
INTEGRATION OF THE MODEL EQUATIONS, AND

EULERIAN DYNAMICS, IN THE CYCLE 46 OF

ARPEGE/IFS.

YESSAD K. (METEO-FRANCE/CNRM/GMAP/ALGO)

April 9, 2018

Abstract:
This documentation can be seen as a long introduction to modeling. The general purpose of this documentation

is to describe the set of equations used, and also the way to integrate the dynamics of the model. Two points
will be examined in detail in this documentation: the Eulerian dynamics and the discretisations used. For
some other aspects (semi-Lagrangian dynamics, physics, spectral transforms, horizontal diffusion, semi-implicit
scheme), this documentation will not provide any detailed description, since there are other documentations
describing these topics. The following points will be described: model geometry, different set of equations (non
hydrostatic, primitive, shallow-water), their Eulerian formulation and there Eulerian discretisation, calculation
and discretisation of some intermediate diagnosed quantities (like the geopotential height). An organigramme is
provided. An introduction to tangent linear and adjoint code is provided. There is a specific chapter for the flux
form of the Eulerian equation, which is the basis of the DDH diagnostics.

Résumé:
On peut voir cette documentation comme une longue introduction à la modélisation. Le but général de cette

documentation est de décrire les jeux d’équations utilisés, et aussi la manière d’intégrer ces équations. On examine
plus particulièrement les deux points suivants: la dynamique eulérienne et les discrétisations utilisées. Sur d’autres
aspects (semi-lagrangien, physique, transformées spectrales, diffusion horizontale, schéma semi-implicite), cette
documentation ne fournit aucune description détaillée, car il y a d’autres documentations décrivant ces sujets.
Les points suivants sont abordés: géométrie, différents jeux d’équations (non hydrostatique, équations primitives,
modèle shallow-water), leur discrétisation avec un schéma d’advection eulérien, le calcul et la discrétisation
de certaines quantités diagnostiquées (comme la hauteur géopotentielle). On fournit un organigramme. Une
introduction au code tangent linéaire et adjoint est également proposée. Il y a un chapitre spécifique consacré à
la forme flux des équations, qui sert de base aux diagnostics DDH.

1

Contents

1 Introduction. 5
1.1 Content of this documentation. 5
1.2 Global models (ARPEGE/IFS). 5
1.3 Limited area models (LAM). 5
1.4 Eulerian advection scheme. 5
1.5 Semi-Lagrangian scheme. 6
1.6 Organisation of a timestep. 6

2 Systems of horizontal coordinates. 7
2.1 Systems of horizontal spherical coordinates. 7
2.2 Systems of horizontal coordinates in plane geometry. 8
2.3 Definitions of horizontal mesh-sizes. 8

3 The different types of horizontal derivatives used. 9
3.1 Global geometry. 9
3.2 Plane geometry. 10
3.3 Additional remarks. 11

4 The 2D equations. 12
4.1 Denotations for the 2D equations. 12
4.2 The 2D shallow-water system of equations in spherical geometry. 12
4.3 The 2D “vorticity” system of equations in spherical geometry. 12
4.4 The 2D equations in plane geometry. 12

5 The 3D equations. 13
5.1 Denotations for the 3D equations. 13
5.2 The 3D primitive equation model. 14

5.2.1 Momentum equation. 14
5.2.2 Thermodynamic equation. 14
5.2.3 Continuity equation. 14
5.2.4 Advectable GFL prognostic fields. 15
5.2.5 Relationship between geopotential height gz and pressure depth. 15
5.2.6 Relationship between total geopotential Φ and pressure depth. 16
5.2.7 Diagnostic expression of some vertical velocities. 16

5.3 The fully compressible non-hydrostatic model (NHEE). 17
5.3.1 Momentum equation. 17
5.3.2 Thermodynamic equation. 17
5.3.3 Continuity equation and diagnostic expression of some vertical velocities. 18
5.3.4 Advectable GFL prognostic fields. 18
5.3.5 Relationship for geopotential height gz and pressure depth. 18
5.3.6 Relationship between total geopotential Φ and pressure depth. 18
5.3.7 Vertical velocity w and vertical divergence d equations. 18
5.3.8 Pressure departure equation. 19
5.3.9 Geopotential equation. 19

5.4 The quasi compressible non-hydrostatic model (NHQE). 19
5.4.1 Momentum equation. 20
5.4.2 Thermodynamic equation. 20
5.4.3 Continuity equation and diagnostic expression of some vertical velocities. 20
5.4.4 Advectable GFL prognostic fields. 20
5.4.5 Relationship for geopotential height gz and pressure depth. 20
5.4.6 Relationship between total geopotential Φ and pressure depth. 20
5.4.7 Vertical velocity w and vertical divergence d equations. 21
5.4.8 Closure equation. 21

6 Some other diagnosed quantities. 22
6.1 cp, R and κ. 22
6.2 ∇(RT). 22
6.3 Potential temperature PT and its horizontal gradient. 22
6.4 Virtual potential temperature PTV . 22
6.5 Equivalent potential temperature PTE. 22
6.6 Absolute vorticity ζabs. 22
6.7 Potential vorticity PV . 22
6.8 Shearing deformation SHD and stretching deformation STD. 23
6.9 Hydrostatic vertical divergence dhyd. 23
6.10 Hydrostatic height coordinate vertical velocity whyd. 23
6.11 Moisture convergence CV GQ. 23
6.12 Montgomery potential Φmg and some other energetic quantities. 23
6.13 Angular momentum of components MMA, MMB and MMC. 24
6.14 Entropy S. 24

2

7 Discretisation of the equations: general aspects. 25
7.1 Denotations and preliminary remarks. 25
7.2 Discretisation. 26
7.3 Vertical discretisation in a 3D model. 27

8 The hydrostatic pressure based η vertical coordinate. 28
8.1 Definition of the η-coordinate and calculation of the hydrostatic pressure at half levels. 28
8.2 Calculation of η at half and full levels. 28
8.3 Calculation of the hydrostatic pressure at full levels. 28
8.4 Calculation of the horizontal gradient of the hydrostatic pressure at half and full levels. 29
8.5 The quantities α and δ linked to pressure depth layers. 30
8.6 Computation of a good set of A and B at half levels. 31

9 Treatment of the advection. 33
9.1 Treatment of the horizontal advection. 33
9.2 Treatment of the vertical advection (3D model). 33

10 Physics and physics-dynamics interface (3D model). 34
10.1 Time of evaluation. 34
10.2 Physical tendencies, flux divergences, and flux. 34
10.3 Remark for VFE vertical discretisation. 34
10.4 Levels of physics-dynamics interfaces. 34
10.5 The “delta m = 1” barycentric formulation. 35

11 The Eulerian discretisation of the 2D shallow-water system of equations (spherical
geometry). 36
11.1 Momentum equation. 36
11.2 Continuity equation. 36
11.3 Application to the 2D “vorticity” system of equations. 36

12 The Eulerian discretisation of the 3D primitive equation model. 37
12.1 Formulation of the momentum equation. 37
12.2 Thermodynamic equation. 38
12.3 Formulation of the continuity equation. 38
12.4 Moisture equation. 39
12.5 Other GFL variables. 39
12.6 Relationship between geopotential height gz and pressure depth. 39
12.7 Diagnostic expression of some vertical velocities: . 40

13 The Eulerian discretisation of the 3D fully compressible non-hydrostatic model (NHEE). 43
13.1 Discretisation of some intermediate quantities. 43
13.2 Momentum equation. 46
13.3 Thermodynamic equation. 47
13.4 Continuity equation. 48
13.5 Moisture and other GFL equations. 48
13.6 Relationship between geopotential height gz and pressure depth. 48
13.7 Diagnostic expression of some vertical velocities. 48
13.8 Vertical divergence d and gw equations. 49
13.9 Pressure departure equation. 51

14 The Eulerian discretisation of the 3D quasi-compressible non-hydrostatic model (NHQE). 52
14.1 Discretisation of some intermediate quantities. 52
14.2 Momentum equation. 54
14.3 Thermodynamic equation. 55
14.4 Continuity equation. 55
14.5 Moisture and other GFL equations. 55
14.6 Relationship between geopotential height gz and pressure depth. 56
14.7 Diagnostic expression of some vertical velocities. 56
14.8 Vertical divergence d and gw equations. 56

15 Discretisation of some other diagnosed quantities. 59
15.1 cp, R and κ. 59
15.2 ∇(RT). 59
15.3 Potential temperature PT and its horizontal gradient. 59
15.4 Virtual potential temperature PTV . 59
15.5 Equivalent potential temperature PTE. 59
15.6 Absolute vorticity ζabs. 60
15.7 Potential vorticity PV . 60
15.8 Shearing deformation SHD and stretching deformation STD. 60
15.9 Hydrostatic vertical divergence dhyd. 60
15.10Hydrostatic height coordinate vertical velocity whyd. 61

3

15.11Moisture convergence CV GQ. 61
15.12Montgomery potential Φmg and some other energetic quantities. 61
15.13Angular momentum of components MMA, MMB and MMC. 61
15.14Entropy S. 61

16 Miscellaneous (linear terms, Asselin filter, LBC). 62
16.1 Treatment of the linear terms. 62
16.2 The Asselin filter. 62
16.3 Lateral boundary coupling and upper boundary coupling. 62

17 The flux form of an equation and its discretisation. 63
17.1 The flux form of the equation of a variable X. 63

17.1.1 Introduction. 63
17.1.2 The flux form of the equation of X. 63

17.2 Use of the discretisation of the flux form of equations. 63
17.3 The discretisation of the flux form of the equation of a variable X. 64

17.3.1 Left hand side. 64
17.3.2 Term containing the horizontal divergence in the RHS. 64
17.3.3 Term containing the vertical divergence in the RHS. 64
17.3.4 Other terms in the RHS. 65

18 Organigramme. 66
18.1 Organigramme for the setup and control routines (direct code). 66
18.2 Organigramme under STEPO for the direct Eulerian 2D model. 67
18.3 Organigramme under STEPO for the direct Eulerian 3D model. 67
18.4 Inventory of GP... and GNH... routines computing intermediate dynamical quantities (direct code). 70

19 Basic description of the data flow under routine STEPO. 72
19.1 Introduction about OOPS-oriented structures. 72
19.2 The GMV structure data. 72
19.3 The GMVS structure data. 73
19.4 The GFL structure data. 74
19.5 The 2D surface variables used in the physics structure data. 77
19.6 Treatment of the data flow under routine STEPO. 79
19.7 Restriction to a dry model. 82

20 Tangent linear code. 83
20.1 Basics about TL code. 83
20.2 Tangent linear code for the 2D model: organigramme under STEPOTL for the Eulerian 2D model. 83
20.3 Tangent linear code for the 3D model: organigramme under STEPOTL for the Eulerian 3D model. 84
20.4 Testing the tangent linear code: configurations 501, 521 and 522. 85

21 Adjoint code. 86
21.1 Basics about AD code. 86
21.2 Adjoint code for the 2D model: organigramme under STEPOAD for the Eulerian 2D model. . . . 86
21.3 Adjoint code for the 3D model: organigramme under STEPOAD for the Eulerian 3D model. . . . 86
21.4 Testing the adjoint code: configurations 401, 421 and 422. 87

22 Some distributed memory features. 89

23 Specific Eulerian model variables in modules and namelists. 90

24 Bibliography. 93
24.1 Publications. 93
24.2 Some internal notes and other ARPEGE notes. 93

4

1 Introduction.

1.1 Content of this documentation.

The general purpose of this documentation is to describe the set of equations used, and also the way to integrate
the dynamics of the model. Two points will be examined in detail in this documentation: the Eulerian dynamics
and the discretisations used. For some other aspects (semi-Lagrangian dynamics, physics, spectral transforms,
horizontal diffusion, semi-implicit scheme), this documentation will not provide any detailed description, since
there are other documentations describing these topics.

