replace conventional cubic weights
by their SLHD counterpart for diffusive cubic interpolations.

∗ Extension to 3D-turbulence: not described in detail; additional cubic weights are computed if
L3DTURB=T.

13.1.4 Vertical interpolation grid and weights for vertical cubic 4 points
interpolations.

A 4 points vertical grid is defined as it is shown in figure 13.2. The interpolation point O (medium or origin
point) is between Tl+1 and Tl+2. The vertical weights are defined by:

ZCV E1 = [(ηO − ηTl)(ηO − ηTl+2)(ηO − ηTl+3)]/[(ηTl+1 − ηTl)(ηTl+1 − ηTl+2)(ηTl+1 − ηTl+3)]

ZCV E2 = [(ηO − ηTl)(ηO − ηTl+1)(ηO − ηTl+3)]/[(ηTl+2 − ηTl)(ηTl+2 − ηTl+1)(ηTl+2 − ηTl+3)]

ZCV E3 = [(ηO − ηTl)(ηO − ηTl+1)(ηO − ηTl+2)]/[(ηTl+3 − ηTl)(ηTl+3 − ηTl+1)(ηTl+3 − ηTl+2)]

∗ Computations:
• The vertical weights ZCV E1, ZCV E2 and ZCV E3 are computed then stored in the array PVINTW.

One can notice that the denominators of ZCV E1, ZCV E2 and ZCV E3 do not depend on coordinates of
O and can be pre-computed in the array VCUICO.

• The level number l of Tl is stored in the array KLEV.

• Interpolations use data of points Tl, Tl+1, Tl+2 and Tl+3.

∗ Remark: The same formulae and computations are valid for half level data, simply replace the layer index
l by the half level index l, and use array VCUICOH.

∗ Extension to diffusive interpolations (SLHD): Like we do for horizontal weights, the semi-
Lagrangian diffusion can be taken into account by modifying vertical cubic weights as follow:

ZCV E1slhd = ZCV E1 + ZINCRV 1

ZCV E2slhd = ZCV E2 + ZINCRV 2

ZCV E3slhd = ZCV E3 + ZINCRV 3

Expressions giving vertical increments ZINCRV 1 to ZINCRV 3 have a shape similar to those of horizontal
increments, and still depend on quantities like κ, κmin, κmax.

In part 13.2, cubic interpolations are written with conventional cubic weights: replace conventional cubic weights
by their SLHD counterpart for diffusive cubic interpolations.

13.1.5 Vertical interpolation grid and weights for vertical cubic Hermite
interpolations.

This part is valid only for interpolations of full level data.

A 4 points vertical grid is defined as it is shown in figure 13.2. The interpolation point O (medium or origin
point) is between Tl+1 and Tl+2.

First weights to compute vertical derivatives at layers l + 1 and l + 2 are computed. For a variable X, ∂X
∂η

is computed as close as possible as
(
η̇ ∂X
∂η

)
/η̇, but with additional approximations allowing to avoid horizontal

interpolations for term
(
η̇ ∂Π
∂η

)
.

43

• For layers other than the first or the last layer, discretisation follows:(
∂X

∂η

)
l+1

=
0.5(Xl+2 −Xl)

η
l+1
− η

l

(203)

• For layer l = 1, discretisation assumes that
(
η̇ ∂Π
∂η

)
l=0

= 0 (valid only if LRUBC=.F.); discretisation

follows: (
∂X

∂η

)
l=1

=
(Xl=2 −Xl=1)

η
l=1
− η

l=0

(204)

• For layer l = L, discretisation assumes that
(
η̇ ∂Π
∂η

)
l=L

= 0; discretisation follows:(
∂X

∂η

)
l=L

=
(Xl=L −Xl=L−1)

η
l=L
− η

l=L−1

(205)

The following weights are computed:

• For an interpolation point included between layers 2 and L− 1 (l ≥ 1 and l ≤ L− 3) :

V DERW11 = 0.5(ηl+2 − ηl+1)/(η
l+1
− η

l
)

V DERW21 = 0.5(ηl+2 − ηl+1)/(η
l+1
− η

l
)

V DERW12 = 0.5(ηl+2 − ηl+1)/(η
l+2
− η

l+1
)

V DERW22 = 0.5(ηl+2 − ηl+1)/(η
l+2
− η

l+1
)

• For an interpolation point included between layers 1 and 2:

V DERW11 = 0

V DERW21 = (ηl=2 − ηl=1)/(η
l=1
− η

l=0
)

V DERW12 = 0.5(ηl=2 − ηl=1)/(η
l=2
− η

l=1
)

V DERW22 = 0.5(ηl=2 − ηl=1)/(η
l=2
− η

l=1
)

such case is extended to the case where the interpolation point is between the top and the first layer; in
this case the interpolation becomes an extrapolation.

• For an interpolation point included between layers L− 1 and L:

V DERW11 = 0.5(ηl=L − ηl=L−1)/(η
l=L−1

− η
l=L−2

)

V DERW21 = 0.5(ηl=L − ηl=L−1)/(η
l=L−1

− η
l=L−2

)

V DERW12 = (ηl=L − ηl=L−1)/(η
l=L
− η

l=L−1
)

V DERW22 = 0

such case is extended to the case where the interpolation point is between the last layer and the ground;
in this case the interpolation becomes an extrapolation.

∗ Computations:
• The vertical weights V DERW11, V DERW21, V DERW12 and V DERW22 are computed then stored in

the array PVDERW.

• The weight ZDV ER is computed then stored in the array PDVER (see subsubsection 13.1.2).

• Functions fH1(ZDV ER) to fH4(ZDV ER) (involved in any Hermite cubic interpolation), where:

* fH1(α) = (1− α)2(1 + 2α)

* fH2(α) = α2(3− 2α)

* fH3(α) = α(1− α)2

* fH4(α) = −α2(1− α)

are computed and stored in array PHVW.

• The level number l of Tl is stored in the array KLEV.

• Interpolations use data of points Tl, Tl+1, Tl+2 and Tl+3.

44

13.1.6 Vertical interpolation grid and weights for vertical cubic spline
interpolations.

This part is valid only for interpolations of full level data.

A 4 points vertical grid is defined as it is shown in figure 13.2. The interpolation point O (medium or origin
point) is between Tl+1 and Tl+2.

∗ Computations:
• Vertical interpolation is the product of two operators. The first one uses all the layers and is done in

the unlagged part of the grid-point calculations by a routine VSPLTRANS and needs to compute top
and bottom values and vertical derivatives of the field to be interpolated, and also the inversion of a
tridiagonal matrix (routine TRIDIA); for this operation it is necessary to use some coefficients stored in
the arrays RVSPTRI and RVSPC and pre-computed in the set-up subroutine SUVSPLIP; the original
field is stored in the buffer P(X)L9 and the intermediate result after this first part is stored in the buffer
P(X)SPL9. The second part uses 4 points and is done in the interpolation routine itself.

• The vertical weights ZCV E0, ZCV E1, ZCV E2 and ZCV E3 necessary for the second part are computed
then stored in the array PVINTWS. Some part of the calculations can be pre-computed in the set-up
subroutine SUVSPLIP (array RFVV).

• The level number l of Tl is stored in the array KLEV.

• Interpolations use data of points Tl, Tl+1, Tl+2 and Tl+3, stored in the intermediate array P(X)SPL9.

13.1.7 Interpolation grid and weights for tri-linear interpolations.

A 64 points grid is defined as it is shown in figure 13.4, but only 8 of these 64 points are used in the
interpolations. The interpolation point O (medium or origin point) is between B1,l+1, C1,l+1, B2,l+1, C2,l+1,
B1,l+2, C1,l+2, B2,l+2 and C2,l+2. For the two levels l + 1 and l + 2 see subsubsection 13.1.1 corresponding
to bi-linear horizontal interpolations for weights computations. For weights needed for vertical interpolations
(ZDV ER) see subsubsection 13.1.2 corresponding to linear vertical interpolations.

• The memory address (in SL arrays) of the data concerning the points A0,l, A1,l, A2,l and A3,l is computed
then stored in the array KL0. Once knowing these addresses one can easily retrieve the other points
addresses in the interpolations routines.

• Interpolations use data of points B1,l+1, C1,l+1, B2,l+1, C2,l+1, B1,l+2, C1,l+2, B2,l+2 and C2,l+2.

∗ Remark: The same formulae and computations are valid for half level data, simply replace the layer index
l by the half level index l.

13.1.8 Interpolation grid and weights for 32 points interpolations.

A 64 points grid is defined as it is shown in figure 13.4, but only 32 (48 if vertical spline cubic interpolations)
of these 64 points are used in the interpolations. The interpolation point O (medium or origin point) is between
B1,l+1, C1,l+1, B2,l+1, C2,l+1, B1,l+2, C1,l+2, B2,l+2 and C2,l+2. For the two levels l and l + 3 see subsubsection
13.1.1 corresponding to bi-linear horizontal interpolations for weights computations. For the two levels l+ 1 and
l + 2 see subsubsection 13.1.3 corresponding to 12 points horizontal interpolations for weights computations.
For weights needed for vertical interpolations see subsubsection 13.1.4 for vertical cubic interpolations, see
subsubsection 13.1.5 for vertical Hermite cubic interpolations, see subsubsection 13.1.6 for vertical spline cubic
interpolations.

• The memory address (in SL arrays) of the data concerning the points A0,l, A1,l, A2,l and A3,l is computed
then stored in the array KL0. Once knowing these addresses one can easily retrieve the other points
addresses in the interpolations routines.

• Interpolations use data of the following 32 points B1,l, C1,l, B2,l, C2,l, B0,l+1, C0,l+1, A1,l+1, B1,l+1, C1,l+1,
D1,l+1, A2,l+1, B2,l+1, C2,l+1, D2,l+1, B3,l+1, C3,l+1, B0,l+2, C0,l+2, A1,l+2, B1,l+2, C1,l+2, D1,l+2, A2,l+2,
B2,l+2, C2,l+2, D2,l+2, B3,l+2, C3,l+2, B1,l+3, C1,l+3, B2,l+3 and C2,l+3.

∗ Remarks:
• The same formulae and computations are valid for half level data, simply replace the layer index l by the

half level index l.

• For vertical spline cubic interpolations a 12 points grid is used on each level l, l + 1, l + 2, l + 3 (total =
48 points used).

45

13.1.9 Horizontal interpolation grid and weights for 16 points linear least-square
fit interpolations.

A 16 points horizontal grid is defined as it is shown in figure 13.3. The interpolation point O (medium or origin
point) is between B1, C1, B2 and C2. The interpolation is replaced by a linear least-square fit minimisation of a
first order polynomial in each direction (first zonal interpolations, then meridian interpolations).
The weights used are the same ones as for the 4 points bilinear horizontal interpolation, but the zonal linear
weights are required for the 4 latitudes of the 16 points grid (ZDLO0, ZDLO1, ZDLO2, ZDLO3, ZDLAT).
The actual weights used in one direction (for example the meridian direction) are respectively: 0.4− 0.3ZDLAT ,
0.3− 0.1ZDLAT , 0.2 + 0.1ZDLAT , 0.1 + 0.3ZDLAT .

∗ Computations:
• The weights ZDLO0, ZDLO1, ZDLO2 and ZDLO3 are computed then stored in the array PDLO.

• The meridian weight ZDLAT is computed then stored in the array PDLAT.

• The memory address (in SL arrays) of the data concerning the points A0, A1, A2 and A3 are stored in the
array KL0 or KLH0. Once knowing these addresses one can easily retrieve the other points addresses in
the interpolations routines.

• Interpolations use data of the following 16 points A0, B0, C0, D0, A1, B1, C1, D1, A2, B2, C2, D2, A3,
B3, C3, D3.

13.1.10 Horizontal interpolation grid and weights for 32 points linear least-square
fit interpolations.

A 32 points grid is defined as it is shown in figure 13.4 where only the two intermediate layers are retained. The
interpolation point O (medium or origin point) is between B1,l+1, C1,l+1, B2,l+1, C2,l+1, B1,l+2, C1,l+2, B2,l+2

and C2,l+2. For the two levels l+1 and l+2 see subsubsection 13.1.9 corresponding to 16 points linear least-square
fit horizontal interpolations for weights computations. For weights needed for vertical interpolations, only the
linear weight ZDV ER is required; see subsubsection 13.1.2 for vertical linear interpolations.

• The memory address (in SL arrays) of the data concerning the points A1,l and A2,l is computed then stored
in the array KL0. Once knowing these addresses one can easily retrieve the other points addresses in the
interpolations routines.

• Interpolations use data of the following 32 points A0,l+1, B0,l+1, C0,l+1, D0,l+1, A1,l+1, B1,l+1, C1,l+1,
D1,l+1, A2,l+1, B2,l+1, C2,l+1, D2,l+1, A3,l+1, B3,l+1, C3,l+1, D3,l+1, A0,l+2, B0,l+2, C0,l+2, D0,l+2, A1,l+2,
B1,l+2, C1,l+2, D1,l+2, A2,l+2, B2,l+2, C2,l+2, D2,l+2, A3,l+2, B3,l+2, C3,l+2, D3,l+2.

∗ Remarks:
• The same formulae and computations are valid for half level data, simply replace the layer index l by the

half level index l.

13.1.11 Modified weights for COMAD interpolations.

Name COMAD stands for “continuous mapping around departure points”.

Any linear weight ZDL is modified as follows, to take account of convergence:

ZDLcomad = ZDL+ q(ZDL) ∗ (ZDL− 0.5) ∗ (STDDIS − 1)

where STDDIS is the stretching/shrinking deformation along interpolation direction:

STDDIS = 1 + (dV/dx)Dt

• STDDIS is then bounded by 0.0001 and 1.

• dV/dx is a generic denotation for zonal, meridian or vertical first-order wind derivative.

• q(ZDL) is by default 1 on the whole interval [0, 1]. To ensure continuity of interpolations, q(ZDL) can be
taken as a compact support C-∞ function, close to 1 on [0, 1], and matching q(0) = 0, q(0.5) = 1, q(1) = 0;
For example the following expression could be used for q:

q(ZDL) = exp(0.0000001(1− 1/(1− (2ZDL− 1)2)))

Modified high-order weights are computed using COMAD linear weights.

This scheme is described in more details in (Malardel and Ricard, 2015).

13.1.12 Plane geometry (LAM models).

All previous formulae for weight computation can be used for an irregular latitude spacing and a different
number of points on each longitude. The LAM model grid has a horizontal regular spacing, so the previous
formulae can be simplified and array RIPI is no longer necessary. ELASCAW is called instead of LASCAW
and is cheaper in CPU time.

46

13.2 Interpolations.

13.2.1 Bilinear interpolation (subroutine LAIDLI).

See figure 13.1 and subsubsection 13.1.1 for definition of ZDLO1, ZDLO2, ZDLAT and points B1, C1, B2

and C2.

For a quantity X, are computed successively:

• a linear interpolation on the longitude number 1: X1 = XB1 + ZDLO1(XC1 −XB1).

• a linear interpolation on the longitude number 2: X2 = XB2 + ZDLO2(XC2 −XB2).

• a meridian linear interpolation: Xinterpolated = X1 + ZDLAT (X2 −X1).

13.2.2 Tri-linear interpolation (subroutine LAITLI).

For layers l + 1 and l + 2 (see figure 13.4) bilinear horizontal interpolations give two interpolated values Xl+1

and Xl+2 (see subsubsection 13.2.1). Then the final interpolated value is given by the following expression:

Xinterpolated = Xl+1 + ZDV ER(Xl+2 −Xl+1)

∗ Remark: The same formulae and computations are valid for half level data, simply replace the layer index
l by the half level index l.

13.2.3 Horizontal 12 points interpolation (subroutine LAIDDI).

See figure 13.3 and subsubsection 13.1.3 for definition of ZDLO0, ZDLO1, ZDLO2, ZDLO3, ZCLA1, ZCLA2
and ZCLA3 and points B0, C0, A1, B1, C1, D1, A2, B2, C2, D2, B3 and C3.

For a quantity X, are computed successively:

• a linear interpolation on the longitude number 0:
X0 = XB0 + ZDLO0(XC0 −XB0).

• a cubic 4 points interpolation on the longitude number 1:
X1 = XA1 + ZCLO11(XB1 −XA1) + ZCLO12(XC1 −XA1) + ZCLO13(XD1 −XA1).

• a cubic 4 points interpolation on the longitude number 2:
X2 = XA2 + ZCLO21(XB2 −XA2) + ZCLO22(XC2 −XA2) + ZCLO23(XD2 −XA2).

• a linear interpolation on the longitude number 3:
X3 = XB3 + ZDLO3(XC3 −XB3).

• a meridian cubic 4 points interpolation:
Xinterpolated = X0 + ZCLA1(X1 −X0) + ZCLA2(X2 −X0) + ZCLA3(X3 −X0).

There is a shape-preserving option: after cubic 4 points interpolations on longitudes number 1 and 2,
X1 is bounded between XB1 , and XC1 and X2 is bounded between XB2 and XC2 ; after meridian cubic
4 points interpolation Xinterpolated is bounded between X1 and X2. Use of switches LQMW (momentum
equation), LQMT (temperature equation), LQMP (continuity equation), LQMSPD (pressure departure
variable equation), LQMSVD (vertical divergence equation), Y[X] NL%LQM for GFL variables allow to use
shape-preserving option.

13.2.4 Cubic 4 points vertical interpolation.

See figure 13.2 and subsubsection 13.1.4 for definition of ZCV E1, ZCV E2 and ZCV E3. The cubic 4 points
vertical interpolation gives the final interpolated value:

Xinterpolated = Xl + ZCV E1(Xl+1 −Xl) + ZCV E2(Xl+2 −Xl) + ZCV E3(Xl+3 −Xl)

∗ Remark: The same formulae and computations are valid for half level data, simply replace the layer index
l by the half level index l.

13.2.5 Cubic Hermite vertical interpolation.

This part is valid for interpolations of full level variables. See figure 13.2 and subsubsection 13.1.5 for definition
of V DERW11, V DERW21, V DERW12 and V DERW22. See subsubsection 13.1.2 for definition of ZDV ER.
See subsubsection 13.1.5 for definition of functions fH1 to fH4. The cubic Hermite vertical interpolation gives the
final interpolated value:

Xinterpolated = fH1(ZDV ER)Xl+1 + fH2(ZDV ER)Xl+2

+fH3(ZDV ER)(V DERW11(Xl+1 −Xl) + V DERW21(Xl+2 −Xl+1))

+fH4(ZDV ER)(V DERW12(Xl+2 −Xl+1) + V DERW22(Xl+3 −Xl+2))

47

13.2.6 Spline cubic 4 points vertical interpolation.

This part is valid for interpolations of full level variables. See figure 13.2 and subsubsection 13.1.6 for definition
of ZCV E0, ZCV E1, ZCV E2 and ZCV E3. The spline cubic 4 points vertical interpolation gives the final
interpolated value:

Xinterpolated = ZCV E0 ∗XRPl + ZCV E1 ∗XRPl+1 + ZCV E2 ∗XRPl+2 + ZCV E3 ∗XRPl+3

where XRP is the re-profiled version of X available in P(X)SPL9. A monotonic constraint can be added,
bounding Xinterpolated between Xl+1 and Xl+2.

13.2.7 32 points 3D interpolation with vertical cubic 4 points interpolation
(subroutine LAITRI).

For layers l and l + 3 (see figure 13.4) bilinear horizontal interpolations give two interpolated values Xl and
Xl+3 (see subsubsection 13.2.1). For layers l + 1 and l + 2 (see figure 13.4) 12 points horizontal interpolations
give two interpolated values Xl+1 and Xl+2 (see subsubsection 13.2.3). The final interpolated value Xinterpolated

is a cubic 4 points vertical interpolation of Xl, Xl+1, Xl+2 and Xl+3 (see subsubsection 13.2.4).

There are shape-preserving options for horizontal or both horizontal and vertical interpolations.
Use of switches LQMW (momentum equation), LQMT (temperature equation), LQMP (continuity equation),
LQMSPD (pressure departure variable equation), LQMSVD (vertical divergence equation), Y[X] NL%LQM
(GFL equations), allows to use shape-preserving option for both horizontal and vertical interpolations.
Use of switches LQMHW (momentum equation), LQMHT (temperature equation), LQMHP (continuity
equation), LQMHSPD (pressure departure variable equation), LQMHSVD (vertical divergence equation),
Y[X] NL%LQMH (GFL equations), allows to use shape-preserving option for horizontal interpolations.

∗ Remark: The same formulae and computations are valid for half level data, simply replace the layer index
l by the half level index l.

13.2.8 32 points 3D interpolation with vertical cubic Hermite interpolation
(subroutine LAIHVT).

This part is valid for interpolations of full level variables. For layers l and l + 3 (see figure 13.4) bilinear
horizontal interpolations give two interpolated values Xl and Xl+3 (see subsubsection 13.2.1). For layers l + 1
and l + 2 (see figure 13.4) 12 points horizontal interpolations give two interpolated values Xl+1 and Xl+2 (see
subsubsection 13.2.3). The final interpolated value Xinterpolated is a cubic Hermite vertical interpolation of Xl,
Xl+1, Xl+2 and Xl+3 (see subsubsection 13.2.5).

There are shape-preserving options for horizontal or both horizontal and vertical interpolations.
Use of switch Y[X] NL%LQM (GFL equations), allows to use shape-preserving option for both horizontal and
vertical interpolations.
Use of switch Y[X] NL%LQMH (GFL equations), allows to use shape-preserving option for horizontal
interpolations.

13.2.9 48 points 3D interpolation with vertical cubic spline interpolation
(subroutine LAITVSPCQM).

This part is valid for interpolations of full level variables. This type of interpolation is activated for GFL variables
when Y[X] NL%LVSPLIP=.T. in NAMGFL (currently for ozone only). Contrary to what is done for the
other 32 points interpolations routines, the vertical interpolations are performed first. 12 vertical interpolations
are done on the verticals matching the following points: B0,l+1, C0,l+1, A1,l+1, B1,l+1, C1,l+1, D1,l+1, A2,l+1,
B2,l+1, C2,l+1, D2,l+1, B3,l+1, C3,l+1. A monotonic constraint is added for the lower levels (currently the 9 lower
levels). The projection horizontal plane on the level of the interpolation point provides a 12-points grid. A 12
points interpolation is done on this projection (see part 13.2.3). A final monotonic constraint is added: the
interpolated value of X is bounded between the value of X at the points B1,l+1, C1,l+1, B2,l+1, C2,l+1, B1,l+2,
C1,l+2, B2,l+2, C2,l+2, and the overshoots/undershoots found are dispatched on upper levels to ensure as possible
it can be done conservation properties.

13.2.10 Horizontal 16 points linear least-square fit interpolation.

See figure 13.3 and subsubsection 13.1.9 for definition of ZDLO0, ZDLO1, ZDLO2, ZDLO3, ZDLAT and
points A0, B0, C0, D0, A1, B1, C1, D1, A2, B2, C2, D2, A3, B3, C3, D3. Let us define:

• f1(α) = 0.4− 0.3α

• f2(α) = 0.3− 0.1α

• f3(α) = 0.2 + 0.1α

• f4(α) = 0.1 + 0.3α

48

For a quantity X, are computed successively:

• a linear least-square fit 4 points interpolation on the longitude number lon for lon = 0, 1, 2, 3:
Xlon = +f1(ZDLOlon)XAlon + f2(ZDLOlon)XBlon + f3(ZDLOlon)XClon + f4(ZDLOlon)XDlon .

• a meridian linear least-square fit 4 points interpolation:
Xinterpolated = +f1(ZDLAT)X0 + f2(ZDLAT)X1 + f3(ZDLAT)X2 + f4(ZDLAT)X3.

13.2.11 32 points 3D interpolation with linear least-square fit horizontal
interpolations and vertical linear interpolations (subroutine LAISMOO).

For layers l + 1 and l + 2 (see figure 13.4) 16 points linear least-square fit horizontal interpolations give two
interpolated values Xl+1 and Xl+2 (see subsubsection 13.2.10). The final interpolated value is then given by the
following expression:

Xinterpolated = Xl+1 + ZDV ER(Xl+2 −Xl+1)

∗ Remark: In the current usage of this interpolation (for η̇ in the upper stratosphere) there is an additional
smoothing done in routine LAISMOA before the interpolation by LAISMOO.

∗ For more information: See the internal paper (IDSVTSM).

13.3 Code structures to store weights.
Two structures have been created in module intdynsl mod.F90:

• structure TLSCAW for linear weights.

• structure TRSCAW for non-linear weights.

49

?

-

-

u

u

u

u

u

u u u uA3 B3 C3 D3

u u u uA2 B2 C2 D2

u u u uA1 B1 C1 D1

u u u uA0 B0 C0 D0

O

lat 3

lat 2

lat 1

lat 0

y

y = 1

y = ZDLA

y = 0

x2 = ZDLO2

x1 = ZDLO1

x2

x1

x1(B1) = x2(B2) = 0; x1(C1) = x2(C2) = 1.

Figure 13.1: Interpolation horizontal grid for bilinear interpolations.

50

?

u

u
u
u

u

level l+3

level l+2

level l+1

level l

O

z

Tl+3

z = 1

Tl+2

z = ZDV ER

z = 0

Tl+1

Tl

Figure 13.2: Interpolation vertical grid for linear and cubic vertical interpolations.

51

?

-

-

-

-

u

u

u

u

u

u u u uA3 B3 C3 D3

u u u uA2 B2 C2 D2

u u u uA1 B1 C1 D1

u u u uA0 B0 C0 D0

O

lat 3

lat 2

lat 1

lat 0

y y = −ZDD

y = −ZDC

y = 0

y = −ZDB

y = −ZDA

x2 = ZDLO3

x2 = ZDLO2

x1 = ZDLO1

x2 = ZDLO0

x3

x2

x1

x0

x0(B0) = x1(B1) = x2(B2) = x3(B3) = 0; x0(C0) = x1(C1) = x2(C2) = x3(C3) = 1.

Figure 13.3: Interpolation horizontal grid for 12 points interpolations.

52

�
�
�
�
�
�
��

�
�
�
�
�
�
��

level l + 3b b b bb r r bb r r bb b b b
A3,l+3 B3,l+3 C3,l+3 D3,l+3

A2,l+3 B2,l+3 C2,l+3 D2,l+3

A1,l+3 B1,l+3 C1,l+3 D1,l+3

A0,l+3 B0,l+3 C0,l+3 D0,l+3

�
�
�
�
�
�
��

�
�
�
�
�
�
��

level l + 2b r r br r r rr r r rb r r b
A3,l+2 B3,l+2 C3,l+2 D3,l+2

A2,l+2 B2,l+2 C2,l+2 D2,l+2

A1,l+2 B1,l+2 C1,l+2 D1,l+2

A0,l+2 B0,l+2 C0,l+2 D0,l+2

�
�
�
�
�
�
��

�
�
�
�
�
�
��

level l + 1b r r br r r rr r r rb r r b
A3,l+1 B3,l+1 C3,l+1 D3,l+1

A2,l+1 B2,l+1 C2,l+1 D2,l+1

A1,l+1 B1,l+1 C1,l+1 D1,l+1

A0,l+1 B0,l+1 C0,l+1 D0,l+1

�
�
�
�
�
�
��

�
�
�
�
�
�
��

level lb b b bb r r bb r r bb b b b
A3,l B3,l C3,l D3,l

A2,l B2,l C2,l D2,l

A1,l B1,l C1,l D1,l

A0,l B0,l C0,l D0,l

r

r

r

r

rO

r – points used in 32 points interpolations.b – points not used in 32 points interpolations .

Figure 13.4: Interpolation grid for tri-linear and 32 points interpolations.

53

14 Lateral boundary conditions.

14.1 Extra longitudes.

Let us denote by LX the number of longitudes (in the array NLOENG for each latitude in the code). For a
quantity X, let us define:

X(longitude number 0)=X(longitude number LX).

X(longitude number LX+1)=X(longitude number 1).

X(longitude number LX+2)=X(longitude number 2).

These extra computations are necessary for all interpolated fields. For distributed memory computations are done
when making the halo (routine SLCOMM+SLCOMM2A which exchange data with other processors).

14.2 Extra latitudes.

Let us denote by lx the number of latitudes (NDGLG in the code): latitudes number -1,0,lx + 1,lx + 2 are
respectively the symmetric of latitudes number 2,1,lx,lx − 1. These extra computations are necessary for all
interpolated fields. For distributed memory computations are done in SLEXTPOL.

14.3 Vertical boundary conditions in the 3D model.

∗ Vertical linear interpolations for layer variables at the medium point: The medium
point has a vertical coordinate always included between η

l=0
and η

l=L
in case of vertical interpolating scheme.

Therefore no extrapolated values are needed.

∗ Vertical cubic 4 points interpolations for layer variables at the origin point: When
the origin point is above the layer number 2 (resp. below the layer number L − 1), the vertical cubic 4 points
interpolations using data of the layers number 1, 2, 3 (resp. L− 2, L− 1, L) and the extra-layer number 0 (resp.
L + 1) are degenerated into linear interpolations between the layers number 1 and 2 (resp. L − 1 and L). The
extrapolated values at the extra-layer number 0 (resp. L+1) are always multiplied by a weight equal to 0 and are
set to 0 in subroutine LAVABO. This algorithm extends itself to the case where the origin point is between the
top (resp. surface) and the layer number 1 (resp. L), but in this case the interpolation using data of the layers
number 1 and 2 (resp. L− 1 and L) becomes an extrapolation.

∗ Vertical cubic 4 points interpolations for half level variables at the origin point:
When the origin point is above the half level number 1 (resp. L − 1), the vertical cubic 4 points interpolations
using data of the half levels number -1, 0, 1, 2 (resp. L − 2, L − 1, L and L + 1) are degenerated into linear
interpolations between the half levels numbers 0 and 1 (resp. L− 1 and L).

∗ Vertical cubic Hermite interpolations for layer variables at the origin point: When
the origin point is above the layer number 2 (resp. L − 1), interpolation is still a vertical cubic Hermite one,
computation of vertical derivatives is modified for layer number 1 (resp. L). This algorithm extends itself to the
case where the origin point is between the top (resp. ground) and the layer number 1 (resp. L), but in this case
the interpolation using data of the layers number 1 and 2 (resp. L − 1 and L) becomes an extrapolation. For
more details see subsubsection 13.1.5.

∗ Vertical cubic spline interpolations for layer variables at the origin point: Some
top and bottom values are computed (the algorithm of computation will be provided in a later version of this
documentation) and the vertical interpolation always uses 4 points.

54

15 2D shallow water and 3D models organigrammes.

15.1 Interpolation and weight calculation routines.

∗ Weights:
• LASCAW: computes weights and interpolation grid.

• LASCAW CLO: computes zonal high-order weights (and also meridian high-order weights in LAM
models).

• LASCAW CLA: computes meridian high-order weights (spherical geometry).

• LASCAW VINTW: computes vertical high-order interpolation weights.

∗ Bilinear and trilinear interpolations:
• LAIDLI: bi-linear 3D interpolations.

• LAITLI: tri-linear 3D interpolations.

∗ High-order interpolations:
• LAIDDI: 12 points horizontal interpolation.

• LAITRI: 32 points 3D interpolations, with vertical cubic 4 points interpolations. Is also used for SLHD
diffusive interpolations (with modified pre-computed weights).

• LAIHVT: 32 points 3D interpolations, with vertical cubic Hermite interpolations.

• LAITVSPCQM: Shape-preserving routine for 48 points 3D interpolations, with 12 points horizontal
interpolations and vertical cubic spline interpolations.