This documentation can be seen as an updated version of some parts of documentations previously written
(Courtier et al., 1991; Joly, 1992; Bénard, 1998; Bénard, 2004). Additional features introduced in this
documentation are alternate formulations of NH model.

The following sets of equations will be described in this documentation:

• The primitive equations hydrostatic model.

• The fully compressible non-hydrostatic equations model (NHEE).

• The quasi compressible non-hydrostatic equations model (NHQE).

• The 2D shallow-water equations model (configuration 201).

• The 2D vorticity equation model (configuration 202).

1.2 Global models (ARPEGE/IFS).

ARPEGE/IFS is a spectral variable-mesh model. Geometry uses a conformal transformation defined by a high
resolution pole (which can be different from the true Northern pole in a tilted geometry) and a stretching
coefficient. That introduces a mapping factor M in the discretised form of the equations. M varies between
“c” at the high resolution pole and “1/c” at the low resolution pole; “c” is the stretching coefficient. Expression
of M is given by equation (7). For more details about this conformal transformation, see (Courtier and Geleyn,
1988). For more details about the spectral technique, see (Rochas and Courtier, 1992).

1.3 Limited area models (LAM).

ALADIN and AROME are limited area spectral models. The domain is obtained after a projection of a part
of the sphere on a plane, according to a stereo-Lambert projection or a Mercator projection. For the Mercator
projection, additionally to the conventional projection, there is now a tilted-rotated Mercator projection. That
still defines a mapping factor M . For most applications, the limited area is not too large and M generally remains
close to 1.

Fields are bi-periodic in a “bi-periodic” domain defined by three zones:

• an inner “conservation” zone C.

• an intermediate zone I.

• an extension zone E.

Transforms between grid-point space and spectral space are done by double-Fourier transforms. For more details
about LAM models geometry, see parts 2 and 5 of (Joly, 1992). The projection on a plane has been modified and
simplified so that the limited area domain is now defined by its centre and its dimensions. For more details see
(Janous̃ek, 2001).

1.4 Eulerian advection scheme.

In Eulerian form of equations, the time dependency equation of a variable X writes:

∂X

∂t
= −U.∇3X + Ẋ (1)

where U is the 3D wind, ∇3 is the 3D gradient operator, Ẋ is the sum of the dynamical and physical contributions.
X(t+ ∆t) is computed knowing X(t−∆t) at the same grid-point. Eulerian technique obliges to use a time-step
that matches the CFL (Courant Friedrich Levy) condition everywhere.

5

• For the global variable-mesh spectral global model ARPEGE, the horizontal CFL condition writes:

M
| V |
a

Dt

2

√
N(N + 1) < 1 (2)

where M is the mapping factor, Dt is the time-step at the first integration step and twice the time-step
otherwise (leap-frog scheme), | V | is the horizontal wind modulus, N is the truncation, a is the mean
Earth radius.

• For spectral limited area models (LAM), the horizontal CFL condition writes:

M
| V |
a

Dt

2
(2π)

√
1

L2
x

a2N2
m

+
L2

y

a2N2
n

< 1 (3)

See above for denotations M , Dt, | V |, a. Nm is the zonal truncation, Nn is the meridian truncation, Lx

(resp. Ly) is the zonal (resp. meridian) length of the LAM domain taken on a surface iso r = a.

The vertical CFL condition writes:
0.5 | η̇ | Dt∆η < 1 (4)

1.5 Semi-Lagrangian scheme.

In semi-Lagrangian form of equations, the time dependency equation of a variable X writes:

dX

dt
= Ẋ (5)

In a three-time level semi-Lagrangian scheme X(t + ∆t) is computed at a grid-point F knowing X(t − ∆t) at
the point O (not necessary a grid-point) where the same particle is at the instant t − ∆t. In a two-time level
semi-Lagrangian scheme X(t+ ∆t) is computed at a grid-point F knowing X(t) at the point O (not necessary a
grid-point) where the same particle is at the instant t. The semi-Lagrangian technique is more expensive for one
time-step than the Eulerian technique because it is necessary to compute the locations of the origin point O (and
in some options the medium point M) along the trajectory and to interpolate some quantities at these points.
But it allows to use larger time-steps: the stability condition is now the Lipschitz criterion (trajectories do not
cross each other) and is less severe than the CFL condition. For more details about the semi-Lagrangian scheme
and the Lipschitz criterion, see the corresponding documentation (IDSL).

1.6 Organisation of a timestep.

In equations (1) and (5), term Ẋ includes the effects of dynamics (for example the pressure gradient term and
Coriolis term in the momentum equation), physics (for example convection, rainfall, radiation, vertical diffusion,
soil interface, gravity wave drag), horizontal diffusion. One timestep has the different steps:

• inverse transforms from spectral to grid-point space: the horizontal derivatives necessary to compute the
horizontal advection term are computed during these transforms.

• grid-point calculations to compute the explicit part of the RHS of equation (1): dynamics, physics. The
temporal filter is done in the grid-point space.

• grid-point coupling for limited area models (LAM).

• direct transforms from grid-point to spectral space.

• spectral calculations: resolution of the Helmholtz equation to compute the semi-implicit correction for
linear terms, horizontal diffusion in spectral space, spectral nudging for LAM models.

This paper has for aim to describe the grid-point calculations to compute the dynamics in the RHS. The other
points are described in some other documentations. Description of tangent linear and adjoint codes has been
introduced for a subset of options.

6

2 Systems of horizontal coordinates.

2.1 Systems of horizontal spherical coordinates.

In the equations, and in particular in the momentum equation, three different coordinate systems are used:

• The geographical coordinate system (λ, θ) (which appears for example in the Coriolis term).

• In a tilted geometry, the coordinate system on a tilted unstretched sphere (λbne, θbne).

• The coordinate system on the computational (tilted and stretched) sphere (Λ,Θ).

Some relationships between these different systems of coordinates can be listed here:

• Relationship between λbne and Λ:
λbne = Λ (6)

• Expression of the mapping factor M :

M =
c2 + 1

2c
+
c2 − 1

2c
sin Θ (7)

At the equator of the computational sphere, Θ = 0, so MΘ=0 = (c2 + 1)/(2c) = 1 + ((c − 1)2)/(2c). One
can see that, for c > 1, this quantity is always > 1. That means that, in a stretched geometry, the equator
of the computational sphere is always in the high resolution part and is never identical to the iso-M = 1
which separates the high resolution domain from the low resolution domain.
M can also be computed from c and sin θbne:

M = 0.5
(
c+

1

c

)
− 0.5

(
c− 1

c

)[
(c2 − 1)− (c2 + 1) sin θbne

(c2 + 1)− (c2 − 1) sin θbne

]
(8)

Inverting this expression yields:

sin θbne =
c2 + 1

c2 − 1
− 2c

(c2 − 1)M
(9)

At the iso-M = 1 latitude, [sin θbne]M=1 = (c − 1)/(c + 1). For c > 1, [sin θbne]M=1 is always > 0: that
means that the geographical extension of the high resolution zone (M > 1) is smaller than the geographical
extension of the low resolution zone. The geographical extension of the high resolution zone diminishes
when c increases, and converges towards zero when c converges towards ∞.

• Relationships between θbne and Θ (the content of array RATATH in spherical geometry is 2 tan θbne/a):

cos θbne =
cos Θ

M
(10)

sin θbne =
(c2 − 1) + (c2 + 1) sin Θ

(c2 + 1) + (c2 − 1) sin Θ
(11)

tan θbne =
(c2 − 1) + (c2 + 1) sin Θ

2c cos Θ
(12)

M
∂X

∂Θ
=

∂X

∂θbne
(13)

Equation (11) can be inverted to provide sin Θ knowing sin θbne:

sin Θ = − (c2 − 1)− (c2 + 1) sin θbne

(c2 + 1)− (c2 − 1) sin θbne
(14)

• Relationships giving (λbne; θbne) knowing (λ; θ):

cos θbne cosλbne = cos θpe sin θ − sin θpe cos θ cos (λ− λpe) (15)

cos θbne sinλbne = − cos θ sin (λ− λpe) (16)

sin θbne = sin θpe sin θ + cos θpe cos θ cos (λ− λpe) (17)

• Relationships giving (λ; θ) knowing (λbne; θbne):

cos θ cos (λ− λpe) = cos θpe sin θbne − sin θpe cos θbne cosλbne (18)

cos θ sin (λ− λpe) = − cos θbne sinλbne (19)

sin θ = sin θpe sin θbne + cos θpe cos θbne cosλbne (20)

7

The distance between two points of geographical coordinates (λ1; θ1) and (λ2; θ2) is:

dist = a arccos [sin (θ1) sin (θ2) + cos (θ1) cos (θ2) cos (λ2 − λ1)] (21)

It is also useful to know the coordinates of vector (Gnordl,Gnordm) (which is the unit vector directed towards the
true North pole) in a local reference system of coordinates linked to the tilted stretched sphere.

Gnordl = −cos θpe sin Λ

cos θ
(22)

Gnordm =
2c sin θpe cos Θ− ((c2 − 1) + (c2 + 1) sin Θ) cos θpe cos Λ

((c2 + 1) + (c2 − 1) sin Θ) cos θ
(23)

For a horizontal vector, apparent coordinates (Xapp, Yapp) on the computational sphere and coordinates
(Xgeo, Ygeo) on the geographical sphere match the following relationships:

Xapp = GnordmXgeo + GnordlYgeo (24)

Yapp = −GnordlXgeo + GnordmYgeo (25)

2.2 Systems of horizontal coordinates in plane geometry.

In the equations, and in particular in the momentum equation, two different coordinate systems are used:

• The geographical system of coordinates (λ; θ).

• The coordinate systems on the plane: geographical distances (x; y); apparent distances (Mx;My).

Some new quantities have to be defined:

• KL is the projection constant (0 if Mercator projection, between 0 and 1 excluded if Lambert projection,
1 if polar stereographic projection).

• λ0 is the reference geographical longitude that defines the projection.

• γ is the rotation angle between the local system of coordinates on the sphere and the local system of
coordinates on the plane projection. Its expression is: γ = KL(λ− λ0)

• One denotes C = cos γ and S = sin γ. Vector (−S,C) is the compass (unit vector directed towards the
true North pole) and plays the same role as the vector (Gnordl,Gnordm) in spherical geometry. For a non
tilted-rotated Mercator projection, C = 1 and S = 0.

• M is the mapping factor of the projection; it remains close to 1 if the limited area domain is not too large.

• Horizontal wind V has components (U, V) on the sphere and reduced components (U
′
, V
′
) on the plane.

Matricial relationship between these different components writes:(
U
V

)
= M

(
C S
−S C

)(
U
′

V
′

)
(26)

• The geographical horizontal gradient operator ∇ has the horizontal components ∇u and ∇v on the sphere.
For a variable X: ∇uX = [1/a cos θ][∂X/∂λ] and ∇vX = [1/a][∂X/∂θ].

• ∂
′
xX and ∂

′
yX are the reduced horizontal derivatives on the plane; relationship between (∇uX; ∇vX) and

(∂
′
xX; ∂

′
yX) is: (∇uX

∇vX

)
= M

(
C S
−S C

)(
∂
′
xX

∂
′
yX

)
(27)

• Relationships giving the horizontal derivatives of the mapping factor M :

∂M cos θ

∂θ
= −KLM (28)

∂M cos γ

∂λ
= −KLM sin γ (29)

∂M sin γ

∂λ
= KLM cos γ (30)

For more details, see part 2.3 of (Joly, 1992).
For the tilted-rotated Mercator projection, most of what is written above remains valid (but (C, S) is generally
different from (1,0)). We first define a rotation with tilting on the sphere, then we apply a Mercator projection
on this transformed sphere. For more details about this type of projection, see (IDPRLAM).