• LAITRIQM3D: 32 points 3D interpolations with 3D quasi-monotonic limiters.

∗ Other routines:
• LAISMOO: 32 points interpolation by linear least-square fit.

• LAISMOA: preliminary smoothing applied on quantities interpolated by the routine LAISMOO.

• LAITRE GFL: interface routine for interpolations done on GFL variables.

• LAITRE GMV: interface routine for interpolations done on GMV variables.

• LAQMLIMITER: a posteriori quasi-monotone limiter (called after LAITRI).

15.2 Routines specific to 2D organigramme.

• LACDYNSHW computation of the SL quantities, and semi-implicit scheme quantities.

• CPG2LAG: lagged grid-point computations; manages interpolations and computation of t+∆t quantities.

• LARMES2: computation of medium point by an iterative algorithm for 2D model.

• LAINOR2: computation of origin point.

• LARCIN2: manages computation of medium/origin point coordinates (on the computational sphere),
weights for interpolations, and interpolations.

• LARCHE2: computes latitude, longitude of the medium/origin point coordinates on the computational
sphere, p and q of the R operator matrix.

15.3 Routines used in 3D organigramme.

• GP MODEL: interface for grid-point calculations.

• LACONE: computes analytically (2Ω ∧ ak).

• CPG: unlagged adiabatic calculations.

• CPG DRV: driver for unlagged adiabatic calculations.

• CPG GP, CPG DIA, CPG DYN, CPG END: different parts of the grid-point calculations (resp.
beginning including call to some GP.. routines, diagnostics, unlagged dynamics, end).

• EC PHYS: interface for ECMWF physics.

• EC PHYS LSLPHY: interface for ECMWF split physics.

• GPADDSLPHY: adds the physical tendencies to the interpolation buffers for ECMWF physics if split
physics.

55

• GP KAPPA: computes the deformation and κ∗ required in the SLHD interpolations. Called only if
LSLHD=.T. .

• GP KAPPAT: alternate way to compute κ∗ for thermic variables.

• GP STDDIS: computes the stretching/shrinking deformation STDDIS required in the COMAD
interpolations. Called only if LCOMAD=.T. .

• LACDYN: computation of the SL quantities, and semi-implicit scheme quantities.

• LARCHE: computes latitude, longitude of the medium/origin point coordinates on the computational
sphere, p and q of the R operator matrix. ELARCHE is called instead of LARCHE for plane geometry.

• LASURE: some initialisations.

• LASSIE: computation of linear terms for hydrostatic equations.

• LANHSI: computation of linear terms for non-hydrostatic equations.

• LANHSIB: fills the P[X]SI arrays in the NH model when LGWADV=.T. .

• LAVENT: computation of quantities to be interpolated (wind) for trajectory research.

• LATTEX: computation of quantities to be interpolated for 3D variables equations (GFL and GMV).

• LATTEX TNT: called by LATTEX for a SL3TL scheme, part of the code which is the same for all
variables.

• LATTEX DNT: called by LATTEX for a SL2TL scheme, part of the code which is the same for all
variables.

• LATTE KAPPA: stores κ∗ in the buffer “SLBUF2”. Called only if LSLHD=.T. .

• LATTE STDDIS: stores STTDIS in the buffer “SLBUF2”. Called only if LCOMAD=.T. .

• LATTE BBC: computes the additional quantities to be stored in the buffers “SLBUF1” and “SLBUF2”
for the option LRDBBC=.T. .

• LATTES: computation of quantities to be interpolated for 2D variables equations (currently continuity
equation).

• LAVABO: vertical extrapolations (boundary conditions).

• CPGLAG: lagged adiabatic calculations other than semi-Lagrangian interpolations.

• CALL SL: manages interpolations and computation of t+ ∆t quantities.

• LAPINEA: manages the research of SL-trajectory.

• LAPINEB: manages the interpolated part of the equations RHS.

• LARMES: computation of medium point by an iterative algorithm for 3D model. Computes also the
origin point. ELARMES is called instead of LARMES for plane geometry.

• LARCINA: manages computation of medium/origin point coordinates (on the computational sphere),
weights for interpolations, and interpolations needed in the SL-trajectory research; apply to interpolations
on layer data.

• LARCINB: manages interpolations needed at the origin point in the equations RHS; apply to
interpolations on layer data.

• LARCINHA: the same as LARCINA but for half level data.

• LARCINHB: the same as LARCINB but for half level data.

• GNHGW2SVD: manages the conversions from gw towards d in the non-hydrostatic model when the key
LGWADV is put to .T. .

• MF PHYS PREP: preparation of input data for MF PHYS.

• MF PHYS: interface for MF physics.

• VSPLTRANS: re-profiling of the quantity to be interpolated prior to vertical cubic spline interpolations
(calls TRIDIA to invert tridiagonal linear systems).

• VDIFLCZ: interface for Buizza simplified physics.

• VERINT: does vertical integrals for vertical finite elements discretisation.

56

15.4 Set-up routines.

• SUCT0: 0-level control setup routine.

• SUDYNA: sets-up first part of dynamics.

• SUDYN: sets-up second part of dynamics.

• SUINTDYN: sets-up some structures used in the dynamics.

• SUINTDYNSL: sets-up some structures used in the dynamics under CALL SL.

• SUSLB: initialise pointers of SL buffers and other quantities used in the SL scheme.

• SUSLB2: cf. SUSLB for 2D models.

• SUSC2B: computes different dimensions for SL buffers.

• SLCSET+SLRSET: computes some distributed memory environment for interpolations buffers.

• SUSLAD1: initialise data structures for SL adjoint.

• SUSLAD2: initialise constant arrays for SL adjoint interpolation.

• SUSLAD3: optimise halo for SL adjoint interpolation.

• SUHSLMER: compute intermediate quantities used in high order horizontal interpolations.

• SUVERT: computes some variables linked to vertical geometry.

• SUVERTFE: computes vertical operators used for VFE discretisation.

• SUVSPLIP: computes some variables linked to cubic spline vertical interpolations.

• SUVSLETA: fills YRVSLETA (intermediate quantities used in high order vertical interpolations).

15.5 Main features of organigramme for setup.

Only the most important features for SL scheme are described.

CNT0 ->
* SU0YOMA ->

- SUCT0
- SUDYNA
- SUINTDYN
- SUGEOMETRY ->
* geometry setup
* SUINTERPOLATOR -> SUVSPLIP, SUVSLETA, SUHSLMER

* SU0YOMB ->
- SUDYN ->
* SUINTDYNSL

- SUSC2B ->
* SUSLB or SUSLB2
* SLCSET -> SLRSET
* SUSLAD1
* SUSLAD2

15.6 Organigramme for 2D model.

STEPO -> SCAN2M -> GP_MODEL_HEAP or GP_MODEL_STACK -> GP_MODEL ->
* CPG2 ->
- GPTF2
- LACDYNSHW
- WRSLTRAJ2

* SLCOMM and SLEXTPOL
* CPG2LAG ->
- LADINE ->

* LARMES2 -> LARCIN2 ->
- LARCHE2 + LASCAW (ELASCAW in LAM models)

-> LASCAW_CLA, LASCAW_CLO
- LAIDDI

* LAINOR2 -> LARCIN2 ->
- LARCHE2 + LASCAW (ELASCAW in LAM models)

-> LASCAW_CLA, LASCAW_CLO
- LAIDDI

* LACONE
* LARCHE2

- GPTF1

57

15.7 Organigramme for 3D model.

∗ Organigramme under STEPO.

STEPO -> SCAN2M -> GP_MODEL_HEAP or GP_MODEL_STACK -> GP_MODEL ->
* CPG_DRV -> CPG ->
- CPG_GP (see documentation (IDEUL) for details)
- GPINIDDH
- EC_PHYS_LSLPHY (split ECMWF physics) ->

* GPADDSLPHY
- MF_PHYS_PREP
- MF_PHYS (unlagged MF physics, organigramme not detailed)
- CPG_DIA -> (routines for some diagnostics, organigramme not detailed)
- CPDYSLDIA -> (semi-Lagrangian diagnostics)
- CPG_DYN ->

* LACDYN ->
- LASURE
- LASSIE (-> SITNU, SIGAM, GPRCP) or LANHSI (-> SIPTP, SIDD, SISEVE, GPRCP)
- LAVENT
- LATTEX ->

* LATTEX_TNT or LATTEX_DNT
* VSPLTRANS -> TRIDIA

- LATTE_KAPPA -> GP_KAPPA and GP_KAPPAT
- LATTE_STDDIS -> GP_STDDIS
- LATTE_BBC
- LATTES -> VERINT
- LAVABO
- LANHSI and LANHSIB for NH and LGWADV=T

* VDIFLCZ (see documentation (IDEUL) for details)
- CPG_END -> (see documentation (IDEUL) for details)

* CALL_SL_HEAP or CALL_SL_STACK -> CALL_SL ->
- SLCOMM and SLEXTPOL (global model) or ESLEXTPOL (LAM model)
- LAPINEA ->

* LARMES (ELARMES in LAM models) ->
- LARCINA (see below) + LAISMOA
- LARCINA ->

- LARCHE + LASCAW (ELARCHE + ELASCAW in LAM models)
-> LASCAW_CLA, LASCAW_CLO, LASCAW_VINTW

- LAITLI
- LAISMOO

* LARCINA ->
- LARCHE + LASCAW (ELARCHE + ELASCAW in LAM models)

-> LASCAW_CLA, LASCAW_CLO, LASCAW_VINTW
* LARCINHA ->
- LARCHE + LASCAW (ELASCAW in LAM models)

-> LASCAW_CLA, LASCAW_CLO, LASCAW_VINTW
- SLCOMM2A and SLEXTPOL (global model) or ESLEXTPOL (LAM model)

if on-demand SL communications asked for
- LAPINEB ->

* LARCINB ->
- LAITRE_GMV -> LAITRI
- LAITRE_GFL -> LAITRI, LAITHVT, LAITVSPCQM, LAQMLIMITER, LAITRIQM3D
- LAITLI
- LAIDDI

* LARCINHB ->
- LAITRE_GMV -> LAITRI
- LAITLI

* some GP... and GNH... routines.
* LARCHE
* LACONE
* VERINT
* GNHGW2SVD for NH and LGWADV=T

* CPGLAG (organigramme not detailed, see documentation (IDEUL))
* EC_PHYS_DRV (organigramme not detailed)

58

16 Tangent linear and adjoint codes.

16.1 3D hydrostatic model.

16.1.1 Available options.

Code is available for the following subset of options in the cycle 44 of ARPEGE/IFS:

• Two-time level semi-Lagrangian scheme.

• NVLAG=3, NWLAG=3, NTLAG=3.

• Non monotonic horizontal interpolations.

• LSLPHY=.F. .

• All Y[X] NL%LHV=.F. .

• All Y[X] NL%LVSPLIP=.F. .

• LCOMAD=.F. .

16.1.2 Basics about TL code.

The coded linearised formulae will not be detailed in this documentation: the tangent linear code is taken line
by line, thus it depend on the way the direct code is written. The main features of the tangent linear code are
roughly the following ones:

• the tangent code looks like the direct code but with a differentiated shape. For example if the direct code
contains an instruction like

Z = XY

the tangent linear code will contain at the same place the instruction

Z = XY5 +X5Y

using some trajectory variables subscripted by index “5”.

• There is additionally a “trajectory” code which is a copy of the direct code, but applied to the trajectory
variables subscripted by index “5”.

• For the interpolation grid indices that appear in the weight computation routine (LASCAWTL) and the
interpolation routines, there is only one version and the names of variables are not subscripted by index
“5”. The “trajectory”-coordinates (subscripted by index “5”.) are used to compute the indices of the
interpolation grid.

• Concerning the interpolation buffers “PB1...” there are several ways to deal with them, according to
the value of variable NTRSLTYPE. The ADTL-trajectory is stored in the array TRAJEC%SLAG.
For NTRSLTYPE=2 (the default value and the only value coded in the 3D model), some quantities
(essentially some quantities of buffer PB1...) are stored in the direct model and read in the TL model, so
their recomputation is not necessary in the TL model.

59

16.1.3 Organigramme of TL code.

∗ TL code organigramme under SCAN2MTL:

SCAN2MTL -> GP_MODEL_TL ->
* CPG_DRV_TL -> CPGTL ->
- Allocations
- CPG5_GP (for trajectory) ->

* some routines reading trajectory (RDPHTRAJM)
* GPMPFC5, GP_SPV (for trajectory)
* some GP.. routines computing intermediate grid-point quantities for trajectories.

- CPG_GP_TL ->
* GPTF2
* GPMPFC (for model variables)
* some GP..TL routines computing intermediate grid-point quantities for model variables.
* GPINISLB

- MF_PHYSTL (TL of simplified non lagged physics)
- CPG_DYN_TL ->

* LACDYNTL ->
- LASURE
- LASSIETL
- LAVENTTL
- LATTEXTL -> LATTEX_DNT
- LATTE_KAPPATL -> GP_KAPPATL and GP_KAPPATTL
- LATTESTL -> VERINT
- LAVABOTL

* VDIFLCZTL (organigramme not detailed)
- CPG_END_TL ->

* GPMPFC (for model variables)
- GPMPFC5 (for trajectory)
- Deallocations

* CALL_SL_TL ->
- SLCOMM and SLEXTPOL (DM code only)
- LAPINEA5 ->

* LARMES5 (ELARMES5 in LAM models) -> LARCINA ->
- LARCHE + LASCAW (ELARCHE + ELASCAW in LAM models)

-> LASCAW_CLA, LASCAW_CLO, LASCAW_VINTW
- LAITLI

* LARCINA ->
- LARCHE + LASCAW (ELARCHE + ELASCAW in LAM models)

-> LASCAW_CLA, LASCAW_CLO, LASCAW_VINTW
- LAPINEATL ->

* LARMESTL (ELARMESTL in LAM models) -> LARCINATL ->
- LARCHETL (ELARCHETL in LAM models)
- LASCAWTL (ELASCAWTL in LAM models)

-> LASCAW_CLA_TL, LASCAW_CLO_TL, LASCAW_VINTW_TL
- LAITLITL

* LARCINATL ->
- LARCHETL (ELARCHETL in LAM models)
- LASCAWTL (ELASCAWTL in LAM models)

-> LASCAW_CLA_TL, LASCAW_CLO_TL, LASCAW_VINTW_TL
- SLCOMM2A and SLEXTPOL (DM code only and on-demand SL communications asked for)
- LAPINEBTL ->

* LARCINBTL ->
- LAITRE_GMV_TL -> LAITRITL
- LAITRE_GFL_TL -> LAITRITL, LAITRIQM3DTL
- LAITLITL
- LAIDDITL

* VERINT
* LACONETL
* LARCHETL (ELARCHETL in LAM models)
* VERINT

* EC_PHYS_TL (organigramme not detailed)
* CPGLAGTL -> (organigramme not detailed, see documentation (IDEUL))

60

∗ Additional remarks:

• For subroutines, the name of which ends by “5”, see their corresponding direct code routines, the
explanation of which is given in the section describing the direct code. These routines compute the
trajectory which is required in the TL calculations for some quantities, the trajectory of which is not
computed in the direct code.

• For subroutines, the name of which ends by “TL”, see their corresponding direct code routines, the
explanation of which is given in the section describing the direct code.

• LATTEXTL and LATTESTL: quantities P(X)T15 are not computed, excepted in the case
L2TLFF=.T. where PUT15 and PVT15 are computed. PB1...-buffers are directly recovered by a
memory transfer under CPGTL if NTRSLTYPE=2.

• LARMESTL: computation of the semi-Lagrangian displacement yields a duplication of the code into
a “differentiated code” and a “ADTL-trajectory code” (for example an instruction like Z = XY yields
the “differentiated code” Z = XY5 + X5Y and the “ADTL-trajectory code” Z5 = X5Y5). This is the
reason for which one can find in routine LARCHETL two sets of coordinates (PLON,PLAT) and
(PLON5,PLAT5) and two sets of (p,q) matrices. Only the “5” quantities are used to compute the indices
of the interpolation grid. On the contrary both sets of coordinates are used to compute the weights in
LASCAWTL because both sets of weights are needed in the linear tangent versions of the interpolation
routines.