2.3 Definitions of horizontal mesh-sizes.

There are several ways to define the horizontal mesh-size in spectral models. This topic was the object of a small
paper of Laprise (1992), who listed several possible definitions for the horizontal mesh-size in spectral models.
Other definitions have appeared, for example in documentations about the resolution of ARPEGE or in some
parts of the code. See internal paper (IDMES) for more details. The most usual definition which is used is the
horizontal mesh-size of the colocation grid-point.

8

3 The different types of horizontal derivatives used.

3.1 Global geometry.

∗ Horizontal gradient:
Introduction of a stretched geometry in ARPEGE, leads to define different notions of horizontal gradients.

• For a variable X, the geographical horizontal gradient operator on surfaces iso-η writes:

∇X = (∇zoX;∇meX) =
(

M

a cos Θ

∂X

∂Λ
;
M

a

∂X

∂Θ

)
=
(

1

a cos θbne

∂X

∂λbne
;

1

a

∂X

∂θbne

)
(31)

• The reduced horizontal gradient operator on surfaces iso-η (which is used in spectral space) writes:

∇
′
X =

(
∇
′
zoX;∇

′
meX

)
=
(

1

a cos Θ

∂X

∂Λ
;

1

a

∂X

∂Θ

)
(32)

• Relationship between geographical and reduced horizontal gradient operator writes:

∇X = M∇
′
X (33)

• ∇Π: the geographical horizontal gradient operator on surfaces iso-hydrostatic pressure.

• More generally when partial derivatives (horizontal or temporal ones) are provided without index, they are
derivatives on surfaces iso-η.

For some non-hydrostatic applications it is interesting to provide also information about the second-order
horizontal derivatives; we use the underscript “zo” for zonal derivatives and “me” for meridian derivatives.

• Double zonal reduced derivative:

∇
′2
zo zoX =

1

a cos Θ

∂
[

1
a cos Θ

∂X
∂Λ

]
∂Λ

(34)

• Double meridian reduced derivative:

∇
′2
me meX =

1

a2

∂2X

∂Θ2
(35)

• Double mixed reduced derivative:

∇
′2
zo meX =

1

a2 cos Θ

∂2X

∂Λ∂Θ
(36)

The relationships between geographical and reduced derivatives are ∇2
zo zoX = M2∇

′2
zo zoX, ∇2

me meX =
M2∇

′2
me meX and ∇2

zo meX = M2∇
′2
zo meX.

∗ Horizontal laplacian:
Relationships (2.3) of (Courtier and Geleyn, 1988), applied to the horizontal laplacian, write:

∇2X = M2∇
′2X (37)

where∇
′2 is the reduced laplacian, computed in spectral space (diagonal operator in spectral space). Its expression

is:

∇
′2X =

1

(a cos Θ)2

∂2X

∂Λ2
+

1

a2 cos Θ

∂
(
cos Θ ∂X

∂Θ

)
∂Θ

(38)

The same considerations are also valid for the scalar product and vectorial product of two gradients. Relationships
(2.3) of (Courtier and Geleyn, 1988) write:

(∇X).(∇Y) = M2(∇
′
X).(∇

′
Y) (39)

(∇X) ∧ (∇Y) = M2(∇
′
X) ∧ (∇

′
Y) (40)

9

∗ Horizontal vorticity and divergence:
Spectral computations provide the reduced divergence and vorticity D

′
and ζ

′
, from the velocity potential χ and

the stream function ψ:

D
′

= ∇
′2χ (41)

ζ
′

= ∇
′2ψ (42)

Geographical divergence and vorticity D and ζ write:

D = M2D
′

= ∇2χ (43)

ζ = M2ζ
′

= ∇2ψ (44)

In continuity equation the notation ∇V is used for D. In this equation it is convenient to isolate quantities ∇V
(i.e. M2D

′
) and ∇∧V (i.e. M2ζ

′
) which are the quantities easily available in the grid point part of the model,

just after the multiplications by M2.
Reduced divergence D

′
and reduced vorticity ζ

′
of the wind are linked to the reduced components of the wind by

the following relationships:

D
′

=
1

a cos Θ

∂U
′

∂Λ
+

1

a cos Θ

∂(V
′
cos Θ)

∂Θ
(45)

ζ
′

=
1

a cos Θ

∂V
′

∂Λ
− 1

a cos Θ

∂(U
′
cos Θ)

∂Θ
(46)

Formulae (45) and (46) allow to compute wind meridian derivatives from wind zonal derivatives, divergence and
vorticity:

∂U
′

∂Θ
= −ζ

′
+
U
′

a
tan Θ +

1

a cos Θ

∂V
′

∂Λ

∂V
′

∂Θ
= D

′
+
V
′

a
tan Θ− 1

a cos Θ

∂U
′

∂Λ

∗ Wind components:
Reduced wind components are linked to the velocity potential χ and the stream function ψ by the following
relationships:

(U
′
a cos Θ) =

∂χ

∂Λ
− cos Θ

∂ψ

∂Θ
(47)

(V
′
a cos Θ) =

∂ψ

∂Λ
+ cos Θ

∂χ

∂Θ
(48)

3.2 Plane geometry.

∗ Horizontal gradient:

• For a variable X, the geographical horizontal gradient operator on surfaces iso-η writes:

∇X = (∇uX;∇vX) =
(

1

a cos θ

∂X

∂λ
;

1

a

∂X

∂θ

)
(49)

• The reduced horizontal gradient operator on surfaces iso-η (which is used in spectral space) has components

∇
′
X = (∂

′
xX; ∂

′
yX) and we have the following identities: ∇

′
zo = ∂

′
x and ∇

′
me = ∂

′
y.

• Relationship between geographical horizontal gradient operator and reduced horizontal gradient operator
is given by equation (27); this equation can be rewritten

∇X = M

(
C S
−S C

)
∇
′
X (50)

or: (
∂
′
xX

∂
′
yX

)
=

1

M

(
C −S
S C

)(
∇uX
∇vX

)
=

1

M

(
C −S
S C

)(
1

a cos θ
∂X
∂λ

1
a
∂X
∂θ

)
=

(
1
M

∂X
∂x

1
M

∂X
∂y

)
(51)

The code easily provides ∇
′
X and M∇

′
X.

10

• Like for the spherical geometry, we can give the expressions of second-order horizontal derivatives:

Double zonal reduced derivative:

∇
′2
zo zoX =

1

M2

∂2X

∂x2
(52)

Double meridian reduced derivative:

∇
′2
me meX =

1

M2

∂2X

∂y2
(53)

Double mixed reduced derivative:

∇
′2
zo meX =

1

M2

∂2X

∂x∂y
(54)

∗ Horizontal laplacian:
Equation (37) is still valid, where:

∇
′2X =

∂2X

M2∂x2
+

∂2X

M2∂y2
(55)

That yields, for the geographical laplacian operator:

∇2X =
∂2X

∂x2
+
∂2X

∂y2
=

1

(a cos θ)2

∂2X

∂λ2
+

1

a2 cos θ

∂
(
cos θ ∂X

∂θ

)
∂θ

(56)

∗ Horizontal vorticity and divergence:
Equations (41), (42), (43) and (44) remain valid.

Reduced divergence D
′

and reduced vorticity ζ
′

of the wind are linked to the reduced components of the wind by
the following relationships:

D
′

=
1

M

∂U
′

∂x
+

1

M

∂V
′

∂y
(57)

ζ
′

=
1

M

∂V
′

∂x
− 1

M

∂U
′

∂y
(58)

Formulae (57) and (58) allow to compute wind meridian derivatives from wind zonal derivatives, divergence and
vorticity:

1

M

∂U
′

∂y
= −ζ

′
+

1

M

∂V
′

∂x

1

M

∂V
′

∂y
= D

′
− 1

M

∂U
′

∂x

∗ Wind components:
Reduced wind components are linked to the velocity potential χ and the stream function ψ by the following
relationships:

U
′

=
1

M

∂χ

∂x
− 1

M

∂ψ

∂y
(59)

V
′

=
1

M

∂ψ

∂x
+

1

M

∂χ

∂y
(60)

3.3 Additional remarks.

Horizontal derivatives are computed in the code during the spectral transforms from spectral space to grid-point
space. When entering the grid-point space, reduced horizontal derivatives are computed. The multiplication by
the mapping factor M (or a power of M) is done during the grid-point calculations.

11

4 The 2D equations.

4.1 Denotations for the 2D equations.

• V is the horizontal wind. Zonal and meridian components on computational grid are U and V .

• D is the horizontal wind divergence; ζ is the horizontal wind vorticity.

• Φ is the equivalent height. Φs is the surface geopotential height (i.e. the orography). Φ∗ is a reference
equivalent height which is only used in the semi-implicit scheme and the linear model.

• Ω is the Earth rotation angular velocity.

• ∇ is the first order horizontal gradient on η-surfaces.

• a is the Earth radius.

• (λbne, θbne) are the longitude-latitude coordinates on a tilted and not stretched geometry, the tilting being
the same as the one of the computational sphere.

• k is the unit vertical vector. One can write:

k =
r

| r | =
r

a

4.2 The 2D shallow-water system of equations in spherical geometry.

Momentum equation.

Lagrangian tendency: Coriolis force can be treated explicitly (δV=0) or implicitly (δV=1).

d (V + δV(2Ω ∧ r))

dt
= −2(1− δV)(Ω ∧V)−∇Φ (61)

Eulerian tendency: the Eulerian equation writes:

∂V

∂t
= −2(Ω ∧V)−∇Φ−V∇V −

(
U

a
tan θbne

)
k ∧V (62)

Advection (−V∇V) and curvature (−
(
U
a

tan θbne

)
k∧V) terms can be rearranged, in order to show the divergence

and vorticity in the equation and to eliminate the meridian derivatives of U and V :

∂V

∂t
= −2(Ω ∧V)−∇Φ + DV (63)

where DV is the vector of coordinates:(
V ζ − 1

a cos θbne
U ∂U
∂λbne

− 1
a cos θbne

V ∂V
∂λbne

−V D − 1
a cos θbne

U ∂V
∂λbne

+ 1
a cos θbne

V ∂U
∂λbne

− U2+V 2

a
tan θbne

)
Continuity equation.

Lagrangian tendency:

• Conventional formulation.

d(Φ− (1− δTR)Φs)

dt
= −(Φ− Φs)D + δTRV∇(Φs) (64)

• Lagrangian formulation.
d((Φ− Φs)J)

dt
= 0 (65)

J is a “Jacobian” quantity which matches dJ/dt = −JD.

Eulerian tendency: the Eulerian equation writes:

∂Φ

∂t
= −(Φ− Φs)D −V∇(Φ− Φs) (66)

4.3 The 2D “vorticity” system of equations in spherical geometry.

The system of equations starts from the shallow-water one, but Φ and Φs have to be replaced by zero. So
continuity equation becomes Φ = 0.
Momentum equation and definition of DV given in part 4.2 remain valid, replacing Φ by zero.

4.4 The 2D equations in plane geometry.

The equations are not significantly different from the spherical geometry ones, except for the curvature terms.
They are not detailed in this documentation. The 2D model is not coded in plane geometry.

12

5 The 3D equations.

5.1 Denotations for the 3D equations.

• V is the horizontal wind. Zonal and meridian components on computational grid are U and V .

• D is the horizontal wind divergence; ζ is the horizontal wind vorticity.

• T is the temperature.

• q is the humidity, ql the liquid water, qi the ice and qa the cloudiness.

• O3 is the ozone.

• Π is the hydrostatic pressure; Πs is the hydrostatic surface pressure.

• Ω is the Earth rotation angular velocity.

• (λbne, θbne) are the longitude-latitude coordinates on a tilted and not stretched geometry, the tilting being
the same as the one of the computational sphere.

• (λ, θ) are the geographical longitude-latitude coordinates.

• (Λ,Θ) are the computational sphere longitude-latitude coordinates.

• w is the z-coordinate vertical velocity: w = dz/dt.

• ω = dΠ/dt is the total temporal derivative of the hydrostatic pressure.

• gz is the geopotential height.

• Φ is the total geopotential. Φ = gz in the set of equations described.

• Φs = gzs is the surface geopotential (i.e. the orography).

• r is the vector directed upwards, the length of which is the Earth radius.

• a is the average Earth radius near the surface.

• i (resp. j) is the unit zonal (resp. meridian) vector on the Gaussian grid.

• k is the unit vertical vector. One can write k = r/a.

• g is the gravity acceleration constant, assumed to be vertically constant.

• R is the gas constant for air and Rd the gas constant for dry air.

• cp and cpd are respectively the specific heat at constant pressure for moist air and dry air.

• cv and cvd are respectively the specific heat at constant volume for moist air and dry air.

• κ and κd are respectively R/cp and Rd/cpd.

• ∇ is the first order horizontal gradient on η-surfaces.

• αT is a vertical-dependent coefficient used to define a thermodynamic variable T + δTR
αTΦs
RdTst

less sensitive

to orography than temperature T . Expression of αT is:

αT = B

(
−Rd

g

[
dT

dz

]
st

)
Tst

(
Πst

Πsst

)(−Rd
g [dTdz]

st
−1
)

(67)

where B defines the vertical hybrid coordinate (see part (8.3)). Subscript “st” stands for “standard
atmosphere”.

• ρ is the mass per volume unit of air.

• M is the mapping factor; M is a reference mapping factor for the semi-implicit scheme.

• S, G, N are adimensioned integral operators (see appendix 1).

• τ , γ, ν are linear operators used in the semi-implicit scheme; S∗, G∗, N∗ are their adimensioned versions.
For more details, see documentation (IDSI) about semi-implicit scheme.

For non-hydrostatic models:

• p is the pressure, ps is the surface pressure.

• T̃ is a modified temperature used in the NHQE model. T̃ = T exp(−κ log(p/Π)).

• L∗ is a linear operator used in the NHEE semi-implicit scheme (see documentation (IDSI)).

• L∗κ is a linear operator used in the NHQE semi-implicit scheme (see documentation (IDSI)).

13

5.2 The 3D primitive equation model.

5.2.1 Momentum equation.

Lagrangian tendency: Coriolis force can be treated explicitly (δV=0) or implicitly (δV=1) in the Lagrangian
equation.

d (V + δV(2Ω ∧ r))

dt
= −2(1− δV)(Ω ∧V)−∇Φ−RT∇(log Π) + FV (68)

FV is the physical contribution on horizontal wind.
Eulerian tendency: the Eulerian equation writes:

∂V

∂t
= −2Ω ∧V −∇Φ−RT∇(log Π)−V∇V − η̇ ∂V

∂η
−
(
U

a
tan θbne

)
k ∧V + FV (69)

Advection (−V∇V) and curvature (−
(
U
a

tan θbne

)
k∧V) terms can be rearranged, in order to show the divergence

and vorticity in the equation and to eliminate the meridian derivatives of U and V :

∂V

∂t
= −2Ω ∧V −∇Φ−RT∇(log Π) + DV − η̇

∂V

∂η
+ FV (70)

where DV is the vector of coordinates, in spherical geometry:(
V ζ − 1

a cos θbne
U ∂U
∂λbne

− 1
a cos θbne

V ∂V
∂λbne

−V D − 1
a cos θbne

U ∂V
∂λbne

+ 1
a cos θbne

V ∂U
∂λbne

− U2+V 2

a
tan θbne

)
This vector has a different expression in plane geometry (see (Joly, 1992)):(

V ζ − U∂
′
xU − V ∂

′
xV + (U

′2+V
′2)S

a cos θ
(sin θ −KL)

−V D + U∂
′
xV + V ∂

′
xU + (U

′2+V
′2)C

a cos θ
(sin θ −KL)

)
C and S (related to compass) and KL (related to plane projection) are defined in (Joly, 1992) and in section 2.

5.2.2 Thermodynamic equation.

Lagrangian tendency:
dT

dt
=
RT

cp

ω

Π
+ FT (71)

FT is the physical contribution on temperature.
Eulerian tendency: the Eulerian equation writes:

∂T

∂t
= −V∇T − η̇ ∂T

∂η
+
RT

cp

ω

Π
+ FT (72)

5.2.3 Continuity equation.

∗ 3D formulation of continuity equation: Continuity equation in the η vertical coordinate writes:

d
(
∂Π
∂η

)
dt

= −∂Π

∂η

(
D +

∂η̇

∂η

)
+ F

′
m (73)

or:
∂
(
∂Π
∂η

)
∂t

=
∂
(
∂Π
∂t

)
∂η

= −∇
(

V
∂Π

∂η

)
−
∂
(
η̇ ∂Π
∂η

)
∂η

+ F
′
m (74)

F
′
m is the physical contribution on ∂Π

∂η
, and can be rewritten F

′
m = −g ∂Fm

∂η
, where Fm is the diabatic flux applied

to continuity equation.
Equation (73) is not convenient to use directly, one rather uses an equation for the 2D variable log Πs. For a
2D variable X2D which does not depend on η, vertical advection is zero, so the relationship between Lagrangian
temporal derivative and Eulerian temporal derivative writes:

dX2D

dt
=
∂X2D

∂t
+ V∇X2D (75)

This formula is valid in particular for the following variables:

• X2D = log Πs.

• X2D = log Πs + δTR
Φs

RdTst
.

Tst is the surface standard temperature (288.15 K), Πsst is the surface standard hydrostatic pressure (101325 Pa),
Φs is the surface orography. δTR is 0 or 1; when δTR = 1 the new variable is less sensitive to the orography (new
variable proposed by Ritchie and Tanguay (1996) to reduce orographic resonance).

14

∗ Eulerian formulation of continuity equation: Calculations are not detailed, but when using the
properties of the hybrid coordinate the evolution equation of ∂Π

∂η
can be transformed into an evolution equation

of log Πs.

∂ log(Πs)

∂t
= − 1

Πs

∫ η=1

η=0

∇
(

V
∂Π

∂η

)
dη − 1

Πs

[
η̇
∂Π

∂η

]
η=1

+
1

Πs

[
η̇
∂Π

∂η

]
η=0

− 1

Πs
g [Fm]η=1 (76)

Fm is the diabatic flux applied to continuity equation. Fm is assumed to be zero at the top of the atmosphere.[
η̇ ∂Π
∂η

]
η=0

is non-zero only when there is an upper radiative boundary condition (LRUBC=.TRUE.).[
η̇ ∂Π
∂η

]
η=1

is non-zero only when the option “δm = 1” is activated (NDPSFI=1).

Using:

∇
(

V
∂Π

∂η

)
=
∂Π

∂η
∇V +

∂B

∂η
V∇Πs =

∂Π

∂η

[
∇V +

∂B

∂Π
V∇Πs

]
and definition of integral operator N, we have the following identity:

1

Πs

∫ η=1

η=0

∇
(

V
∂Π

∂η

)
dη = N

(
∇V +

∂B

∂Π
V∇Πs

)
∗ Lagrangian tendency of orographic term: Term Φs

RdTst
has no vertical variation and no local

temporal variation, so:

d
[

Φs
RdTst

]
dt

= V∇
[

Φs

RdTst

]
(77)

∗ Lagrangian formulation of continuity equation: Combining equations (75), (76) and (77) one
obtains the following Lagrangian equation:

d
[
log Πs + δTR

Φs
RdTst

]
dt

= −
1

Πs

∫ η=1

η=0

∇
(
V
∂Π

∂η

)
dη + V∇

(
log Πs + δTR

Φs

RdTst

)
−

1

Πs

[
η̇
∂Π

∂η

]
η=1

+
1

Πs

[
η̇
∂Π

∂η

]
η=0

−
1

Πs
g [Fm]η=1

(78)

∗ Vertically integrated Lagrangian formulation of continuity equation: Since equation
(78) mixes 3D terms (advective terms) and 2D terms (the other terms), and the LHS is a 2D term, one actually
discretizes a vertical integrated formulation of this equation, with a weight ∂B

∂η
; equation can be rewritten:

∫ η=1

η=0
∂B
∂η

d
[
log Πs+δTR

Φs
RdTst

]
dt

dη =∫ η=1

η=0
∂B
∂η

[
− 1

Πs

∫ η=1

η=0
∇
(
V ∂Π
∂η

)
dη + V∇

(
log Πs + δTR

Φs
RdTst

)
− 1

Πs

[
η̇ ∂Π
∂η

]
η=1

+ 1
Πs

[
η̇ ∂Π
∂η

]
η=0
− 1

Πs
g [Fm]η=1

]
dη(79)

5.2.4 Advectable GFL prognostic fields.

Equation is written for moisture q, and is the same for the other advectable GFL variables.
Lagrangian tendency:

dq

dt
= Fq (80)

Fq is the physical contribution on moisture.
Eulerian tendency: the Eulerian equation writes:

∂q

∂t
= −V∇q − η̇ ∂q

∂η
+ Fq (81)

5.2.5 Relationship between geopotential height gz and pressure depth.

Hydrostatic relationship writes:
∂Π

∂z
= −ρg (82)

The perfect gas formula writes:
Π = ρRT (83)

15

The combination of equations (82) and (83) provides the relationship between gz and pressure depth:

∂(gz)

∂Π
= −RT

Π
(84)

The vertical integrated formulation of equation (84) writes:

gz = gzs −
∫ Π

′
=Π

Π
′
=Πs

RT

Π′
dΠ
′

(85)

i.e.:
gz = gzs + G(RT)

5.2.6 Relationship between total geopotential Φ and pressure depth.

Φ = gz. See part (5.2.5) for more details.