• LAPINEBTL: computation of P(X)T1 needs both the arrays Z(X)95 and Z(X)9.

• LARCHETL: has optimisations which are not present in the direct code. First the code for not tilted
geometry has been split into a code for stretched geometry (also valid for unstretched geometry) and a code
for unstretched geometry. Additionally some functions such as MAX, MIN, MOD, have been replaced by
tests with sometimes additional variables. The consequence is that the TL code looks not straightforward
to compare with the direct code.

16.1.4 Basics about AD code.

One starts from the linear tangent code and “adjoints” the code: for example a matricial expression of the
following type

Y = MX

leads to the expression
X = X + tMY

in the adjoint code. Some particular features appear in the code of the semi-Lagrangian scheme, and the adjoint
code is not completely the mirror of the linear tangent code.

61

16.1.5 Organigramme of AD code.

∗ AD code organigramme under SCAN2MAD:

SCAN2MAD -> GP_MODEL_AD ->
* CPG5
* CPGLAGAD (call tree not detailed, see documentation (IDEUL))
* EC_PHYS_AD (call tree not detailed)
* PRE_SLADREP (case LSLADREP=T) ->
- SLCOMM2A (case LSLONDEM=T)
- SLCOMM (case LSLONDEM=F)

* CALL_SL_AD ->
- SLCOMM and SLEXTPOL (DM code only)
- LAPINEA5 ->

* LARMES5 -> LARCINA ->
- LARCHE (ELARCHE in LAM models)
- LASCAW (ELASCAW in LAM models)

-> LASCAW_CLA, LASCAW_CLO, LASCAW_VINTW
- LAITLI

* LARCINA ->
- LARCHE + LASCAW (ELASCAW in LAM models)

-> LASCAW_CLA, LASCAW_CLO, LASCAW_VINTW
- SLCOMM2A and SLEXTPOL (DM code only and on-demand SL communications asked for)
- LAPINEBAD ->

* LARCINB5 ->
- LAITLI
- LAITRI

* LACONE
* LARCHE
* VERINTAD
* LACONEAD
* LARCHEAD
* LARCINBAD ->
- some LAI..._INIT routines (LSLADREP=T)
- LAITLIAD
- LAITRE_GMV_AD -> LAITRIAD
- LAITRE_GFL_AD -> LAITRIAD, LAITRIQM3DAD
- LAIDDIAD

- LAPINEAD ->
* LARCINAAD ->
- LARCHEAD + LASCAWAD

-> LASCAW_CLA_AD, LASCAW_CLO_AD, LASCAW_VINTW_AD
* LARMESAD -> LARCINAAD ->
- some LAI..._INIT routines (LSLADREP=T)
- LAITLIAD
- LARCHEAD + LASCAWAD

-> LASCAW_CLA_AD, LASCAW_CLO_AD, LASCAW_VINTW_AD
- SLEXTPOLAD (case LSLADREP=F)
- SLCOMM2 (case LSLADREP=F + LSLONDEM=T)
- SLCOMM (case LSLADREP=F + LSLONDEM=F)

* CPG_DRV_AD -> CPGAD ->
- Allocations
- CPG5_GP (for trajectory) ->

* some routines reading trajectory (RDPHTRAJM)
* GPMPFC5, GP_SPV (for trajectory)
* some GP.. routines computing intermediate grid-point quantities for trajectories.

- CPG_END_AD ->
* GPMPFC

- CPG_ZERO_AD
- CPG_DYN_AD ->

* VDIFLCZAD (organigramme not detailed)
* LACDYNAD ->
- LASURE
- LATTESAD -> VERINTAD
- LATTE_KAPPAAD -> GP_KAPPAAD and GP_KAPPATAD
- LATTEXAD -> LATTEX_DNT_AD
- LAVENTAD
- LASSIEAD

- MF_PHYSAD (organigramme not detailed)
- CPG_GP_AD ->

* some GP..AD routines computing intermediate grid-point quantities for model variables.
* GPMPFC (for model variables)
* GPTF2AD

- GPMPFC5 (for trajectory)

62

∗ Additional remarks:

• For subroutines, the name of which ends by “5”, see their corresponding direct code routines, the
explanation of which is given in the section describing the direct code. These routines compute the
trajectory which is required in the AD calculations for some quantities, the trajectory of which is not
computed in the direct code.

• For subroutines, the name of which ends by “AD”, see their corresponding direct code routines, the
explanation of which is given in the section describing the direct code.

• The storage of the ADTL-trajectory variables (indexed by “5”) is not fully done in the direct code, because
of the huge amount of data to store. So some quantities which have normally to be stored in the direct
code, are in this case recomputed in the adjoint code and stored in arrays, the name of which is ending by
“5” (sometimes “6” or “7”). This recomputation is done on all data concerning the iterative calculation of
the semi-Lagrangian displacement (medium and origin points) and the weights and grid for interpolations.
One can notice that, when computing the position of the mid-point, all intermediate positions are stored at
each iteration (contrary to the direct code which only retains the last iteration). The consequence is that
the adjoint code calls the routines LARMES5 (slightly modified version of LARMES), LARCINB5,
LARCHE and LACONE.

• In LASCAW, only the computation of interpolation weights has an adjoint code, but not the index-array
for the interpolation grid (arrays KL0 and KLH0).

• In interpolation routines (LAIDDIAD, LAIDLIAD, LAITRIAD, LAITLIAD), adjoint codes have
some optimisations not present in the direct code and the TL code, in order to avoid memory conflicts.
The main feature of these optimisation is the use of an intermediate array PZINC in the adjoint code
of the interpolation routines. Memory transfer in PSLBUF1 is done only in LARCINAAD and
LARCINBAD once all adjoints of interpolation routines have been called.

• CPG5 is a very simplified version of CPG which currently only reads trajectory.

• LARCHEAD: has optimisations which are not present in the direct code and does not follow completely
LARCHETL (no splitting between stretched and unstretched geometry). Some functions such as MAX,
MIN, MOD, have been replaced by tests with sometimes additional real or logical variables. The
consequence is that the AD code looks not straightforward to compare with the direct and TL codes.

• The adjoint interpolation routines have options of reproducibility which are not present in the direct and
TL codes, and which need to call intermediate LAI... INIT routines.

16.2 3D non hydrostatic model.

Adjoint code is not yet available in the cycle 44 of ARPEGE/IFS.

16.3 2D shallow-water model.

16.3.1 Available options.

Code is available for the following subset of options in the cycle 44 of ARPEGE/IFS:

• Two-time level semi-Lagrangian scheme.

• Spherical geometry with no tilting.

• Unstretched geometry.

• Conventional formulation for continuity equation.

• Non monotonic horizontal interpolations.

• Eulerian treatment of orography (RCMSLP0=1).

• “On demand” processor communications not activated.

16.3.2 Basics about TL code.

See part (16.1.2).

16.3.3 Organigramme of TL code.

∗ Direct code modification: CPG2 calls WRSLTRAJ2 to store the trajectory in configurations
where the TL code is called (configurations 421 and 521). WRSLTRAJ2 is a subroutine which writes data on
a buffer.

63

∗ TL code organigramme under SCAN2MTL:

SCAN2MTL -> GP_MODEL_TL ->
* CPG2TL ->
- RDSLTRAJ2 (if NTRSLTYPE = 1)
- GPTF2
- LACDYNSHWTL ->
- RDSLTRAJ2 (if NTRSLTYPE = 2)

* CPG2LAGTL ->
- LADINETL ->

* LARMES2TL -> LARCIN2TL -> (see below)
* LAINOR2TL -> LARCIN2TL -> (see below)
* LARCHE2TL
* LACONETL

- GPTF1

Organigramme below LARCIN2TL:

LARCIN2TL ->
* LARCHE2TL + LASCAWTL (ELASCAWTL in LAM models)
-> LASCAW_CLA_TL, LASCAW_CLO_TL

* LAIDDITL or LAIDLITL

∗ Additional remarks:

• RDSLTRAJ2 reads the TL trajectory, which is stored in arrays underscripted by index “5”.

• For subroutines, the name of which ends by “TL”, see their corresponding direct code routines, the
explanation of which is given in the section describing the direct code.

• LACDYNSHWTL: quantities P(X)T15 are not computed. One only computes PB1...-buffers
P(X)L95 and P(X)L05 if NTRSLTYPE is zero or 1; otherwise the PB1...-buffers are directly recovered
by a call to RDSLTRAJ2 under CPG2TL if NTRSLTYPE=2.

• LARMES2TL and LAINOR2TL: computation of the semi-Lagrangian displacement yields a duplication
of the code into a “differentiated code” and a “ADTL-trajectory code” (for example an instruction like
Z = XY yields the “differentiated code” Z = XY5 +X5Y and the “ADTL-trajectory code” Z5 = X5Y5).
This is the reason for which one can find in routine LARCHE2TL two sets of coordinates (PLON,PLAT)
and (PLON5,PLAT5) and two sets of (p,q) matrices. Only the “5” quantities are used to compute the
indices of the interpolation grid. On the contrary both sets of coordinates are used to compute the weights
in LASCAWTL because both sets of weights are needed in the linear tangent versions of the interpolation
routines.

• LADINETL: computation of P(X)T1 needs both the arrays Z(X)95 and Z(X)9.

• LARCHE2TL: cf. LARCHETL.

16.3.4 Basics about AD code.

One starts from the linear tangent code and “adjoints” the code: for example a matricial expression of the
following type

Y = MX

leads to the expression
X = X + tMY

in the adjoint code. Some particular features appear in the code of the semi-Lagrangian scheme.

• The storage of the ADTL-trajectory variables (indexed by “5”) is not fully done in the direct code, because
of the huge amount of data to store. So some quantities which have normally to be stored in the direct
code, are in this case recomputed in the adjoint code and stored in arrays, the name of which is ending by
“5” (sometimes “6” or “7”). This recomputation is done on all data concerning the iterative calculation of
the semi-Lagrangian displacement (medium and origin points) and the weights and grid for interpolations.
One can notice that, when computing the position of the mid-point, all intermediate positions are stored at
each iteration (contrary to the direct code which only retains the last iteration). The consequence is that
the adjoint code will call the routines LARMES25, LAINOR2, LARCIN2, LARCHE2, LACONE
and LASCAW. Concerning the not lagged dynamics one finds a sequence CPG25 − > LACDYNSHW
before the call to CPG2LAGAD under SCAN2MAD. CPG25 is a simplified version of CPG2 which
calls LACDYNSHW and gets some t−∆t variables by calling RDSLTRAJ2.

• In LASCAW, only the computation of interpolation weights has an adjoint code, but not the index-array
for the interpolation grid (arrays KL0 and KLH0).

64

16.3.5 Organigramme of AD code.

∗ AD code organigramme under SCAN2MAD:

SCAN2MAD -> GP_MODEL_AD ->
* CPG25 ->
- RDSLTRAJ2
- LACDYNSHW

* CPG2LAGAD ->
- GPTF1AD

* LADAD ->
- LADINEAD ->

* LARMES25 -> LARCIN2 -> (see below)
* LAINOR2 -> LARCIN2 -> (see below)
* LACONE
* LARCHE2
* LACONEAD
* LARCHE2AD
* LAINOR2AD -> LARCIN2AD -> (see below)
* LARMES2AD -> LARCIN2AD -> (see below)

* CPG2AD ->
- LACDYNSHWAD
- GPTF2AD

Organigramme below LARCIN2:

LARCIN2 ->
* LARCHE2 + LASCAW (ELASCAW in LAM models)
-> LASCAW_CLA, LASCAW_CLO

* LAIDDI or LAIDLI

Organigramme below LARCIN2AD:

LARCIN2AD ->
* LARCHE2 + LASCAW (ELASCAW in LAM models)
-> LASCAW_CLA, LASCAW_CLO

* LAIDDIAD or LAIDLIAD
* LASCAWAD + LARCHE2AD (ELASCAWAD in LAM models)
-> LASCAW_CLA_AD, LASCAW_CLO_AD

∗ Additional remarks:

• Some direct code is called again under SCAN2MAD, LADINEAD and LARCIN2AD.

• LARMES25 is a version of LARMES2, the only differences are actually:

– only the semi-Lagrangian displacement is computed; no call of interpolations at the mid-point for
the RHS of the equations.

– all the intermediate positions of the mid-point are stored in the iterative algorithm.

• CPG25 is a very simplified version of CPG2.

• LADAD: interface for interpolations (equivalent of CALL SL AD in the 3D model).

• LARCHE2AD: same remarks as for the hydrostatic 3D model.

65

17 Some distributed memory features.

Note that some variables referenced below may be attributes of structures.

17.1 Distributed memory features common to Eulerian and semi-Lagrangian
advections.

For features common to Eulerian and semi-Lagrangian advections, see section 28 of the documentation (IDEUL).

17.2 Transmission of data for horizontal interpolations.

We now focus on specific semi-Lagrangian interpolator features. Description is done for the 3D model.

First we define, for each interpolation point, what is the processor which treats it. The rule is that the processor
which treats it is the processor which treats the corresponding arrival point of the SL trajectory. This associated
model grid-point is always between the latitudes 1 and NDGLG (it is never a pole or an extra-polar latitude
point).

Interpolations use data of points which are not necessary on the same latitude and longitude as the interpolation
point and the arrival grid-point of the semi-Lagrangian trajectory. Thus interpolation routines need to have
access to a limited number of surrounding latitudes and longitudes which are not necessary treated by the current
processor.

The number of surrounding latitudes and longitudes rows necessary for interpolations (but which do not always
belong to the current processor) is precomputed in the subroutine SUSC2B (variable NSLWIDE). This is a
sort of “halo” belonging to some other processors. Due to the “halo” this is necessary to split calculations into
not lagged ones and lagged ones.

First the not lagged computations are done for the NGPBLKS packets of length NPROMA.

Quantities to be interpolated are computed in the non-lagged part (but interpolations are performed in the lagged
part). In the non-lagged part, only data of the current processor (without any extra-longitudinal data nor polar
and extra-polar data) is computed. For all the NPROMA-packages treated by the current processor data is
stored in the arrays PB1 (under routine CPG). The first dimension of PB1 is NASLB1, which is the total
number of points one needs for the interpolations (NASLB1 is greater than NGPTOT). The second dimension of
PB1 is NFLDSLB1: this is the number of 2D quantities to be interpolated. Inside CPG, an intermediate array
ZSLBUF1AU is used and data is transferred in PB1: this memory transfer uses a precomputed intermediate
array NSLCORE. Then some communication routines are called in CALL SL to constitute the halo. Routine
SLCOMM does processor communication to fill the halo (receives and sends data from some other processors).

When all the NASLB1 dataset is constituted, the lagged part CALL SL is called which does horizontal
interpolations for all the data to be interpolated for the current processor. The lagged computations are still
divided into NGPBLKS packets of length NPROMA.

∗ Particular case of the “on demand” processor communication: SLCOMM and
SLEXTPOL are still called with specific options, and do the communications only on the part of the buffer which
contains the information to find the semi-Lagrangian displacement. For the RHS of equations, the interpolations
need to communicate a subset of points, this subset can be known only when all the interpolations grids have
been computed (in LASCAW): communications are currently done by SLCOMM2A and SLEXTPOL called
by CALL SL just before the interpolations. SLCOMM2A and SLEXTPOL have less points to exchange so
the model integration is slightly less expensive.

Terms which must be evaluated at F are stored in GFLT1, GMVT1, GMVT1S (for the RHS of equations)
and PB2 for additional intermediate terms.

66

18 Specific SL variables in pointer modules, modules and
namelists.

These modules are auto-documented so description of each variable is provided in the code source. We can recall
here the most important variables to know for each module:

• PARDIM (parameter dimensions).

• PTRSLB1 (pointers for quantities to be interpolated).

• PTRSLB15 (pointers for quantities to be interpolated: trajectory for TL and AD models).

• PTRSLB2 (pointers for arrays to communicate information between the different blocks in the grid-point
calculations).

• YOM YGFL and namelist NAMGFL: some GFL attributes like LADV, LINTLIN, LTDIABLIN,
LHORTURB, LQM, LQMH, LQM3D, LQML3D, LSLHD, LCOMAD, LHV, LVSPLIP.

• YOMARG (0-level control, former command line) and YOMCT0 (0-level control):

– All NAMARG variables: for ex. NCONF, LELAM, LECMWF, UTSTEP, LSLAG, NSUPERSEDE.

– LR3D, LR2D, LRSHW, LRVEQ.

– LSPRT.

– LREGETA, LVFE REGETA.

– LNHDYN.

– LRPLANE.

– LSLPHY.

Some of these variables are in namelist NAMCT0.

• YOMCVER (vertical finite element discretisation keys). Some of these variables are in namelist
NAMCVER.

• YOMDIM, YOMDIMV and YOMDIMF (dimensioning): most of variables. Some of these variables
are in namelist NAMDIM.

• YOMDYNA (adiabatic dynamics: first part):

– LAPRXPK, NDLNPR, RHYDR0 (vertical discretisation).

– L3DTURB (3D turbulence).

– All variables, the name starts by LSLHD or SLHD (SLHD = semi-lagrangian horizontal diffusion).

– All variables, the name starts by LCOMAD or COMAD (for COMAD interpolations).

– LSLDIA, LRPRSLTRJ (diagnostics).

– LRALTVDISP.

– LVSPLIP (spline cubic vertical interpolations).

– LPC FULL, LPC CHEAP (predictor-corrector scheme).

– LNESC, LNESCT, LNESCV, LSETTLS, LSETTLST, LSETTLSV, LELTRA (extrapolations).

– NPDVAR, NVDVAR, ND4SYS, LNH PDVD, LNHX, LNHXDER, RC PD1 (NH model).

– LGWADV, NGWADVSI, LRDBBC (treatment of vertical divergence equation in NH model).

– LVERCOR, LRWSDLW, LRWSDLR, LRWSDLR2, LRWSDLG, LCURVW, RC PD1 (deep-layer equations).

Some of these variables are in namelist NAMDYNA.

• YOMDYN (adiabatic dynamics: second part):

– REPS1, REPS2, REPSM1, REPSM2, REPSP1 (Asselin filter).

– LSIDG, BETADT, RBT, RBTS2, NITERHELM (semi-implicit scheme).

– REFGEO, SIPR, SITR, SITRA, SITRUB, SIPRUB, SITIME, SIRPRG, SIRPRN (reference values used in
the semi-implicit scheme).

– NSITER, NCURRENT ITER, LRHDI LASTITERPC (predictor-corrector scheme).

– VCPR, VCTR, VCAK, NITPRHS (deep-layer equations formulations).

– LSVTSM, RPRES SVTSM (stratospheric vertical trajectory smoothed in SL scheme).

– NVLAG, NWLAG, NTLAG, NSPDLAG, NSVDLAG (controls interpolations done in equations).

– NSPLTHOI, LSPLTHOIGFL (controls splitting high order interpolations).

– NSLDIMK, JPSLDIMK.

– NITMP, VETAON, VETAOX, VMAX1, VMAX2 (SL trajectory).

– VESL, XIDT (uncentering factors).

– LQMHW, LQMHT, LQMHP, LQMHSPD, LQMHSVD (horizontally quasi-monotonic interpolations).

67

– LQMW, LQMT, LQMP, LQMSPD, LQMSVD (quasi-monotonic interpolations).

– LADVF, LADVFW, LIMPF, L2TLFF, RW2TLFF (treatment of Coriolis term).

– RCMSLP0 (Eulerian treatment of orography).

– SLHDA (κa), SLHDA0 or SLHDA0T (κa0), SLHDB or SLHDBT (κb), SLHDD0 (DEF0), SLHDD00 or
SLHDD00T, SLHDDIV (Cslhddiv), SLHDRATDDIV (Cslhdratddiv), SLHDHOR, ZSLHDP1 (κa), ZSLHDP3
(DEF00), SLHDKREF, LSLHDHEAT for SLHD scheme.

– LFINDVSEP, NVSEPL, NVSEPC (optimisations for semi-Lagrangian adjoint code).

– LSETTLSVF, RSETTLF, LSETFSTAT, RPRES SETTLSTF, RMAX SETTLSTF, REPSDYN, NFLEVSF.

Some of these variables are in namelist NAMDYN.

• YOMMP0 and YOMMP (distributed memory environment, see documentation (IDDM) for more
details).

• YOMSLPHY (interactions between SL scheme and split ECMWF physics).

• YOMSLREP (variables used for bit reproducibility in the AD code of SL). A subset of them must go
later in EINT MOD.

• EINT MOD (quantities used in externalisable interpolator and halo management). In particular
attributes of variable YRSL.

• YOMHSLMER: for high-order horizontal meridian interpolations.

• YOMVSPLIP: for spline vertical interpolations.

• YOMVSLETA: for high-order vertical interpolations.

• YOMMASK.

• YOMVAR: LSLADREP, LVECADIN.

• Modules for trajectory stored for TL and AD models:

– TRAJECTORY MOD (manages trajectory for TL and AD runs in a unified way).

– TRAJ MAIN MOD (manages main trajectory).

– TRAJ PHYSICS MOD (manages physics trajectory).

– TRAJ SEMILAG MOD (manages semi-Lagrangian trajectory).

– TRAJ SURFACE MOD (manages surface trajectory).

– YOMTRAJ (buffer for trajectory array at time t-dt).

– YOMVWRK and NAMVWRK: NTRSLTYPE.

• Modules for geometry:

– YOMGSGEOM (geographic space grid-point geometry)

– YOMCSGEOM (computational space grid-point geometry)

– YOMOROG (orography)

– YOMGEM (horizontal geometry): some variables are in namelist NAMGEM.

– SPGEOM MOD (spectral geometry).

– YOMVERT (vertical geometry and VFE operators).

– YOMVV1 (namelist variables for vertical geometry): variables are in namelist NAMVV1.

– YEMGEO (LAM model geometry): some variables are in namelist NEMGEO.

– YEMGEOLBC (LAM model geometry for LBC).

– TYPE GEOMETRY, TYPE SPGEOM.

• Modules for GMV dataflow:

– YOMGMV (grid-point arrays for GMV fields).

– TYPE GMVS (derived types for GMV).

– GMV SUBS MOD (contains encapsulated routines for GMV management).

• Modules for GFL dataflow:

– YOMGFL (grid-point arrays for GFL fields).

– YOM YGFL (descriptors of GFL arrays). Some of these variables are in namelist NAMGFL.

– GFL SUBS MOD (contains encapsulated routines for GFL management).

• Modules for surface dataflow:

– SURFACE FIELDS MIX (surface dataflow).

• YOMSP and YOMSP5 (spectral arrays).

68

19 An example of operational SL2TL namelist for ARPEGE.

∗ Introduction: In order to avoid to have to recompile all the code when changing the value of a variable
(for example a dimension), as it was the case in the old PERIDOT/EMERAUDE system, some variables are
provided in different namelists, so it is possible to change the value in the namelist without recompiling the code.
All variables which have to be modified compared to the default value can be specified in the namelist, but there is
also an option where the model retrieves some data (date and geometry) by reading the frame of some ARPEGE
files.

∗ Example of namelist for the ARPEGE operational forecast: The example provided below
is the forecast namelist “namelistfc” which has been used in the ARPEGE (TL1198L105c2.2 stretched version)
operational suite on 01/07/2016, with minor modifications (adapt the namelist for cycle 44, remove activation of
FULL-POS diagnostics, reduce the number of processors, no IO server). This suite used the cycle 41t1 op1. The
namelist is:

&NACIETEO
/
&NACOBS
/
&NACTAN
/
&NACTEX
/
&NACVEG
/
&NADOCK
/
&NAEAEM7
/
&NAEAER
/
&NAECOAPHY
/
&NAEPHLI
/
&NAEPHY
/
&NAERAD

LRRTM=.TRUE.,
LSRTM=.FALSE.,
NMCICA=0,
NRADFR=-1,
NSW=6,
RLWINHF=0.9,

/
&NAERCLI
/
&NAETLDIAG
/
&NAEVOL
/
&NAIMPO
/
&NALORI
/
&NAMAERDET
/
&NAMAFN

TFP_I%LLGP=.TRUE.,
TFP_L%LLGP=.TRUE.,

/
&NAMARG

CNMEXP=’ARPE’,
NCONF=1,
LELAM=.FALSE.,
LECMWF=.FALSE.,
CUSTOP=’h102’,
UTSTEP=360.,
LSLAG=.TRUE.,
NSUPERSEDE=1,

/
&NAMARPHY
/
&NAMCA
/
&NAMCAPE
/
&NAMCFU

LCUMFU=.TRUE.,
LFDUTP=.TRUE.,
LFPLC=.TRUE.,
LFPLS=.TRUE.,
LFR=.TRUE.,
LFSF=.TRUE.,
LFSOIL=.TRUE.,
LMOON=.TRUE.,

69

LNEBPAR=.TRUE.,
LSTRD=.TRUE.,
LSTRT=.TRUE.,
LFRRC=.TRUE.,
LRAYD=.TRUE.,

/
&NAMCHEM
/
&NAMCHET
/
&NAMCHK
/
&NAMCLA
/
&NAMCLDP
/
&NAMCLI
/
&NAMCLOP15
/
&NAMCLTC
/
&NAMCOK
/
&NAMCOM
/
&NAMCOMPO
/
&NAMCOSJO
/
&NAMCT0

LFBDAP=.TRUE.,
LFDBOP=.FALSE.,
LTWOTL=.TRUE.,
LSPRT=.TRUE.,
NDHFZTS(0)=-9,
NDHFZTS(1:9)=-6,-12,-18,-24,-36,-48,-60,-72,-96,
NFRDHFZ=1,
NFRHIS=1,
NFRPOS=1,
NFRSDI=1,
NHISTS(0)=-28,
NHISTS(1:10)=-0,-3,-6,-9,-12,-15,-18,-21,-24,-27,
NHISTS(11:20)=-30,-33,-36,-39,-42,-45,-48,-51,-54,-60,
NHISTS(21:28)=-66,-72,-78,-81,-84,-90,-96,-102,
NSDITS(0)=-1,
NSDITS(1)=0,
NSPPR=1,
LREGETA=.FALSE.,
LVFE_REGETA=.FALSE.,
NFRGDI=1,
NGDITS(0)=-1,
NGDITS(1)=0,
NUNDEFLD=-99999999,

/
&NAMCT1

LRFILAF=.FALSE.,
N1POS=0,
N1RES=0,

/
&NAMCUMF
/
&NAMCUMFS
/
&NAMCVER

LVERTFE=.TRUE.,
NVSCH=3,

/
&NAMCVMNH

OTADJS=10800.,
XCDEPTH=1.,
XCDEPTH_D=4000.,
XDTPERT=0.3,
XENTR=0.013,

/
&NAMDDH

LHDEFZ=.TRUE.,
LHDHKS=.TRUE.,
LHDZON=.TRUE.,
NDHKD=30,

/
&NAMDFI
/
&NAMDIM

NPROMA=-3582,
/
&NAMDIMO
/
&NAMDIM_TRAJ
/
&NAMDPHY

70

/
&NAMDYN

LADVF=.TRUE.,
NTLAG=3,
NVLAG=3,
NWLAG=3,
RCMSLP0=1.,
REPS1=0.,
REPS2=0.,
REPSM1=0.,
REPSM2=0.,
REPSP1=0.,
SIPR=100000.,
SITR=350.,
VESL=0.,
XIDT=0.,
RW2TLFF=1.,
RDAMPDIV=2.,

/
&NAMDYNA

LAPRXPK=.TRUE.,
NDLNPR=0,
LNESC=.FALSE.,
LNESCT=.FALSE.,
LNESCV=.FALSE.,
LSETTLS=.TRUE.,
LSETTLST=.TRUE.,
LSETTLSV=.TRUE.,
NTLAG=3,
NVLAG=3,
NWLAG=3,
RCMSLP0=1.,
REPS1=0.,
REPS2=0.,
REPSM1=0.,
REPSM2=0.,
REPSP1=0.,
SIPR=100000.,

/
&NAMDYNCORE
/
&NAMEMIS_CONF
/
&NAMENKF
/
&NAMFA

NBITCS=30,
NBITPG=30,
NSTRON=-1,
YFAL%NBITS=16,
YFAI%NBITS=16,
YFAR%NBITS=16,
YFAS%NBITS=16,
YFALRAD%NBITS=16,
YFAIRAD%NBITS=16,
YFACLF%NBITS=6,
YFATKE%NBITS=16,

/
&NAMFAINIT
/
&NAMFPC
/
&NAMFPD
/
&NAMFPDY2
/
&NAMFPDYF
/
&NAMFPDYH
/
&NAMFPDYI
/
&NAMFPDYP
/
&NAMFPDYS
/
&NAMFPDYT
/
&NAMFPDYV
/
&NAMFPF
/
&NAMFPG
/
&NAMFPIOS
/
&NAMFPMOVE
/
&NAMFPPHY
/
&NAMFPSC2

71

/
&NAMFPSC2_DEP
/
&NAMGEM
/
&NAMGFL

YI_NL%LGPINGP=.TRUE.,
YI_NL%LGP=.TRUE.,
YI_NL%LT1=.TRUE.,
YI_NL%LPHY=.FALSE.,
YI_NL%NREQIN=1,
YI_NL%LREQOUT=.TRUE.,
YI_NL%LADV=.TRUE.,
YI_NL%LQM=.TRUE.,
YL_NL%LGPINGP=.TRUE.,
YL_NL%LGP=.TRUE.,
YL_NL%LT1=.TRUE.,
YL_NL%LPHY=.FALSE.,
YL_NL%NREQIN=1,
YL_NL%LREQOUT=.TRUE.,
YL_NL%LADV=.TRUE.,
YL_NL%LQM=.TRUE.,
YR_NL%LGPINGP=.TRUE.,
YR_NL%LGP=.TRUE.,
YR_NL%LT1=.TRUE.,
YR_NL%LPHY=.FALSE.,
YR_NL%NREQIN=1,
YR_NL%LREQOUT=.TRUE.,
YR_NL%LADV=.TRUE.,
YR_NL%LQM=.TRUE.,
YS_NL%LGPINGP=.TRUE.,
YS_NL%LGP=.TRUE.,
YS_NL%LT1=.TRUE.,
YS_NL%LPHY=.FALSE.,
YS_NL%NREQIN=1,
YS_NL%LREQOUT=.TRUE.,
YS_NL%LADV=.TRUE.,
YS_NL%LQM=.TRUE.,
YTKE_NL%LGPINGP=.TRUE.,
YTKE_NL%LGP=.TRUE.,
YTKE_NL%LT1=.TRUE.,
YTKE_NL%NREQIN=1,
YTKE_NL%LREQOUT=.TRUE.,
YTKE_NL%NCOUPLING=0,
YTKE_NL%LADV=.FALSE.,
YTKE_NL%LQM=.TRUE.,
YIRAD_NL%LGP=.TRUE.,
YIRAD_NL%NREQIN=0,
YIRAD_NL%LREQOUT=.TRUE.,
YLRAD_NL%LGP=.TRUE.,
YLRAD_NL%NREQIN=0,
YLRAD_NL%LREQOUT=.TRUE.,
YA_NL%LGP=.TRUE.,
YA_NL%NREQIN=0,
YA_NL%LREQOUT=.TRUE.,