5.2.7 Diagnostic expression of some vertical velocities.

∗ Term η̇ ∂Π
∂η : Continuity equation is vertically integrated on dη from η = 0 to η = ηl. Equation (74) becomes:[
∂Π

∂t

]
ηl

−
[
∂Π

∂t

]
η=0

+

∫ η=ηl

η=0

∇
(

V
∂Π

∂η

)
dη +

[
η̇
∂Π

∂η

]
ηl

−
[
η̇
∂Π

∂η

]
η=0

= −
∫ η=ηl

η=0

g
∂Fm

∂η
dη (86)

The following property is used:
[
∂Π
∂t

]
η=0

= 0. Equation (86) can be rewritten:[
∂Π

∂t

]
ηl

+

∫ η=ηl

η=0

∇
(

V
∂Π

∂η

)
dη +

[
η̇
∂Π

∂η

]
ηl

−
[
η̇
∂Π

∂η

]
η=0

= −
∫ η=ηl

η=0

g
∂Fm

∂η
dη (87)

which can be rewritten, taking in account that Fm at the top is zero:[
η̇
∂Π

∂η

]
ηl

=

[
η̇
∂Π

∂η

]
η=0

−
[
∂Π

∂t

]
ηl

−
∫ η=ηl

η=0

∇
(

V
∂Π

∂η

)
dη − g [Fm]ηl (88)

One uses equation (167) and one replaces ∂Πs
∂t

by its expression provided by equation (76). That yields expression

of η̇ ∂Π
∂η

: [
η̇ ∂Π
∂η

]
ηl

= Bηl
∫ η=1

η=0
∇
(
V ∂Π

∂η

)
dη −

∫ η=ηl

η=0
∇
(
V ∂Π

∂η

)
dη

+Bηl
[
η̇ ∂Π
∂η

]
η=1
−Bηl

[
η̇ ∂Π
∂η

]
η=0

+Bηlg [Fm]η=1 − g [Fm]ηl (89)

This equation can be rewritten in its “barycentric” formulation:[
η̇ ∂Π
∂η

]
ηl
−Bηlg [Fm]η=1 + g [Fm]ηl = Bηl

∫ η=1

η=0
∇
(
V ∂Π

∂η

)
dη −

∫ η=ηl

η=0
∇
(
V ∂Π

∂η

)
dη

+Bηl
[
η̇ ∂Π
∂η

]
η=1
−Bηl

[
η̇ ∂Π
∂η

]
η=0

(90)

∗ Pressure coordinate vertical velocity ω: Equation (87) can be rewritten:[
dΠ

dt

]
ηl

= [V∇Π]ηl −
∫ η=ηl

η=0

∇
(

V
∂Π

∂η

)
dη +

[
η̇
∂Π

∂η

]
η=0

− g [Fm]ηl (91)

This equation can be rewritten in its “barycentric” formulation:[
dΠ

dt

]
ηl

+ g [Fm]ηl = [V∇Π]ηl −
∫ η=ηl

η=0

∇
(

V
∂Π

∂η

)
dη +

[
η̇
∂Π

∂η

]
η=0

(92)

i.e.: [
ω

Π

]
ηl

=
[

1

Π

dΠ

dt
+

1

Π
gFm

]
ηl

=
[
V
∇Π

Π

]
ηl

− 1

Πηl

∫ η=ηl

η=0

∇
(

V
∂Π

∂η

)
dη +

1

Πηl

[
η̇
∂Π

∂η

]
η=0

(93)

Remark:
1

Πηl

∫ η=ηl

η=0

∇
(

V
∂Π

∂η

)
dη =

[
S
(
∇V +

∂B

∂Π
V∇Πs

)]
ηl

16

5.3 The fully compressible non-hydrostatic model (NHEE).

These equations are well described in (IDNHPB) and we will recall here some basics. See (IDNHPB) for more
details, especially for the intermediate calculations leading to the following form of the equations.
In the NHEE non-hydrostatic model there are two additional prognostic variables, one linked with the pressure
departure, and the other one with the vertical divergence. For the equations already existing in the 3D primitive
equation model:

• The momentum equation is slightly modified (especially the pressure gradient term).

• The temperature equation is slightly modified.

• Continuity equation computes the evolution of log Πs and is not modified.

• Equations for GFL variables are not modified.

In the fully compressible NHEE model, the two additional prognostic variables are the following ones:

• in the pressure departure equation, prognostic variable is

Q̂ = log(
p

Π
)

• in the vertical divergence equation, prognostic variable is d (vertical divergence). There is a possibility to
take d4 = d+ X, where:

X =
p

∂Π
∂η
RT
∇Φ

(
∂V

∂η

)
(94)

5.3.1 Momentum equation.

Compared to the hydrostatic model, the pressure gradient term now writes:

∂p

∂Π
∇Φ +RT

∇p
p

It is highly desirable to write ∇p/p rather than ∇(log p) because the discretisation of this term is not exactly a
discretisation of ∇(log p).
Lagrangian tendency: Coriolis force can be treated explicitly (δV=0) or implicitly (δV=1) in the Lagrangian
equation.

d (V + δV(2Ω ∧ r))

dt
= [−2(1− δV)(Ω ∧V)]− ∂p

∂Π
∇Φ−RT ∇(p)

p
+ FV (95)

FV is the physical contribution on horizontal wind.
Eulerian tendency: the Eulerian equation writes:

∂V

∂t
= −2Ω ∧V − ∂p

∂Π
∇Φ−RT ∇p

p
−V∇V − η̇ ∂V

∂η
−
(
U

a
tan θbne

)
k ∧V + FV (96)

Advection (−V∇V) and curvature (−
(
U
a

tan θbne

)
k∧V) terms can be rearranged, in order to show the divergence

and vorticity in the equation and to eliminate the meridian derivatives of U and V :

∂V

∂t
= −2Ω ∧V − ∂p

∂Π
∇Φ−RT ∇p

p
+ DV − η̇

∂V

∂η
+ FV (97)

where DV has the same expression as in the hydrostatic model.

5.3.2 Thermodynamic equation.

Compared to the hydrostatic model, there are two differences:

• The adiabatic conversion term now writes −RT
cv
D3, where

D3 = ∇V +
p

∂Π
∂η
RT
∇Φ

(
∂V

∂η

)
− gp

∂Π
∂η
RT

(
∂w

∂η

)
= D + X +

Rd

R
d (98)

• The diabatic term FT must be replaced by
[
cp
cv
FT

]
.

Lagrangian tendency:
dT

dt
= −RT

cv
D3 +

[
cp
cv
FT

]
(99)[

cp
cv
FT

]
is the physical contribution on temperature.

Eulerian tendency: the Eulerian equation writes:

∂T

∂t
= −V∇T − η̇ ∂T

∂η
− RT

cv
D3 +

[
cp
cv
FT

]
(100)

17

5.3.3 Continuity equation and diagnostic expression of some vertical velocities.

Continuity equation is unchanged compared to the hydrostatic equations. The consequence is that the calculation
of η̇ ∂Π

∂η
and ω is unchanged compared to the hydrostatic equations.

5.3.4 Advectable GFL prognostic fields.

Equations of advectable GFL are unchanged compared to the hydrostatic equations.

5.3.5 Relationship for geopotential height gz and pressure depth.

Compared to the hydrostatic model, the perfect gas formula now writes:

p = ρRT (101)

The combination of equations (82) and (101) provides the relationship between gz and pressure depth:

∂(gz)

∂Π
= −RT

Π

Π

p
(102)

The vertical integrated formulation of equation (102) writes:

gz = gzs −
∫ Π

′
=Π

Π
′
=Πs

RT

Π′
Π
′

p
dΠ
′

(103)

i.e.:
gz = gzs + G(RTΠ/p)

5.3.6 Relationship between total geopotential Φ and pressure depth.

Φ = gz. See part (5.3.5) for more details.

5.3.7 Vertical velocity w and vertical divergence d equations.

∗ Using d as prognostic variable: The relationship between d and w writes:

d = − gp

RdT
∂Π
∂η

(
∂w

∂η

)
(104)

For historic reasons d is defined with Rd and not R at the denominator in the NHEE system. But an alternate
definition with R would be possible (and even recommended).

Inverting (104) gives:

gw = gwsurf −
∫ Π

′
=Π

Π
′
=Πs

RdTΠ
′
d

p

dΠ
′

Π′
(105)

i.e:
gw = gwsurf + G(RdTΠd/p)

Surface condition is given by:
gwsurf = Vsurf∇Φs (106)

Lagrangian tendency:

dd

dt
= −dD3 + d∇V − gp

RdT
∂Π
∂η

∂
[
dw
dt

]
ad

∂η
+

gp

RdT
∂Π
∂η

(∇w)

(
∂V

∂η

)
+ Fd (107)

The physical contribution of d is linked to Fw which is the physical contribution of w, and also to F
′
m by the

following relationship:

Fd = − d[
∂Π
∂η

]F ′m − [gp

RdT
∂Π
∂η

∂Fw

∂η

]
(108)

One can notice that the RHS of equation (107) contains the term
∂[dwdt]

ad
∂η

which requires the computation of dw
dt

(at least its adiabatic part).

18

Equation of w is:
dw

dt
= g

∂(p−Π)

∂Π
+ Fw (109)

At the surface we have to use another equation (which requires some assumptions about the surface wind):

g
dwsurf

dt
=
dVsurf

dt
∇Φs + Vsurf [Vsurf∇(∇Φs)] + Fwsurf (110)

Value of term dVsurf
dt
∇Φs + Vsurf [Vsurf∇(∇Φs)] contains the horizontal second derivatives of surface orography

and Coriolis term (cf. equation (32) of Geleyn and Bubnová, 1995).
Eulerian tendency: the Eulerian equation writes:

∂d

∂t
= −V∇d− η̇ ∂d

∂η
− dD3 + d∇V − gp

RdT
∂Π
∂η

∂
[
dw
dt

]
ad

∂η
+

gp

RdT
∂Π
∂η

(∇w)

(
∂V

∂η

)
+ Fd (111)

∗ Using d4 as prognostic variable: Eulerian equation of d4 is:

∂d4

∂t
=
∂d

∂t
+
∂X

∂t
(112)

The calculation of ∂X
∂t

is not done by an Eulerian temporal advection but simply by a diagnostic evaluation and
the management of this term will be explained in section (13).

5.3.8 Pressure departure equation.

The prognostic variable currently coded is (option NPDVAR=2):

Q̂ = log
p

Π

Lagrangian tendency:

dQ̂

dt
= −cp

cv
D3 −

ω

Π
+

cp
cvT

FT (113)

Eulerian tendency: the Eulerian equation writes:

∂Q̂

∂t
= −V∇Q̂− η̇ ∂Q̂

∂η
− cp
cv
D3 −

ω

Π
+

cp
cvT

FT (114)

5.3.9 Geopotential equation.

This equation is not used in the NHEE model but we can mention it:

dΦ

dt
= gw + FΦ (115)

Eulerian tendency: the Eulerian equation writes:

∂Φ

∂t
= −V∇Φ− η̇ ∂Φ

∂η
+ gw + FΦ (116)

5.4 The quasi compressible non-hydrostatic model (NHQE).

In the NHQE non-hydrostatic model there is one additional prognostic variable (vertical divergence variable) and
one additional diagnostic variable (pressure departure variable). For the equations already existing in the 3D
primitive equation model:

• The momentum equation is slightly modified (especially the pressure gradient term).

• The temperature equation is slightly modified (prognostic variable T is replaced by T̃).

• Continuity equation computes the evolution of log Πs and is not modified.

• Equations for GFL variables are not modified.

In the quasi compressible NHQE model, the two additional prognostic and diagnostic variables are the following
ones:

• pressure departure variable Q̂ = log(p
Π

) is a diagnostic variable; diagnostic is done via the linear system.

19

• in the vertical divergence equation, prognostic variable is d4. d4 = d+ X = d+ XS + XD, where:

XS =
Π

∂Π
∂η
RT̃
∇Φ

(
∂V

∂η

)
(117)

XD = (1− κ)
(
ω

Π
+ SD

)
(118)

Integral operator S is defined by:

[SZ]η =
1

Πη

∫ η

top

∂Π

∂η
Zdη′

5.4.1 Momentum equation.

Lagrangian tendency: Coriolis force can be treated explicitly (δV=0) or implicitly (δV=1) in the Lagrangian
equation.

d (V + δV(2Ω ∧ r))

dt
= [−2(1− δV)(Ω ∧V)]− exp(κQ̂)

(
1 + Π

∂Q̂

∂Π

)
∇Φ−RT̃ exp(κQ̂)

(∇Π

Π
+∇Q̂

)
+ FV (119)

FV is the physical contribution on horizontal wind.
Eulerian tendency: the Eulerian equation writes:

∂V

∂t
= [−2(Ω∧V)]− exp(κQ̂)

(
1 + Π

∂Q̂

∂Π

)
∇Φ−RT̃ exp(κQ̂)

(∇Π

Π
+∇Q̂

)
−V∇V− η̇

∂V

∂η
−
(
U

a
tan θbne

)
k∧V + FV

(120)

Advection (−V∇V) and curvature (−
(
U
a

tan θbne

)
k∧V) terms can be rearranged, in order to show the divergence

and vorticity in the equation and to eliminate the meridian derivatives of U and V : see hydrostatic momentum
equation.