/
&NAMGRIB
/
&NAMGWD
/
&NAMGWDIAG
/
&NAMGWWMS
/
&NAMIAU
/
&NAMICE
/
&NAMINI

LDFI=.FALSE.,
/
&NAMINTFLEX
/
&NAMIOMI
/
&NAMIOS
/
&NAMIO_SERV
/
&NAMJBCODES
/
&NAMJFH
/
&NAMJG
/
&NAMLCZ
/
&NAMLSFORC
/
&NAMMARS
/

72

&NAMMCC
/
&NAMMCUF
/
&NAMMETHOX
/
&NAMMKODB
/
&NAMMODERR
/
&NAMMTS
/
&NAMMWAVE
/
&NAMNPROF
/
&NAMNUD
/
&NAMOBS
/
&NAMOOPS
/
&NAMOPH

CFNHWF=’ECHIS’,
LINC=.TRUE.,

/
&NAMOPTCMEM
/
&NAMPAR0

NOUTPUT=1,
NPROC=2,
NPRGPNS=2,
NPRGPEW=1,
NPRTRW=2,
NPRTRV=1,
MP_TYPE=2,
MBX_SIZE=128000000,
LOPT_SCALAR=.FALSE.,

/
&NAMPAR1

LSPLIT=.TRUE.,
NSTRIN=2,
NSTROUT=2,
NCOMBFLEN=1638400,
LEQ_REGIONS=.FALSE.,

/
&NAMPARAR
/
&NAMPHMSE
/
&NAMPHY

CGMIXLEN=’AY’,
LAERODES=.TRUE.,
LAEROLAN=.TRUE.,
LAEROSEA=.TRUE.,
LAEROSOO=.TRUE.,
LCONDWT=.TRUE.,
LDIFCONS=.TRUE.,
LFPCOR=.TRUE.,
LNEWD=.TRUE.,
LNOIAS=.TRUE.,
LO3ABC=.TRUE.,
LPROCLD=.TRUE.,
LRAY=.FALSE.,
LRAYFM=.TRUE.,
LRAYLU=.TRUE.,
LRNUMX=.TRUE.,
LSSD=.TRUE.,
LSTRA=.FALSE.,
LVGSN=.TRUE.,
LCVPPKF=.TRUE.,
LECDEEP=.TRUE.,
LECSHAL=.TRUE.,
LECT=.TRUE.,
LFLUSO=.TRUE.,
LNEBECT=.FALSE.,
LO3FL=.TRUE.,
LECTFL=.TRUE.,
LECTFL0=.TRUE.,
LZ0HSREL=.TRUE.,
LADJCLD=.TRUE.,
LSMITH_CDEV=.TRUE.,
NCALLRAD=2,
LGLACIERS=.TRUE.,
NDPSFI=0,

/
&NAMPHY0

EDD=1.,
EDK=1.,
GCVNU=5.E-05,
GCVPSI=1.,

73

GCVPSIE=1.,
GWDCD=5.4,
GWDSE=0.005,
GWDVALI=0.5,
QSNEBC=-1.,
QSSUSC=5.,
RCVEVAP=0.25,
REVASX=2.E-07,
RICRLM=0.5,
TDDGP=0.6,
TUDGP=0.6,
USURIC=0.175,
USURICL=1.,
USURID=0.1,
VZ0CM=1.0E-4,
XBLM=8.5,
XMAXLM=5000.,
XMINLM=10.,
ALMAVX=1000.,
GCVHMIN=30000.,
RFACNSM=1.2,
RFLCHCE=0.25,
RKFBTAU=7200.,
RPRTH=1.,
RQICRT2=0.,
RQICVMIN=1.E-5,
SXNBCO=1.,
ALMAVE=0.,
RQCRNS=0.,
RQICRSN=1.,
TFVI=0.08,
TFVL=0.02,
TFVS=1.5,
GCVOMGE=1.0,
ECTMAX=35.,
AECLS4=3.,
GDDEVA=0.2,
GCVOMGQ=-1.0,
REFLKUO=5000.,

/
&NAMPHY1

ALBMIN=0.65,
ALCRIN=0.81,
EMMGLA=0.98,
EMMMER=0.99,
ALRCN1=0.01,

/
&NAMPHY2

FACRAF=4.5,
XMULAF=0.,
LRAFTKE=.TRUE.,
HTKERAF=20.0,

/
&NAMPHY3
/
&NAMPHYDS
/
&NAMPPC
/
&NAMPRE
/
&NAMRAD15
/
&NAMRADCMEM
/
&NAMRCF
/
&NAMRCOEF
/
&NAMRES
/
&NAMRGRI
/
&NAMRINC
/
&NAMRIP
/
&NAMRIP0
/
&NAMRLX
/
&NAMSATS
/
&NAMSCC
/
&NAMSCEN
/
&NAMSCM
/
&NAMSEKF
/

74

&NAMSENS
/
&NAMSIMPHL
/
&NAMSPNG
/
&NAMSPP
/
&NAMSPSDT
/
&NAMSTA
/
&NAMSTOPH
/
&NAMSWE
/
&NAMTESTVAR
/
&NAMTHLIM
/
&NAMTOPH

ETCVIM=5000.,
ETNEBU=5000.,
ETPLUI=5000.,
XDRMTK=2.E-08,
XDRMTP=800.,
XDRMTX=4.E-07,
XDRMUK=1.E-07,
XDRMUP=800.,
XDRMUX=2.E-06,

/
&NAMTRAJP
/
&NAMTRANS

LUSEFLT=.FALSE.,
LUSERPNM=.TRUE.,
LKEEPRPNM=.TRUE.,

/
&NAMTRANS0
/
&NAMTS
/
&NAMVAR
/
&NAMVARBC
/
&NAMVARBC_AIREP
/
&NAMVARBC_ALLSKY
/
&NAMVARBC_GBRAD
/
&NAMVARBC_RAD
/
&NAMVARBC_SFCOBS
/
&NAMVARBC_TCWV
/
&NAMVARBC_TO3
/
&NAMVAREPS
/
&NAMVDF
/
&NAMVDOZ
/
&NAMVOLCANO
/
&NAMVRTL
/
&NAMVV0
/
&NAMVV1
/
&NAMVWRK
/
&NAMWAVELETJB
/
&NAMXFU

LXCLP=.TRUE.,
LXCLS=.TRUE.,
LXFU=.TRUE.,
LXHHCLS=.TRUE.,
LXICV=.TRUE.,
LXNEBPA=.TRUE.,
LXNEBTT=.TRUE.,
LXQCLS=.TRUE.,
LXSOIL=.TRUE.,
LXTGST=.TRUE.,
LXTTCLS=.TRUE.,
LXXGST=.TRUE.,

75

/
&NAM_CANAPE
/
&NAM_DISTRIBUTED_VECTORS
/
&NAPHLC
/
&NEMCT0
/
&NEMDIM
/
&NEMDYN
/
&NEMELBC0A
/
&NEMELBC0B
/
&NEMFPEZO
/
&NEMGEO
/
&NEMJK
/
&NEMVAR
/
&NEMWAVELET
/

Explanation of some elements of this namelist:

• NAMARG:

– CNMEXP=ARPE: four letters code of the job, which appears in the local name of some files; for
example the local name of the initial conditions file in this case has the name ICMSHARPEINIT.

– NCONF=1: means that the job runs in configuration 1.

– LELAM=.FALSE.: means that the model is the global one.

– LECMWF=.FALSE.: means that the job runs with the default METEO-FRANCE options and
not the ECMWF options.

– CUSTOP=’h102’: means that the forecasts has a range of 102 h.

– UTSTEP=360.: means that the timestep is 360 s.

– LSLAG=.TRUE.: means that the advection scheme is a semi-Lagrangian one.

– NSUPERSEDE=1: means that geometry and date are read from initial file frame.

• NAMCFU: LCUMFU=.TRUE. means that the CFU diagnostics are activated.

• NAMCT0: in this namelist one finds some information about the temporal advance scheme and
the frequency of some outputs. For example LTWOTL=.TRUE. means that the two-time level
semi-Lagrangian scheme is used; NFRHIS=1, NHISTS(0)=-28, NHISTS(1)=-0, NHISTS(2)=-3, ...
NHISTS(28)=-102, means that the output of historical files is asked for 28 times during this 102h range
model integration, and that the occurrence number 1 (resp. 2, ..., 28) is at range 0h (resp. 3h, ..., 102h).

• NAMDYN: in this namelist one finds information about Asselin temporal filter, and some options of the
semi-Lagrangian scheme.

• NAMINI: in this namelist one finds information relative to the initialization; LDFI=.FALSE. means that
there is no initialization.

• NAMPAR0 and NAMPAR1: in this namelist one finds information relative to the distributed memory
architecture. In our case there are 2 processors in the first level of distribution and one processor in the
second one.

• NAMPHY, NAMPHY0, NAMPHY1, NAMPHY2, NAMPHY3, NAMTOPH give information
about the set of physical parameterizations and the coefficients used in the physics, NAERAD is designed
for the “ECMWF” FMR-radiation scheme.

• NAMXFU: LXFU=.TRUE. means that the XFU diagnostics are activated.

The reader will remark that some information does not appear in the above namelist: the truncation, the geometry
(stretching, high resolution pole, type (reduced or not) of Gaussian grid), the number of latitudes of the Gaussian
grid, the maximum number (and also the number for each latitude) of longitudes of the Gaussian grid, the number
of layers and the definition of these layers. In our example where NSUPERSEDE is set to 1, all this information
is read in the frame of the initial conditions file.

∗ ALADIN and AROME: The namelist looks like the one used in ARPEGE, with some additional
elements, the name of them generally starting by NEM. For example in the forecast namelist “namel previ” of
AROME which was operational on 01/07/2016, the reader will find additional elements starting by NEM... and
some additional information about the lateral coupling (for example the information TEFRCL=3600. present
in NEMELBC0B means that the coupling frequency is 1h).
In NAMARG, LELAM=.TRUE. means that the model is now a LAM model.

76

20 Bibliography.

The following list is far to be complete. More detailed references are available in some of the following papers
(in particular Staniforth and Côté, 1991), especially for papers published before 1991. Most of the recent papers
have been published in Mon. Wea. Rev..

20.1 Publications.

• Bartello, P., and S. J. Thomas, 1996: The cost-effectiveness of semi-Lagrangian advection. Mon. Wea.
Rev., 124, 2883-2897.

• Bates, J. R., S. Moorthi and R. W. Higgins, 1993: A global multilevel atmospheric model using a vector
semi-Lagrangian finite-difference scheme: Part I: adiabatic formulation. Mon. Wea. Rev., 121, 244-263.

• Bates, J. R., Y. Li, A. Brandt, S. F. Mc Cormick, and J. Ruge, 1995: A global shallow-water numerical
model based on the semi-Lagrangian advection of potential vorticity. Q. J. R. Meteorol. Soc., 121, 1981-
2005.

• Bates, J. R., 1996: Developments in semi-Lagrangian global atmospheric modelling at NASA/GLA. Modern
Dynamical Meteorology. Proceedings from a symposium in honour of Prof. Aksel Wiin Nielsen, 3-8.

• Behrens, J., 1996: An adaptative semi-Lagrangian advection scheme and its parallelization. Mon. Wea.
Rev., 124, 2386-2395.

• Bénard, P., and K. Yessad, 2001: On the discretization of the continuity equation in semi-Lagrangian
models with a pressure-type vertical coordinate. Mon. Wea. Rev., 129, 1746-1749.

• Benôıt, R., M. Desgagné, P. Pellerin, S. Pellerin, Y. Chartier and S. Desjardins, 1997: The Canadian
MC2: a semi-Lagrangian, semi-implicit wideband atmospheric model suited for finescale process studies
and simulation. Mon. Wea. Rev., 125, 2382-2415.

• Bermejo, R., and A. Staniforth, 1992: The conversion of semi-Lagrangian advection schemes to quasi-
monotone schemes. Mon. Wea. Rev., 120, 2622-2632.

• Bermejo, R., and J. Conde, 2002: A conservative quasi-monotone semi-Lagrangian scheme. Mon. Wea.
Rev., 130, 423-430.

• Böttcher, M., 1996: A semi-Lagrangian advection scheme with modified exponential splines. Mon. Wea.
Rev., 124, 716-729.

• Bubnová, R., G. Hello, P. Bénard, and J.F. Geleyn, 1995: Integration of the fully elastic equations cast
in the hydrostatic pressure terrain-following coordinate in the framework of the ARPEGE/Aladin NWP
system. Mon. Wea. Rev., 123, 515-535.

• Caya, D., and R. Laprise, 1999: A semi-implicit semi-Lagrangian regional climate model: the Canadian
RCM. Mon. Wea. Rev., 127, 341-362.

• Chen, Minghang, and J. R. Bates, 1996: A comparison of climate simulations from a semi-Lagrangian and
an Eulerian GCM. Journal of Climate, 9, 1126-1149.

• Chen, Minghang, and J. R. Bates, 1996: Forecast experiments with a global finite-difference semi-
Lagrangian model. Mon. Wea. Rev., 124, 1992-2007.

• Cordero, E., N. Wood and A. Staniforth, 2005: Impact of semi-Lagrangian trajectories on the discrete
normal modes of a non-hydrostatic vertical-column model. Q. J. R. Meteorol. Soc., 131, 93-108.

• Côté, J., 1988: A Lagrange multiplier approach for the metric terms of semi-Lagrangian models on the
sphere. Q. J. R. Meteorol. Soc., 114, 1347-1352.

• Côté, J., M. Roch, A. Staniforth and L. Fillion, 1993: A variable-resolution semi-Lagrangian finite-element
global model of the shallow-water equations. Mon. Wea. Rev., 121, 231-243.

• Côté, J., S. Gravel, and A. Staniforth, 1995: A generalised family of schemes that eliminate the spurious
resonant response of semi-Lagrangian schemes to orographic forcing. Mon. Wea. Rev., 123, 3605-3613.

• Cotter, C. J., J. Frank and S. Reich, 2007: The remapped particle-mesh semi-lagrangian advection scheme.
Q. J. R. Meteorol. Soc., 133, 251-260.

• Courtier, Ph., and J. F. Geleyn, 1988: A global model with variable resolution. Application to the shallow-
water equations. Q. J. R. Meteorol. Soc., 114, 1321-1346.

• Courtier, Ph., C. Freydier, J. F. Geleyn, F. Rabier and M. Rochas, 1991: The ARPEGE project at
METEO-FRANCE. ECMWF Seminar Proceedings 9-13 September 1991, Volume II, 193-231.

• Durran, Dale R., and P. A. Reinecke, 2004: Instability in a class of explicit two-time-level semi-Lagrangian
schemes. Q. J. R. Meteorol. Soc., 130, 365-369.

• Desharnais, F., and A. Robert, 1990: Errors near the poles generated by a semi-Lagrangian integration
scheme in a global spectral model. Atm. Ocean, Vol 28 No 1, 163-176.

• Diamantakis, M., 2013: The semi-Lagrangian technique in atmospheric modelling: current status and
future challenges. ECMWF Seminar in numerical methods for atmosphere and ocean modelling, 2-5
September 2013, 183-200.

77

• Diamantakis, M., 2014: Global mass fixer algorithms for conservative tracer transport in the ECMWF
model. Geosci. Model. Dev., 7, 965-979.

• Diamantakis, M., and L. Magnusson, 2016: Sensitivity of the ECMWF Model to Semi-Lagrangian
Departure Point Iterations. Mon. Wea. Rev., 144, 3233-3250.

• Ekman, A., and E. Källen, 1998: Mass conservation tests with the HIRLAM semi-Lagrangian time
integration scheme. HIRLAM Technical Report, 39, 23pp.

• Geleyn, J.F., and R. Bubnová, 1995: The fully elastic equations cast in hydrostatic pressure coordinate:
accuracy and stability aspects of the scheme as implemented in ARPEGE/Aladin. Atm. Ocean, special
issue memorial André Robert.

• Girard, C., and Y. Delage, 1990: Stable schemes for nonlinear vertical diffusion in atmospheric circulation
models. Mon. Wea. Rev., 118, 137-146.