5.4.2 Thermodynamic equation.

Lagrangian tendency:
dT̃

dt
=
RT̃

cp

ω

Π
+ exp(−κQ̂))FT (121)

Eulerian tendency: the Eulerian equation writes:

∂T̃

∂t
= −V∇T − η̇ ∂T

∂η
+
RT̃

cp

ω

Π
+ exp(−κQ̂))FT (122)

5.4.3 Continuity equation and diagnostic expression of some vertical velocities.

Continuity equation is unchanged compared to the hydrostatic equations. The consequence is that the calculation
of η̇ ∂Π

∂η
and ω is unchanged compared to the hydrostatic equations.

5.4.4 Advectable GFL prognostic fields.

Equations of advectable GFL are unchanged compared to the hydrostatic equations.

5.4.5 Relationship for geopotential height gz and pressure depth.

Calculation of gz is done according to formula:

gz = gzs −
∫ Π

′
=Π

Π
′
=Πs

RT̃

Π′
dΠ
′

(123)

i.e. gz = gzs + G(RT̃).

5.4.6 Relationship between total geopotential Φ and pressure depth.

Φ = gz. See part (5.4.5) for more details.

20

5.4.7 Vertical velocity w and vertical divergence d equations.

∗ Using d as prognostic variable: In the NHQE model, d is defined with the moist R at the
denominator. The relationship between d and w writes:

d = − gΠ

RT̃ ∂Π
∂η

(
∂w

∂η

)
(124)

Inverting (124) gives:

gw = gwsurf −
∫ Π

′
=Π

Π
′
=Πs

RT̃d
dΠ
′

Π′
(125)

i.e:
gw = gwsurf + G(RT̃d)

Surface condition is given by equation (106).
Lagrangian tendency:

dd

dt
= −d(d+ XS)− gΠ

RT̃ ∂Π
∂η

∂
[
dw
dt

]
ad

∂η
+

gΠ

RT̃ ∂Π
∂η

(∇w)

(
∂V

∂η

)
+ Fd (126)

The physical contribution of d is linked to Fw which is the physical contribution of w, and also to F
′
m by the

following relationship:

Fd = − d[
∂Π
∂η

]F ′m − [gΠ

RT̃ ∂Π
∂η

∂Fw

∂η

]
(127)

One can notice that the RHS of equation (126) contains the term
∂[dwdt]

ad
∂η

which requires the computation of dw
dt

(at least its adiabatic part).

Equation of w is:

dw

dt
=
g

κ

[
∂Π(exp(κQ̂)− 1)

∂Π
+ (κ− 1)(exp(κQ̂)− 1)

]
+ Fw (128)

This is equivalent to write:
dw

dt
= g

[
∂pκ

∂Πκ
− 1
]

+ Fw

At the surface we have to use another equation (which requires some assumptions about the surface wind):

g
dwsurf

dt
=
dVsurf

dt
∇Φs + Vsurf [Vsurf∇(∇Φs)] + Fwsurf (129)

Value of term dVsurf
dt
∇Φs + Vsurf [Vsurf∇(∇Φs)] contains the horizontal second derivatives of surface orography

and Coriolis term (cf. equation (32) of Geleyn and Bubnová, 1995).
Eulerian tendency: the Eulerian equation writes:

∂d

∂t
= −V∇d− η̇ ∂d

∂η
− d(d+ XS)− gΠ

RT̃ ∂Π
∂η

∂
[
dw
dt

]
ad

∂η
+

gΠ

RT̃ ∂Π
∂η

(∇w)

(
∂V

∂η

)
+ Fd (130)

∗ Using d4 as prognostic variable:

Eulerian equation of d4 is:
∂d4

∂t
=
∂d

∂t
+
∂X

∂t
(131)

The calculation of ∂X
∂t

is not done by an Eulerian temporal advection but simply by a diagnostic evaluation and
the management of this term will be explained in section (13).

5.4.8 Closure equation.

The quasi-elastic assumption assumes the following constraint:

d4 + SκD = 0 (132)

Sκ denotes I − (1− κd)S.

21

6 Some other diagnosed quantities.

6.1 cp, R and κ.

For cp (air calorific capacity at constant pressure):

cp = cpd(1− q − ql − qi) + cpvq + cplql + cpiqi (133)

where cpd is the dry air calorific capacity at constant pressure, cpv is the water vapour calorific capacity at
constant pressure, cpl is the liquid water calorific capacity, and cpi is the ice calorific capacity.
For R (air constant):

R = Rd(1− q − ql − qi) +Rvq (134)

where Rd is the dry air constant and Rv is the water vapour air constant.
For κ:

κ =
R

cp
(135)

The ratio cv/cp is given by equation:
cv
cp

= 1− κ (136)

6.2 ∇(RT).

Its expression writes:
∇(RT) = (Rv −Rd)T∇q +R∇T (137)

6.3 Potential temperature PT and its horizontal gradient.

Expression of PT writes:

PT = T
[

Π

Π1000

]−κ
(138)

where Π1000 = 100000 Pa
Its horizontal gradient writes:

∇(PT) = PT
(∇T
T
− κ∇Π

Π

)
(139)

6.4 Virtual potential temperature PTV .

Its expression writes:

PTV = TV
[

Π

Π1000

]−κd

=
R

Rd
T
[

Π

Π1000

]−κd

(140)

where Π1000 = 100000 Pa; κd = Rd/cpd.

6.5 Equivalent potential temperature PTE.

Its expression writes:

PTE = PT exp

[
Lqsat

[cpsat]T

]
(141)

where the potential temperature PT has been defined by formula (138). Here L is the vapour water latent heat
per mass unit. Expression of [cpsat] writes:

[cpsat] = cpd + (cpv − cpd)qsat

6.6 Absolute vorticity ζabs.

Its definition is given by formula:
ζabs = ζ + f (142)

6.7 Potential vorticity PV .

Expression of PV is:

PV =
[
g
∂V

∂Π

] [
M

a cos Θ

∂PT

∂Λ

]
−
[
g
∂U

∂Π

] [
M

a

∂PT

∂Θ

]
− gζabs

∂PT

∂Π
(143)

22

6.8 Shearing deformation SHD and stretching deformation STD.

Spherical geometry:

STD =
1

a cos Θ

∂U

∂Λ
− 0.5D (144)

SHD =
1

a cos Θ

∂V

∂Λ
− 0.5ζ (145)

Plane geometry:
STD = ∇uU − 0.5D (146)

SHD = ∇uV − 0.5ζ (147)

A total deformation can be defined as follows:

DEF =
√

(2SHD)2 + (2STD)2 (148)

6.9 Hydrostatic vertical divergence dhyd.

We consider the definition of dhyd with Rd. Identity of the temperature equation NHEE RHS and hydrostatic
RHS gives the following definition for hydrostatic vertical divergence.

dhyd = − R

Rd

[
cv
cp

ω

Π
+∇V +

Π

RT
∇ [gz]

∂V

∂Π

]
(149)

Assuming that hydrostatic equations are in quasi compressible equilibrium yields another possible expression for
dhyd:

dhyd = − R

Rd
[−XS − XD − SκD] (150)

6.10 Hydrostatic height coordinate vertical velocity whyd.

The expression of whyd matches the following equation:

dhyd = −g Π

RdT

∂whyd/∂η

∂Π/∂η
(151)

which can be rewritten, after a vertical integration:

g [whyd]η=ηl
= g [whyd]surf +

∫ η=1

η=ηl

(∂Π/∂η)RdT

Π
dhyddη (152)

where:
g [whyd]surf = [V]surf ∇Φs (153)

i.e.:
gwhyd = g [whyd]surf + G(RdTdhyd)

6.11 Moisture convergence CV GQ.

This quantity is also denoted MOCON and is used as input of some convection schemes. Its expression writes:

CV GQ = −V∇q − η̇ ∂q
∂η

(154)

This notion can be generalized to any intensive quantity X: for a quantity X one can define CV GX as:

CV GX = −V∇X − η̇ ∂X
∂η

(155)

6.12 Montgomery potential Φmg and some other energetic quantities.

Formulae for enthalpy and kinetic energy are guaranteed at least for the hydrostatic model (must we add 0.5w2

in the NH model?).

• Montgomery potential: Φmg = cpdT + gz.

• Dry static energy: s = cpT + gz.

• Moist static energy: sh = cpT + gz + Lq.

• Enthalpy: h = cpT + gz + 0.5 ∗ (U2 + V 2).

• Kinetic energy: KE = 0.5 ∗ (U2 + V 2).

Here L is the vapour water latent heat per mass unit.

23

6.13 Angular momentum of components MMA, MMB and MMC.

Axial angular momentum:
MMA = [UG + Ωa cos θ] a cos θ (156)

The two other components of the angular momentum are:

MMB = a [− (UG + Ωa cos θ) sin θ cos(λ+ Ωt) + VG sin(λ+ Ωt)] (157)

MMC = a [− (UG + Ωa cos θ) sin θ sin(λ+ Ωt)− VG cos(λ+ Ωt)] (158)

(UG;VG) are the geographical wind components in a geographical system of coordinates; t is the time since the
departure of the model.

6.14 Entropy S.

∗ Hydrostatic model: The total entropy for moist air is given by the following formula:

S = cp log
[
T

T0

]
−R log

[
Π

Π1000

]
+ S0 (159)

where Π1000 = 100000 Pa; T0 = 273.15 K; S0 = S(T = T0; Π = Π1000).
It is easier to get the partial entropies Sd (for dry air), Sv (for water vapour), Sl (for liquid water) and Si (for
ice). They are respectively given by the following formulae:

Sd = cpd log
[
T

T0

]
−Rd log

[
Πd

Π1000

]
+ Sd0 (160)

Sv = cpv log
[
T

T0

]
−Rv log

[
Πv

Π1000

]
+ Sv0 (161)

Sl = cpl log
[
T

T0

]
+ Sl0 (162)

Si = cpi log
[
T

T0

]
+ Si0 (163)

Πd and Πv are respectively the partial pressures of dry air and water vapour: Πv = qΠ and Πd = (1− q)Π.
Constants Sd0, Sv0, Sl0, Si0 have the following values: Sd0 = 6775Jkg−1K−1, Sv0 = 10320Jkg−1K−1,
Sl0 = 3517Jkg−1K−1, Si0 = 2296Jkg−1K−1.
The total entropy for moist air writes:

S = Sd(1− q − ql − qi) + Svq + Slql + Siqi = Sd + (Sv − Sd)q + (Sl − Sd)ql + (Si − Sd)qi

∗ Non-hydrostatic model: The hydrostatic pressures Π, Πd and Πv must be replaced by the total
pressures p, pd and pv.

24

7 Discretisation of the equations: general aspects.

7.1 Denotations and preliminary remarks.

∗ Upper index:
• First integration step:

+ : t+ ∆t quantity.

o : t quantity.

− : t quantity.

• Following integration steps:

+ : t+ ∆t quantity.

o : t quantity.

− : t−∆t quantity.

∗ Particular case of the first timestep: Written discretisations are valid from the second integration
step. ∆t has to be replaced by ∆t

2
for the first integration step (in this case the t−∆t quantities are equal to the

t quantities).

∗ The different classes of prognostic variables: Prognostic variables can be split into different
classes:

• 3D variables, the equation RHS of which has a non-zero adiabatic contribution and a non-zero semi-implicit
correction contribution. They are called “GMV” in the code (“GMV” means “grid-point model variables”).
This class of variables includes wind components, temperature (and the two additional non-hydrostatic
variables in a non-hydrostatic model). The sub-class of thermodynamic variables includes T , and the two
additional non-hydrostatic variables in a non-hydrostatic model. There are NFTHER thermodynamic
variables.

• 3D “conservative” variables. The equation RHS of these variables has a zero adiabatic contribution, only
the diabatic contribution (and the horizontal diffusion contribution) can be non-zero. They are called
“GFL” in the code (“GFL” means “grid-point fields”). We can divide this class of variables into two
sub-classes:

– Historical variables (they are advectable). This class of variables includes for example:

∗ humidity q.
∗ liquid water ql.
∗ ice qi.
∗ cloud fraction qa.
∗ rain qr.
∗ snow qs.
∗ convective liquid water qlconv.
∗ convective ice qiconv.
∗ convective rain qrconv.
∗ convective snow qsconv.
∗ graupels qg.
∗ hail qh.
∗ ozone O3.
∗ aerosols qAERO.
∗ TKE (qTKE).
∗ Variables for EFB turbulent parameterization (EFB1 to EFB3).
∗ some extra fields.

– Some non-advectable pseudo-historical variables which are often simple diagnostics which must be
conserved from one timestep to the following one. This class of variables includes for example:

∗ atmospheric total liquid water content for radiation qlrad.
∗ atmospheric total ice content for radiation qirad.
∗ convective precipitation flux (qCPF).
∗ stratiform precipitation flux (qSPF).
∗ second-order flux for AROME (qSRC).
∗ forcings (1D model) (qFORC).
∗ easy diagnostics for AROME physics (qEZDIAG).
∗ greenhouse gases for ECMWF physics (qGHG).

25

∗ chemistry for ECMWF physics (qCHEM).
∗ ERA40 reanalysis fields (ECMWF) (qERA40).
∗ moisture convergence for MF physics (qCVGQ).
∗ total humidity variation for HIRLAM physics (qQVA).
∗ standard deviation of the saturation depression (qSDSAT).
∗ convective vertical velocity (qCVV).
∗ downdraught mesh fraction for ALARO physics (qDAL).
∗ downdraught vertical velocity for ALARO physics (qDOM).
∗ updraught mesh fraction for ALARO physics (qUAL).
∗ updraught vertical velocity for ALARO physics (qUOM).
∗ pseudo-historic convective cloudiness for ALARO physics (qUNEBH).
∗ total turbulent energy (qTTE).
∗ prognostic mixing length (qMXL).
∗ shear source term for turbulence (qSHTUR).
∗ flux form source term for turbulence: moisture (qFQTUR).
∗ flux form source term for turbulence: enthalpy (qFSTUR).
∗ Rasch-Kristjansson enthalpy tendency for ALARO physics (qRKTH).
∗ Rasch-Kristjansson water vapour tendency for ALARO physics (qRKTQV).
∗ Rasch-Kristjansson condensates tendency for ALARO physics (qRKTQC).
∗ pseudo-historic entrainment for ALARO physics (qUEN).
∗ quantities related to methane (qLRCH4).
∗ output aerosols for diagnostics (qAEROUT).
∗ output fields from UV processor (qUVP).
∗ output fields from ECMWF physics (qPHYS).
∗ diagnostic fields for NORO GWD scheme (qNOGW).
∗ semi-Lagrangian dynamics diagnostic fields (qSLDIA).
∗ extra fields for “CRM” model (ECMWF) (qCRM).
∗ specific gas constant (qSPEC).
∗ LIMA prognostic fields (qLIMA).
∗ aerosol optical thicknesses (qAERAOT).
∗ aerosol lidar simulator (qAERLISI).

• 2D variables, the equation RHS of which mixes 3D and 2D terms, has a non-zero adiabatic contribution
and a non-zero semi-implicit correction contribution. They are called “GMVS” in the code (“GMVS”
means “grid-point model variables for surface”). This class of variables includes the logarithm of surface
pressure (continuity equation).

• 2D surface variables used in the physics. They are purely grid-point variables and they represent data at
the surface or into different layers of the soil. This class of variables includes for example the water content
of the superficial reservoir of the soil, or the snow depth. Contrary to the “GMVS” variables they are never
advected. They include prognostic surface fields and diagnostic surface fields.

7.2 Discretisation.

General case: 3D variable in a 3D model:
Equation

∂X

∂t
= −V∇X − η̇ ∂X

∂η
+A+ F (164)

is discretised as follows for unlagged physics:

(X −∆tβL)+ = X− + [2∆tA− 2∆tβL − 2∆tV∇X − 2∆tη̇
∂X

∂η
]o + [∆tβL+ 2∆tF]− (165)

and as follows for lagged physics:

(X −∆tβL)+ = X− + [2∆tA− 2∆tβL − 2∆tV∇X − 2∆tη̇
∂X

∂η
]o + [∆tβL]− + [2∆tF]+ (166)

A is the total (non linear and linear) adiabatic contribution, L is the linear adiabatic contribution (semi-implicitly
treated), F is the physical contribution, V∇X is the horizontal advection, η̇ ∂X

∂η
is the vertical advection. All

quantities are evaluated at the same grid point F . Calculation of X+ knowing (X −∆tβL)+ is done in spectral
space. The remaining calculations are done in grid-point space. Horizontal diffusion is not taken in account in
this formula and is done in spectral space.
When doing lagged physics one first computes, without physics

Xprov = (X −∆tβL)+ − (∆tβL)− + (2∆tβL)o = X− + [2∆tA− 2∆tV∇X − 2∆tη̇
∂X

∂η
]o

then does the lagged physics, then computes (X −∆tβL)+

26

Particuliar cases:

• GFL variables: terms A and L are zero for these variables. For non advected GFL variables, the advection
terms are replaced by zero.

• 2D variable in a 3D model (continuity equation): see general case, but:

– A+ V∇X is a 2D quantity which is the vertical integral of a 3D quantity.

– L is a 2D quantity which is the vertical integral of a 3D quantity.

– F is a 2D quantity which is the vertical integral of a 3D quantity.

– η̇ ∂X
∂η

is zero.

• 2D variable in a 2D model: see general case, but η̇ ∂X
∂η

is zero in this case.

7.3 Vertical discretisation in a 3D model.

There are two “main” ways of managing the vertical discretisations: a conventional one which has the property
of conserving some global invariants, and another discretisation using a finite elements representation.

∗ Finite difference vertical (VFD) discretisation (LVERTFE=.F.): The main features of
this type of discretisation are:

• Discretisations mix half level and full level quantities.

• η̇ ∂Π
∂η

is computed at half levels.

• The prognostic 3D variables are computed at full levels.

• When computing a vertical integral from the surface (resp. the top), only quantities between the surface
(resp. the top) are involved; integrals first give half level quantities, then full level quantities by adding a
residual term. This is the case for example for the divergence integral term used in the continuity equation
and in the diagnostic equation giving some vertical velocities.

• The half level hydrostatic pressure always matches the definition of the hybrid vertical coordinate. On the
contrary, the full level hydrostatic pressure does not always do that (that depends on the way to compute
it, there are different possible options).

∗ Finite element vertical (VFE) discretisation (LVERTFE=.T.): The main features of
this type of discretisation are:

• Discretisations generally avoid computation of half level quantities.

• η̇ ∂Π
∂η

is computed at full levels.

• The prognostic 3D variables are computed at full levels.

• All the vertical integrals of the adiabatic part use a matricial multiplication with special coefficients
computed in setup routines. When computing a vertical integral from the surface or the top, all the
full levels are involved. Vertical integrals directly give full level quantities. The lines of the integral
matricial operator will be denoted by [Rinte](surf,l) (resp. [Rinte](top,l)) for an integral from the surface
(resp. the top) to the layer l. The matricial operator will be denoted by [Rinte](top,surf) for an integral

from the top to the surface. For example,
∫ η=ηl

η=0
Xdη is discretised by the scalar product [Rinte](top,l)〈X〉

where [Rinte](top,l) is the l-th line of the matricial operator Rinte and 〈X〉 is the vector of coordinates
(X1;X2; ...;Xl; ...;XL) (values of X at full levels).

• All the vertical derivatives of the adiabatic part use a matricial multiplication with special coefficients
computed in setup routines. When computing a vertical derivative, all the full levels are involved. Vertical
derivatives directly give full level quantities. The lines of the matricial operator will be denoted by [Rderi]l
for a derivative to the layer l. For example, ∂X

∂η
is discretised by the scalar product [Rderi]l〈X〉 where [Rderi]l

is the l-th line of the matricial operator Rderi and 〈X〉 is the vector of coordinates (X1;X2; ...;Xl; ...;XL)
(values of X at full levels).

• Rderi is not the exact inverse of Rinte, and it is not recommended to apply Rderi and Rinte to the same
quantities (we should avoid to make appear Rderi(Rinte(X)) where this is X which actually appears): this
point may require incremental treatment of vertical derivatives in some parts of the code.

• The finite elements basis for Rinte can be a set of linear functions or a set of Hermite cubic functions.

• Both full level and half level hydrostatic pressure always match the definition of the hybrid vertical
coordinate.

More details are given in (Untch and Hortal, 2001), (Untch and Hortal, 2004) and in appendix 3.
The operator [Rinte] is stored in the array RINTE or RINTBF11 of YOMVERT and pre-computed in the
setup under SUVERTFE. Vertical integrations are done in the routine VERINT.
The operator [Rderi] is stored in one of the arrays RDER.. of YOMVERT and pre-computed in the setup
under SUVERTFE. Vertical derivatives are done in the routine VERDER. It is not exactly the inverse of the
operator [Rinte].
These arrays are attributes of structure TVFE (module YOMVERT).

27

8 The hydrostatic pressure based η vertical coordinate.

8.1 Definition of the η-coordinate and calculation of the hydrostatic pressure
at half levels.

The definition of the η-coordinate yields the following relationship:

Π = A(η) +B(η)Πs (167)

The coefficients A and B only depend on η. One has the following additional relationships:

• η = 1 at the surface.

• η = 0 at the top of the model.

• A(η = 1) = 0 and B(η = 1) = 1 at the surface.

• A(η = 0) = Πtop and B(η = 1) = 0 at the top of the model.

A and B are given at half levels, so:
Π
l

= A
l
+B

l
Πs (168)

8.2 Calculation of η at half and full levels.

The explicit definition of η is used at two locations: the semi-Lagrangian vertical interpolator and the VFE
integral and derivative operators.

There are two ways to compute η at half levels, according to the value of the namelist variable LREGETA (or
LVFE REGETA for the version of η used in the VFE operators, denoted by ηvfe):

• LREGETA=.TRUE. (regular spacing of η):

η
l

=
l

L
(169)

• LREGETA=.FALSE. (irregular spacing of η):

η
l

=
A
l

Πsst

+B
l

(170)

LREGETA is relevant only in the semi-Lagrangian scheme. LVFE REGETA is relevant only if
LVERTFE=.T. .

For ηvfe there is an additional option (LVFE REGETA=F, LVFE CENTRI=T) which gives something
intermediate between the original LVFE REGETA=F formulation and the original LVFE REGETA=T
formulation.

η
l

=

∑i=l

i=1
(Πsti −Πsti−1)q∑i=L

i=1
(Πsti −Πsti−1)q

(171)

where q is an exponent between 0 and 1; q = 0 provides LVFE REGETA=T; q = 1 provides the original
LVFE REGETA=F.

η at full levels is always computed according the following way:

ηl = 0.5(η
l
+ η

l−1
) (172)

8.3 Calculation of the hydrostatic pressure at full levels.

There are several ways to compute the hydrostatic pressure at full levels, according to the value of the namelist
variables LVERTFE, NDLNPR and LAPRXPK.
The following denotations are used:

• VFD0: LVERTFE=.F., NDLNPR=0.

• VFD1: LVERTFE=.F., NDLNPR=1.

• VFD2: LVERTFE=.F., NDLNPR=2.

• VFE0: LVERTFE=.T., NDLNPR=0.