• Giraldo, F. X., 1999: Trajectory calculations for spherical geodesic grids in cartesian space. Mon. Wea.
Rev., 127, 1651-1662.

• Giraldo, F. X., 2006: Hybrid Eulerian-Lagrangian semi-implicit time-integrators. Computers and
Mathematics with Applications, 52, 1325-1342.

• Gospodinov, I., V. Spiridonov, and J.-F. Geleyn, 2001: Second order accuracy of two-time-level semi-
Lagrangian schemes. Q. J. R. Meteorol. Soc., 127, 1017-1033.

• Gospodinov, I., V. Spiridonov, P. Bénard, and J.-F. Geleyn, 2002: A refined semi-Lagrangian vertical
trajectory scheme applied to a hydrostatic atmospheric model. Q. J. R. Meteorol. Soc., 128, 323-336.

• Grabowski, W. W., and P. K. Smolarkiewicz, 1996: Two-time-level semi-Lagrangian modelling of
precipitating clouds. Mon. Wea. Rev., 124, 487-497.

• Gravel, S., and A. Staniforth, 1992: Variable resolution and robustness. Mon. Wea. Rev., 120, 2633-2640.

• Gravel, S., A. Staniforth and J. Côté, 1993: A stability analysis of a family of baroclinic semi-Lagrangian
forecast models. Mon. Wea. Rev., 121, 815-824.

• Gravel, S., and A. Staniforth, 1994: A mass-conserving semi-Lagrangian scheme for the shallow-water
equations. Mon. Wea. Rev., 122, 243-248.

• Gustafsson, N., and A. McDonald, 1996: A comparison of the HIRLAM grid-point and spectral semi-
Lagrangian models. Mon. Wea. Rev., 124, 2008-2022.

• Hansen, A., B., J. Brandt, J. H. Christensen, and E. Kaas, 2011: Semi-Lagrangian methods in air pollution
models. Geosci. Model. Dev., 4, 511-541.

• Héreil, Ph., and R. Laprise, 1996: Sensitivity of internal gravity waves solutions to the time step of a
semi-implicit semi-Lagrangian non-hydrostatic model. Mon. Wea. Rev., 124, 972-999.

• Hortal, M., 1994: Recent studies of semi-Lagrangian advection at ECMWF. ECMWF Research Department
Technical Memorandum No 204, 37pp.

• Hortal, M., 1996: Experiments with the linear Gaussian grid at ECMWF. Research Activities in
Atmospheric and Oceanic modelling, WGNE report, No 23, 3.17-3.19 .

• Hortal, M., 2002: The development and testing of a new two-time-level semi-Lagrangian scheme (SETTLS)
in the ECMWF forecast model. Q. J. R. Meteorol. Soc., 128, 1671-1687.

• Huang, C. Y., 1994: Semi-Lagrangian advection schemes and Eulerian WKL algorithms. Mon. Wea. Rev.,
122, 1647-1658.

• Kaas, E., A. Guldberg and Ph. Lopez, 1996: A full “particle-in-cell” numerical integration method tested
for the shallow water equations. Modern Dynamical Meteorology. Proceedings from a symposium in honour
of Prof. Aksel Wiin Nielsen, 31-38.

• Kaas, E., A. Guldberg and Ph. Lopez, 1997: A Lagrangian advection scheme using tracer points. Atm.
Ocean, 35:sup1, special issue memorial André Robert, 171-194.

• Kaas, E., 2008: A simple and efficient locally mass conserving semi-Lagrangian transport scheme. Tellus,
60, 305-320.

• Karpic, S. R., 1994: A spline-based semi-Lagrangian method for advection-dominated transport equations
on triangular meshes. Proceedings, 2nd Annual Conference of the CFD Society of Canada, Toronto. J. J.
Gottlieb and C. R. Ethier (eds.), 91-98.

• Laprise, R., 1992: The Euler equations of motion with hydrostatic pressure as an independent variable.
Mon. Wea. Rev., 120, 197-207.

• Laprise, R., and A. Plante, 1995: A class of semi-Lagrangian integrated-mass (SLIM) numerical transport
algorithms. Mon. Wea. Rev., 123, 553-565.

• Lauritzen, P. H., R. D. Nair, and P. A. Ullrich, 2010: A conservative semi-Lagrangian multi-tracer transport
scheme (CSLAM) on the cubed-sphere grid. J. Comput. Phys., 229, 14011424.

• Lee, H. N., 1993: A semi-Lagrangian transport scheme with spectral interpolation. J. Appl. Meteor., 32,
1908-1918.

78

• Lee, H. N., 1996: A semi-Lagrangian spectral algorithm for pollutant transport and diffusion studies. J.
Appl. Meteor., 35, 2129-2135.

• Lentine, M., J. T. Grétarsson, and R. Fedkiw, 2011: An unconditionally stable fully conservative semi-
Lagrangian method. J. Comput. Phys., 230, 28572879.

• Le Roux, D. Y., C. A. Lin, and A. Staniforth, 1997: An accurate interpolating scheme for semi-Lagrangian
advection on an unstructured mesh for ocean modelling. Tellus, 49A, 119-138.

• Leslie, L. M., and R. J. Purser, 1991: High-order numerics in an unstaggered three-dimensional time-split
semi-Lagrangian forecast model. Mon. Wea. Rev., 119, 1612-1623.

• Leslie, L. M., and R. J. Purser, 1995: Three-dimensional mass-conserving semi-Lagrangian scheme
employing forward trajectories. Mon. Wea. Rev., 123, 2551-2566.

• Li, Dong, and Bin Wang, 2012: Trajectory-tracking scheme in Lagrangian form for solving linear advection
problems: preliminary tests. Mon. Wea. Rev., 140, 650-663.

• Lin, Shian-Jiann, and R. B. Rood, 1996: Multidimensional flux-form semi-Lagrangian transport schemes.
Mon. Wea. Rev., 124, 2046-2070.

• Lindberg, K., and V. A. Alexeev, 2000: A study of the spurious orographic resonance in semi-implicit
semi-Lagrangian models. Mon. Wea. Rev., 128, 1982-1989.

• Mc Donald, A., and J. E. Haugen, 1992: A two-time-level, three-dimensional semi-Lagrangian, semi-
implicit, limited-area grid-point model of the primitive equations. Mon. Wea. Rev., 120, 2603-2621.

• Mc Donald, A., and J. E. Haugen, 1993: A two-time-level, three-dimensional semi-Lagrangian, semi-
implicit, limited-area grid-point model of the primitive equations. Part II: extension to hybrid vertical
coordinates. Mon. Wea. Rev., 121, 2077-2087.

• Mc Donald, A., 1998: The origin of noise in semi-Lagrangian integrations. Irish Meteorological Service
Technical Note Nr 55, 27pp.

• Mc Donald, A., 1999: An examination of alternative extrapolations to find the departure point position in
a two-time-level semi-Lagrangian integration. Mon. Wea. Rev., 127, 1985-1993.

• Mc Donald, A., 2000: Boundary conditions for semi-Lagrangian schemes: testing some alternatives in
one-dimensional models. Mon. Wea. Rev., 128, 4084-4096.

• Mc Gregor, J. L., 1993: Economical determination of departure points for semi-Lagrangian models. Mon.
Wea. Rev., 121, 221-230.

• Mc Gregor, J. L., 1996: Semi-Lagrangian advection on conformal-cubic grids. Mon. Wea. Rev., 124,
1311-1322.

• Machenhauer, B., and M. Olk, 1996: The implementation of the semi-implicit scheme in cell-integrated
semi-Lagrangian models. Modern Dynamical Meteorology. Proceedings from a symposium in honour of
Prof. Aksel Wiin Nielsen, 103-107.

• Makar, P. A., and S. R. Karpik, 1996: Basis-spline interpolation on the sphere: applications to semi-
Lagrangian advection. Mon. Wea. Rev., 124, 182-199.

• Malardel S., and D. Ricard, 2015: An alternative cell-averaged departure point reconstruction for pointwise
semi-Lagrangian transport schemes. Quart. J. Roy. Meteor. Soc., 141, 2114-2126.

• Malevsky, A. V., 1996: Spline-characteristic methods for simulation of convective turbulence. Journal of
Computational Physics, 123, 466-475.

• Malevsky, A. V., and S. J. Thomas, 1997: Parallel algorithms for semi-Lagrangian advection. International
Journal for Numerical Methods in fluids, 25, 455-473.

• Mawson, M. H., 1995: Implementation of semi-Lagrangian advection in the next generation U.K. Met
Office Unified Model. Forecasting Research Division Scientific Paper, 37, 17pp.

• Moorthi, S., R. W. Higgins and J. R. Bates, 1995: A global multilevel atmospheric model using a vector
semi-Lagrangian finite-difference scheme: Part II: version with physics. Mon. Wea. Rev., 123, 1523-1541.

• Nair, R. D., J. Côté and A. Staniforth, 1999: Monotonic cascade interpolation for semi-Lagrangian
advection. Quart. J. Roy. Meteor. Soc., 125, 197-212.

• Nair, R. D., J. Côté and A. Staniforth, 1999: Cascade interpolation for semi-Lagrangian advection over
the sphere. Quart. J. Roy. Meteor. Soc., 125, 1445-1468.

• Nair, R. D., and B. Machenhauer, 2002: The mass-conservative cell-integrated semi-Lagrangian advection
scheme on the sphere. Mon. Wea. Rev., 130, 649-667.

• Nair, R. D., J. S. Scroggs and F. H. M. Semazzi, 2003: A forward-trajectory global semi-Lagrangian
transport scheme. J. Comput. Phys., 190, 275294.

• Oliveira, A., and A. M. Baptista, 1995: A comparison of integration and interpolation Eulerian-Lagrangian
methods. Int. J. Numer. Methods Fluids, 21, 183-204.

• Park, S., and N. Baek, 2013: A new trajectory integration scheme in the semi-Lagrangian framework, 2013:
International Journal of Software Engineering and its Applications, 7, 179-188.

79

• Pinty, J.-P., R. Benôıt, E. Richard and R. Laprise, 1995: The performance of a semi-Lagrangian transport
scheme for the advection-condensation problem. Mon. Wea. Rev., 123, 3042-3058.

• Pellerin, P., R. Laprise and I. Zawadski, 1995: The performance of a semi-Lagrangian transport scheme
for the advection-condensation problem. Mon. Wea. Rev., 123, 3318-3330.

• Polavarapu, S., M. Tanguay, R. Ménard and A. Staniforth, 1996: The tangent linear model for semi-
Lagrangian schemes: linearizing the process of interpolation. Tellus, 48A, 74-95.

• Priestley, A., 1993: A quasi-conservative version of the semi-Lagrangian advection scheme. Mon. Wea.
Rev., 121, 621-629.

• Pudykiewicz, J. A., and A. Kallaur, 1997: Semi-Lagrangian modelling of tropospheric ozone. Tellus, 49,
231-248.

• Purser, R. J., and L. M. Leslie, 1991: An efficient interpolation procedure for high-order three-dimensional
semi-Lagrangian models. Mon. Wea. Rev., 119, 2492-2498.

• Purser, R. J., and L. M. Leslie, 1994: An efficient semi-Lagrangian scheme using third-order semi-implicit
time integration and forward trajectories. Mon. Wea. Rev., 122, 745-756.

• Purser, R. J., and L. M. Leslie, 1996: Generalized Adams-Bashforth time integration schemes for a semi-
Lagrangian model employing the second-derivative form of the horizontal momentum equations. Q. J. R.
Meteorol. Soc., 122, 737-763.

• Purser, R. J., and L. M. Leslie, 1997: High-order generalized Lorenz N -cycle schemes for semi-Lagrangian
models employing second derivatives in time. Mon. Wea. Rev., 125, 1261-1276.

• Qian, J. H., F. H. M. Semazzi, and J. S. Scroggs, 1998: A global nonhydrostatic semi-Lagrangian
atmospheric model with orography. Mon. Wea. Rev., 126, 747-771.

• Ramachandran, D. N., and B. Machenhauer, 2002: The mass-conservative cell-integrated semi-Lagrangian
advection scheme on the sphere. Mon. Wea. Rev., 130, 649-667.

• Rančič, M., 1992: Semi-Lagrangian piecewise biparabolic scheme for two-dimensional horizontal advection
of a passive scalar. Mon. Wea. Rev., 120, 1394-1406.

• Rančič, M., 1995: An efficient, conservative, monotonic remapping for semi-Lagrangian transport
algorithms. Mon. Wea. Rev., 123, 1213-1217.

• Ritchie, H., 1986: Eliminating the interpolation associated with the semi-Lagrangian scheme. Mon. Wea.
Rev., 114, 135-146.

• Ritchie, H., 1988: Application of the semi-Lagrangian method to a spectral model of the shallow water
equations. Mon. Wea. Rev., 116, 1587-1598.

• Ritchie, H., 1991: Application of the semi-Lagrangian method to a multilevel spectral primitive-equations
model. Q. J. R. Meteorol. Soc., 117, 91-106.

• Ritchie, H., and C. Beaudoin, 1994: Approximations and sensitivity experiments with a baroclinic semi-
Lagrangian spectral model. Mon. Wea. Rev., 122, 2391-2399.

• Ritchie, H., C. Temperton, A. Simmons, M. Hortal, T. Davies, D. Dent, and M. Hamrud, 1995:
Implementation of the semi-Lagrangian method in a high resolution version of the ECMWF forecast model.
Mon. Wea. Rev., 123, 489-514.

• Ritchie, H., and M. Tanguay, 1996: A comparison of spatially-averaged Eulerian and semi-Lagrangian
treatments of mountains. Mon. Wea. Rev., 124, 167-181.

• Rivest, Ch., and A. Staniforth, 1994: Spurious resonant response of semi-Lagrangian discretizations to
orographic forcing: diagnosis and solution. Mon. Wea. Rev., 122, 366-376.

• Rivest, Ch., and A. Staniforth, 1995: Modifying the conventional three-time level semi-implicit semi-
Lagrangian scheme to eliminate orographically-induced spurious resonance. Atm. Ocean, 33, 109-119.

• Robert, A., 1981: A stable numerical integration scheme for the primitive meteorological equations. Atmos.
Ocean, 19, 35-46.

• Scroggs, J. C., F. H. M. Semazzi, and D. T. Miller, 1995: A second-order conservative semi-Lagrangian
method for multi-dimensional fluid dynamics applications. Report CRSC-TR95-29, Center for Research
in Scientific Computation, North Carolina State University.

• Seibert, P., and B. Morariu, 1991: Improvements of upstream, semi-Lagrangian numerical advection
schemes. Mon. Wea. Rev., 119, 117-125.

• Semazzi, F. H. M., and P. Dekker, 1994: Optimal accuracy in semi-Lagrangian models. Mon. Wea. Rev.,
122, 2139-2159.

• Semazzi, F. H. M., J. H. Qian, and J. S. Scroggs, 1995: A global nonhydrostatic semi-Lagrangian
atmospheric model without orography. Mon. Wea. Rev., 123, 2534-2550.

• Semazzi, F. H. M., D. W. Webb, and G. Pouliot, 1996: A study of trajectory uncentering in semi-Lagrangian
models. Journal of the Meteorological Society of Japan, 74, 695-707.

• Semazzi, F. H. M., J. S. Scroggs, G. Pouliot, A. L. Mac Kee-Burrows, M. Norman, V. Poojary and Y. M.
Tsai, 2005: On the accuracy of semi-Lagrangian numerical simulation of internal gravity wave motion in
the atmosphere. Journal of the Meteorological Society of Japan, 83/5, 851-869.

80

• Simmons, A. J., and C. Temperton, 1997: Stability of a two-time-level semi-implicit integration scheme
for gravity-wave motion. Mon. Wea. Rev., 125, 600-615.

• Smolarkiewicz, P. K., and P. J. Rasch, 1991: Monotone advection on the sphere: an Eulerian versus
semi-Lagrangian approach. Journal of the Atmospheric Sciences, Vol 48 No 6, 793-810.

• Smolarkiewicz, P. K., 1991: On forward-in-time differencing for fluids. Mon. Wea. Rev., 119, 2505-2510.

• Smolarkiewicz, P. K., and J. A. Pudykiewicz, 1992: A class of semi-Lagrangian approximations for fluids.
Journal of the Atmospheric Sciences, 49, 2082-2096.

• Smolarkiewicz, P. K., and G. Grell, 1992: A class of monotone interpolation schemes. J. Comput. Phys.,
101, 431440.

• Smolarkiewicz, P. K., and L. G. Margolin, 1997: On forward-in-time differencing for fluids: an
Eulerian/Semi-Lagrangian non-hydrostatic model for stratified flows. Atm. Ocean, 35:sup1, special issue
memorial André Robert, 127-152.

• Sorensen, B., E. Kaas, and U. S. Korsholm, M., 2013: A mass-conserving and multi-tracer efficient transport
scheme in the online integrated Enviro-HIRLAM model. Geosci. Model. Dev., 6, 1029-1042.

• Spiridonov, V., 1988: On the problem of time-dependent lateral boundary conditions for limited area
atmospheric models. Some advantages of the semi-Lagrangian method. PSMP report series ECMWF, 27,
89-92.

• Staniforth, A., and J. Côté, 1991: Semi-Lagrangian integration schemes for atmospheric models - A review.
Mon. Wea. Rev., 119, 2206-2223.

• Staniforth, A., A. White, and N. Wood, 2003: Analysis of semi-Lagrangian trajectory computations. Q.
J. R. Meteorol. Soc., 129, 2065-2085.

• Staniforth, A., and N. Wood, 2005: An Unsuspected Boundary-Induced Temporal Computational Mode
in a Two-Time-Level Discretization. Mon. Wea. Rev., 133, 712-720.

• Staniforth, A., A. White, and N. Wood, 2010: Treatment of vector equations in deep-atmosphere, semi-
Lagrangian models. I: Momentum equation. Q. J. R. Meteorol. Soc., 136, 497-506.

• Staniforth, A., A. White, and N. Wood, 2010: Treatment of vector equations in deep-atmosphere, semi-
Lagrangian models. II: Kinematic equation. Q. J. R. Meteorol. Soc., 136, 507-516.

• Steppeler, J., and G. Ország, 1995: A non interpolating semi-Lagrangian method based on transformations
to an Eulerian grid. Beitr. Phys. Atmosph., 68, 263-270.

• Steppeler, J., and P. Prohl, 1996: Applications of finite volume methods to atmospheric models. Beitr.
Phys. Atmosph., 69, 297-306.

• Sun, W.-Y., K.-S. Yeh, and R.-Y. Sun, 1996: A simple semi-Lagrangian scheme for advection equations.
Q. J. R. Meteorol. Soc., 122, 1211-1226.

• Sun, W.-Y. and K.-S. Yeh, 1997: A general semi-lagrangian advection scheme employing forward
trajectories. Q. J. R. Meteorol. Soc., 123, 2463-2476.

• Tanguay, M., A. Simard and A. Staniforth, 1989: A three-dimensional semi-Lagrangian scheme for the
Canadian regional finite-element forecast model. Mon. Wea. Rev., 117, 1861-1871.

• Tanguay, M., E. Yakimiw, H. Ritchie, and A. Robert, 1992: Advantages of spatial averaging in semi-implicit
semi-Lagrangian schemes. Mon. Wea. Rev., 120, 113-123.

• Tanguay, M., S. Polavarapu, and P. Gauthier, 1997: Temporal accumulation of first-order linearization
error for semi-Lagrangian passive advection. Mon. Wea. Rev., 125, 1296-1311.

• Temperton, C., 1997: Treatment of the Coriolis terms in semi-Lagrangian spectral models. Atm. Ocean,
35:sup1, special issue memorial André Robert, 293-302.

• Thomas, S., and J. Côté, 1995: Massively parallel semi-Lagrangian advection. J. Simulation, Practice and
Theory, 3, 223-238.

• Thuburn, J., M. Zerroukat, N. Wood and A. Staniforth, 2010: Coupling a mass-conserving semi-
Lagrangian scheme (SLICE) to a semi-implicit discretization of the shallow-water equations: Minimizing
the dependence on a reference atmosphere. Q. J. R. Meteorol. Soc., 136, 146-154.

• Thuburn, J., and A. A. White, 2013: A geometrical view of the shallow-water approximation, with
application to the semi-Lagrangian departure point calculation. Q. J. R. Meteorol. Soc., 139, 261-268.

• Tolstykh, M. A., 1994: Application of Fifth-Order Compact Upwind Differencing to moisture transport
equation in atmosphere. Journal of Computational Physics, 112 No 2, 394-403.

• Tolstykh, M. A., 1995: The modified two-time level scheme in the global semi-Lagrangian shallow-water
model. Research Activities in Atmospheric and Oceanic modelling, WGNE report, No 21, 3.28-3.29 .

• Tolstykh, M. A., 1996: The response of the variable resolution semi-Lagrangian NWP model to the change
in horizontal interpolation. Q. J. R. Meteorol. Soc., 122, 765-778.

• Tolstykh, M. A., 2002: Vorticity-divergence semi-Lagrangian shallow-water model on the sphere based on
compact finite differences. J. Comput. Phys., 179, 180200.

81

• Tolstykh, M. A., and V. V. Shashkin, 2012: Vorticity-divergence mass-conserving semi-Lagrangian shallow-
water model using the reduced grid on the sphere. J. Comput. Phys., 231, 42054233.

• Váña F., P. Bénard, J.F. Geleyn, A. Simon, and Y. Seity, 2008: Semi-Lagrangian advection scheme with
controlled damping: an alternative to nonlinear horizontal diffusion in a numerical weather prediction
model. Quart. J. Roy. Meteor. Soc., 134, 523-537.

• White, A. A., and R. A. Bromley, 1995: Dynamically consistent, quasi-hydrostatic equations for global
models with a complete representation of the Coriolis force. Q. J. R. Meteorol. Soc., 121, 399-418.

• White, A. A., 2003: Dynamical equivalence and the departure-point equation in semi-Lagrangian numerical
models. Q. J. R. Meteorol. Soc., 129, 1317-1324.

• Wong, M., W. C. Skamarock, P. H. Lauritzen, and R. B. Stull, 2013: A cell-integrated semi-Lagrangian
semi-implicit shallow-water model (CSLAM-SW) with conservative and consistent transport. Mon. Wea.
Rev., 141, 2545-2560.

• Wood, N., and A. Staniforth, 2003: The deep-atmosphere Euler equations with a mass-based vertical
coordinate. Q. J. R. Meteorol. Soc., 129, 1289-1300.

• Wood, N., A. Staniforth, and A. White, 2009: Determining near-boundary departure points in semi-
Lagrangian models. Q. J. R. Meteorol. Soc., 135, 1890-1896.

• Xindong Peng, Feng Xiao, Wataru Ohfuchi and Hiromitsu Fuchigami, 2005: Conservative Semi-Lagrangian
Transport on a Sphere and the Impact on Vapor Advection in an Atmospheric General Circulation Model.
Mon. Wea. Rev., 133, 504-520.

• Yabe, T., R. Tanaka, T. Nakamura, and F. Xiao, 2001: An exactly conservative semi-Lagrangian scheme
(CIP-CSL) in one dimension. Mon. Wea. Rev., 129, 332-344.

• Zerroukat, M., N. Wood and A. Staniforth, 2002: SLICE: a semi-Lagrangian inherently conserving and
efficient scheme for transport problems. Q. J. R. Meteorol. Soc., 128, 2801-2820.

• Zerroukat, M., N. Wood and A. Staniforth, 2004: SLICE: a semi-Lagrangian inherently conserving and
efficient scheme for transport problems on the sphere. Q. J. R. Meteorol. Soc., 130, 2649-2664.

• Zerroukat, M., N. Wood and A. Staniforth, 2005: A monotonic and positive-definite filter for a semi-
lagrangian inherently conserving and efficient (SLICE) scheme. Q. J. R. Meteorol. Soc., 131, 2923-2936.

• Zerroukat, M., N. Wood and A. Staniforth, 2009: An improved version of SLICE for conservative monotonic
remapping on a C-grid. Q. J. R. Meteorol. Soc., 135, 541-546.

• Zerroukat, M. and T. Allen, 2012: A three-dimensional monotone and conservative semi-Lagrangian scheme
(SLICE-3D) for transport problems. Q. J. R. Meteorol. Soc., 138, 1640-1651.

• Zhang, Y., and H-M. H. Juang, 2012: A mass-conserving non-iteration-dimensional-split semi-Lagrangian
advection scheme for limited-area modelling. Q. J. R. Meteorol. Soc., 138, 2118-2125.

20.2 Some internal notes and other ARPEGE notes.

• (TDECDYN) 2016: IFS technical documentation (CY41R2). Part III: dynamics and numerical procedures.
Available at “https://software.ecmwf.int/wiki/display/IFS/Official+IFS+Documentation”.

• (TDECTEC) 2016: IFS technical documentation (CY41R2). Part VI: technical and computational
procedures. Available at “https://software.ecmwf.int/wiki/display/IFS/Official+IFS+Documentation”.

• (IDNHPB) Bénard, P., 2013: Scientific documentation for ALADIN NH model (version 3.1). Internal note
(94pp), available on “http://www.umr-cnrm.fr/gmapdoc/”.

• Besse, N., 2013: A non exhsustive review of semi-Lagrangian methods for the Vlasov equation. Slides for
presentation, 30pp.

• Bonaventura, L., 2002: An introduction to semi-Lagrangian methods for geophysical flows. Internal note
(44pp).

• Craciun, A., 2014: Application of ENO technique to semi-Lagrangian interpolations. RC LACE stay report,
14pp.

• De Boor, C., 2001: A practical guide to splines. Applied mathematical sciences 27, Springer-Verlag: New
York.

• Diamantakis, M., 2014: A modification of the IFS semi-Lagrangian trajectory scheme to improve sudden
stratospheric warming forecasts. ECMWF Research Department Technical Memorandum No ???, 13pp.

• Diamantakis, M., 2014: Improving ECMWF forecasts of sudden stratospheric warmings. ECMWF
Newsletter nr 141, 30-36.

• Dugault, E., 1995: Evaluation du décentrage variable dans une version semi-lagrangienne à maille variable
du modèle ARPEGE. Rapport de stage universitaire, 25pp.

• Ekman, A., and E. Källén, 1998: Mass conservation tests with the HIRLAM, semi-Lagrangian, time
integration scheme. HIRLAM technical report nr 39, 23pp.

• Gospodinov, I., 2000: Two-time-level semi-Lagrangian method for numerical weather prediction models:
enhanced conservation and stability. Manuscrit de thèse, 121pp.

82

• Haugen, J. E., and A. Mc Donald, 1991: Testing the two-time level and the three-time level semi-Lagrangian
HIRLAM models. Report for HIRLAM group, 26pp.

• Héreil, Ph., 1993: Sensibilité de la solution d’ondes de relief au choix du pas de temps dans un modèle non
hydrostatique semi-implicite semi-Lagrangien. Rapport de stage de DEA, 63pp.

• Hortal, M., 1998: New two-time-level semi-Lagrangian scheme. Memorandum research department, 18pp.

• (IDSVTSM) Hortal, M., and A. Untch, 2003: A new interpolation for the vertical computation of the
semi-Lagrangian trajectory. Internal note, 7pp.

• (IDSLIF) Mas̃ek, J., and F. Váña, 2006: Study of semi-Lagrangian interpolators in idealized framework.
Report from RC LACE scientific stay, 27pp.

• (IDSLIF2) Mas̃ek, J., and F. Váña, 2007: Test implementation of new semi-Lagrangian interpolators in
ARPEGE/ALADIN cycle 32t1alr01. Report from RC LACE scientific stay, 15pp.

• Mc Donald, A., 1995: The HIRLAM two time level, three dimensional semi-Lagrangian, semi-implicit,
limited area, grid-point model of the primitive equations. HIRLAM technical report nr 17, 25pp (available
from SMHI).

• Mc Donald, A., 1996: Controlling noise in two time level semi-Lagrangian semi-implicit integrations;
comments on some new developments. HIRLAM technical report nr 24, 4-10.

• Mc Donald, A., 1998: Alternative extrapolations to find the departure point in a two time level semi-
Lagrangian integration. HIRLAM Technical Report, 34, 17pp.

• Mc Donald, A., 1999: Well-posed boundary conditions for semi-Lagrangian schemes: the one-dimensional
case. HIRLAM technical report nr 43, 28pp.

• Mc Donald, A., 2000: Well-posed boundary conditions for semi-Lagrangian schemes: the one-dimensional
case, part II. HIRLAM technical report nr 44, 21pp.

• (IDEQR) Mozdzynski, G., 2006: A new partitioning approach for IFS. Internal note, 6pp.

• Rivals, H., 1993: Validation d’un modèle non hydrostatique semi-implicite semi-Lagrangien par des
simulations d’ondes de relief. Rapport de stage de DEA, 69pp.

• Simmons, A. J., and C. Temperton, 1996: Stability of a two-time-level semi-implicit integration scheme
for gravity-wave motion. ECMWF Technical Memorandum, 226, 33pp.

• (IDVNH1) Smoĺıková, P., 2001: New strategies for non-hydrostatic temporal scheme. Internal note.

• (IDVNH2) Smoĺıková, P., 2002: New NH variables: d4 in three dimensions (in the cycle CY25T1). Internal
note.

• (IDVNH3) Smoĺıková, P., 2003: The use of diagnostic BBC (boundary bottom condition) in semi-
Lagrangian schemes. Internal note, 8pp.

• Smoĺıková, P., and Jozef Vivoda, 2013: Finite elements used in the vertical discretization of the fully
compressible forecast model ALADIN-NH. ALADIN - HIRLAM Newsletter no 1, 31-47.

• Spiegelmann, M., and R. F. Katz, 2002: A semi-Lagrangian Crank-Nicholson algorithm for the numerical
solution of advection-diffusion problems. Internal note, 10pp.

• Spiridonov, V., 1992: Down-stream semi-Lagrangian method. Internal note, 10pp.

• Váña, F., P. Bénard, and J.-F. Geleyn, 2001: Semi-Lagrangian advection scheme with controlled damping:
an alternative way to nonlinear horizontal diffusion in a semi-Lagrangian numerical weather prediction
model. Internal note, 35pp.

• (IDSPL)
Vaña, F., 2005: Spline interpolation in semi-Lagrangian advection scheme of ALADIN/ARPEGE/IFS.
Internal note, 8pp.

• (IDBAS) Yessad, K., 2017: Basics about ARPEGE/IFS, ALADIN and AROME in the cycle 44 of
ARPEGE/IFS (internal note).

• (IDSI) Yessad, K., 2017: Semi-implicit spectral computations in the cycle 44 of ARPEGE/IFS (internal
note).

• (IDDH) Yessad, K., 2017: Horizontal diffusion in the cycle 44 of ARPEGE/IFS (internal note).

• (IDTS) Yessad, K., 2017: Spectral transforms in the cycle 44 of ARPEGE/IFS (internal note).

• (IDDM) Yessad, K., 2017: Distributed memory features in the cycle 44 of ARPEGE/IFS (internal note).

• (IDEUL) Yessad, K., 2017: Integration of the model equations, and Eulerian dynamics, in the cycle 44 of
ARPEGE/IFS (internal note).

• (IDLAM) Zagar, M., and C. Fischer, 2007: The ARPEGE/ALADIN Tech’Book: Implications of LAM
aspects on the global model code for CY33/AL33. Internal note, 31pp, available on the internet server
“http://www.umr-cnrm.fr/gmapdoc/”.

20.3 Workshop proceedings.

• Workshop proceedings on semi-Lagrangian methods, 6-8 November 1995, 264pp. Available at ECMWF.

83