Discretisation of full-level hydrostatic pressure:

28

• VFD0 with LAPRXPK=.TRUE. :
Πl = 0.5(Π

l
+ Π

l−1
) (173)

Remark: this equation matches the definition of the hybrid, coordinate, taking Al = 0.5(A
l

+ A
l−1

) and

Bl = 0.5(B
l
+B

l−1
).

For layer l = 1:
Πl=1 = 0.5Π

l=1
(174)

• VFD0 with LAPRXPK=.FALSE. :

log(Πl) =
Π
l
log(Π

l
)−Π

l−1
log(Π

l−1
)

Π
l
−Π

l−1

− 1 (175)

Remark: this equation does not match the definition of the hybrid coordinate but it matches the identity
log(Πl) = log(Π

l
)− αl (see section 8.5 for definition of α).

For layer l = 1 (replace Π
l−1

and Π
l−1

log(Π
l−1

) by zero in formula (175)):

Πl=1 = Π
l=1

/ exp(1) (176)

• VFD1 and VFD2:
Πl =

√
Π
l
Π
l−1

(177)

Remark: this equation does not match the definition of the hybrid coordinate but it matches the identity
log(Πl) = 0.5(log(Π

l
) + log(Π

l−1
)).

For layer l = 1:
Πl=1 = Π

l=1
/δl=1 (178)

where expression of δl=1 is given in section 8.5.

• VFE0: for all layers (including the layer number 1):

Πl = Al +BlΠs (179)

The way of computing Al and Bl is the following (the same method is applied to A and B, the following
equations are written for A): one discretises the following equation:

Aη −Aη=0 =

∫ η
′
=η

η
′
=0

dA

dη′
dη
′

(180)

This is a vertical integral and this integral is computed like any vertical integral in the case LVERTFE=.T.,
using a matricial product coded in routine VERINT. dA

dη
at full levels is discretised as follows:[

dA

dη

]
l

=
A
l
−A

l−1

η
l
− η

l−1

(181)

Remarks:

– Equation (179) matches the definition of the hybrid coordinate.

– The result slightly depends on the definition of η (variable LVFE REGETA) and gives something
close to the option: LVERTFE=.F.; NDLNPR=0; LAPRXPK=.TRUE. .

8.4 Calculation of the horizontal gradient of the hydrostatic pressure at half
and full levels.

At half levels, one simply applies the horizontal gradient operator to the half level pressure, using the formula
(168).

(∇Π)
l

= B
l
∇Πs (182)

At full levels:

• VFD: this gradient can be written with several different ways. The code is provided according the following
formula: [∇Π

Π

]
l

=

 [∆B]l + δl
A
l
B
l−1
−A

l−1
B
l(

Π
l
−Π

l−1

)(
Π
l
−Π

l−1

)
∇Πs (183)

• VFE: expression is simpler and simply writes:

(∇Π)l = Bl∇Πs (184)

or: [∇Π

Π

]
l

=
Bl

Al +BlΠs
∇Πs (185)

29

8.5 The quantities α and δ linked to pressure depth layers.

Meaning:
δ has the following meaning: the pressure depth of a layer, divided by the “average” pressure of this layer.
δl is close (sometimes equal) to (log Π)

l
− (log Π)

l−1
.

α has the following meaning: the pressure depth between a half level and the full level situated immediately
above it, divided by the “average” pressure between this half level and this full level. αl is close (sometimes
equal) to (log Π)

l
− (log Π)l.

These operators are used for discretisations of some vertical integrals.

Expressions for α and δ at full levels:
• VFD0:

– For a layer l between 2 and L (and also l = 1 if the pressure at the top of the model is not zero), α
and δ are discretised as follows at full levels:

αl = 1−
Π
l−1

∆Πl
log

(
Π
l

Π
l−1

)
(186)

δl = log

(
Π
l

Π
l−1

)
(187)

– For the layer l = 1 if the pressure at the top of the model is zero:

∗ αl=1 = 1 at METEO-FRANCE.
∗ αl=1 = log(2) at ECMWF.
∗ δl=1 has an infinite value. In practical, in the code, δl=1 is computed with a top pressure equal

to 0.1 Pa in this case in order to avoid the calculation of an infinite value.

• VFD1:

– For a layer l between 2 and L (and also l = 1 if the pressure at the top of the model is not zero), α
and δ are discretised as follows at full levels:

αl = 1−

√
Π
l−1

Π
l

= 1− Πl

Π
l

(188)

δl =
∆Πl

Πl
=

∆Πl√
Π
l−1

Π
l

(189)

Equation (189) can be rewritten: [
1

Π

]
l

=
δl

∆Πl
(190)

– For the layer l = 1 if the pressure at the top of the model is zero:

∗ αl=1 = 1 and α
l=0

= 1.

∗ δl=1 = 1 +
cpd
Rd

.

∗ Πl=1 = ∆Πl=1
δl=1

= ∆Πl=1

1+
cpd
Rd

.

∗
[

1
Π

]
l=1

=
1+

cpd
Rd

∆Πl=1
.

– Remark: equation (190) is also used for case NDLNPR=0 to discretise [1/Π]l.

• VFD2: the only difference with NDLNPR=1 is the expression of δl=1 if the pressure at the top of the
model is zero:

– δl=1 = 1 + δl=2([∆Π]l=1/[∆Π]l=2)
√

Π
l=2

/Π
l=1

– Πl=1 =
Π
l=1
δl=1

• VFE0: For a layer l between 1 and L, α and δ are discretised as follows at full levels:

αl =
Π
l
−Πl

Πl
(191)

δl =
∆Πl

Πl
=

∆Πl

Al +BlΠs
(192)

Remark: quantity αl is not used in the adiabatic part of the model (only in the MF-physics).

30

Expressions for ∇α and ∇δ at full levels: For VFD, details of calculations are provided in
appendix 2.

• VFD0:

– For a layer l between 2 and L (and also l = 1 if the pressure at the top of the model is not zero), ∇α
and ∇δ are discretised as follows at full levels:

[∇α]l =
Π
l
Π
l−1

log
(

Π
l

Π
l−1

)
−Π

l−1
(Π

l
−Π

l−1
)

(Π
l
−Π

l−1
)2

[
B
l

Π
l

−
B
l−1

Π
l−1

]
∇Πs (193)

[∇δ]l = −
A
l
B
l−1
−A

l−1
B
l

Π
l
Π
l−1

∇Πs (194)

The gradient of α+ log Π has a simple expression in this case:

[∇(α+ log Π)]l =
B
l

Π
l

∇Πs (195)

– For the layer l = 1 if the pressure at the top of the model is zero:

∗ [∇α]l=1 = 0.
∗ [∇δ]l=1: specific calculation to ensure a finite value; [∇δ]l=1 = 0 if Πtop = 0 or if top levels are

pure pressure levels.

• VFD1 and VFD2:

– For a layer l between 2 and L (and also l = 1 if the pressure at the top of the model is not zero), ∇α
and ∇δ are discretised as follows at full levels:

[∇α]l = −
αl
[
A
l
B
l−1
−A

l−1
B
l

]√
Π
l
Π
l−1

(
Π
l
−Π

l−1

)∇Πs (196)

[∇δ]l = −
δl
[
A
l
B
l−1
−A

l−1
B
l

]√
Π
l
Π
l−1

(
Π
l
−Π

l−1

)∇Πs (197)

Using equation (189), equation (199) can be rewritten:

[∇δ]l = −

[
A
l
B
l−1
−A

l−1
B
l

]
Π
l
Π
l−1

∇Πs (198)

– For the layer l = 1 if the pressure at the top of the model is zero:

∗ [∇α]l=1 = 0.
∗ [∇δ]l=1 = 0.

• VFE0: For a layer l between 1 and L, ∇δ is discretised as follows at full levels:

[∇δ]l =

(
[∆B]l
[∆Π]l

− Bl
Πl

)
δl∇Πs =

Al[∆B]l − [∆A]lBl
Πl[∆Π]l

δl∇Πs (199)

Quantity [∇α]l is useless in this case.

8.6 Computation of a good set of A and B at half levels.

It requires a formula giving a rather regular spacing in pressure, with the following constraints:

• (C1) ∆Π has little variations in the free troposphere.

• (C2) ∆Π is smaller in the PBL than in the free troposphere, and the variations of ∆Π are smooth in the
PBL.

• (C3) ∆Π regularly decreases when going up in the stratosphere.

• (C4) Π is a monotonous variable, even over high mountains.

• (C5) A is always positive, B is always between 0 and 1 and is a monotonous function.

• (C6) Near the surface, the vertical coordinate is a pure σ one. That means that A
l=L

and A
l=L−1

are
always 0.

• (C7) Near the top, the vertical coordinate is a pure pressure one. That means that B
l=1

and B
l=0

are
always 0.

• (C8) The set of A and B provided must ensure that the operator B used in the semi-implicit scheme can be
always diagonalised with real positive eigenvalues in all the available vertical discretisation schemes (this
is a delicate point especially when the vertical finite element scheme is used with LVFE REGETA=.F.).

31

Until 2006, we have used a formula provided by J.F. Geleyn: A and B are given by third-degree polynomials.
The freedom degrees are:

• The pressure of the first full layer.

• A ratio allowing to tune the depth of the layer number L.

• A reference pressure on the average orography of the Earth, which can be taken lower than the surface
standard pressure.

It is assumed that there are only one purely σ layer and one purely pressure layer, and that Πtop = 0. Some
tests done during autumn 2004 have shown that the operator B cannot always be diagonalised with real positive
eigenvalues, especially when the vertical finite element scheme is used with LVFE REGETA=.F. . The other
shortcoming of this formula is the too stringent constraint which obliges to have exactly one purely σ layer and
one purely pressure layer. We wish to be able to put several purely pressure layers in the stratosphere and to
obtain sets of A and B close to the ones used at ECMWF.

At ECMWF, a different formula is used, there is no documentation about it and no available FORTRAN
program giving it directly. It allows the possibility of having several purely pressure layers.

To overcome the previously mentioned shortcomings, we have regularly developed new ways of computing the
A and B allowing mode freedom degrees.
An algorithm has been developed between 2004 and 2006 and is described in the internal paper (IDAB). The
freedom degrees are:

• The pressure of the tropopause (generally taken to 250 hPa).

• The pressure of the top of the PBL (generally taken to 900 hPa).

• The number of layers in the stratosphere + mesosphere.

• The number of layers in the PBL.

• The number of layers in the free troposphere.

• The number of purely pressure layers.

• The number of purely σ layers.

• The pressure depth of the bottom model layer.

• The pressure of the first full layer.

• The speed of going from σ layers to pressure layers (governing spacing about mountains).

To sum-up, atmosphere is shared into three main layers and algorithm uses vertical polynomials depending on
pressure.
A more recent algorithm has been developed in 2012 with a possibility to share atmosphere into more than three
main layers; vertical dependency of polynomials used in this algorithm is done according to altitude instead of
pressure; conversions between altitude and pressure use standard atmosphere; altitude depths are prescribed at
some pre-defined altitude levels.

32

9 Treatment of the advection.

9.1 Treatment of the horizontal advection.

Horizontal advections are computed at full levels. For a variable X other than wind components:

[V∇X]l = Vl [∇Xl]l (200)

Remarks:

• For X = U or X = V (horizontal wind components) the meridian derivatives of U and V are not easily
available, and the horizontal gradient is rewritten in order to use the divergence, vorticity, and some
curvature terms. See the part (5.2.1) concerning the momentum equation for more details.

• The value of V and X used in formula (200) is taken at instant t.

9.2 Treatment of the vertical advection (3D model).

VFD treatment of vertical advection.

Vertical advection is treated explicitly, and uses half level (η̇ ∂Π
∂η

). For a variable X, its vertical advection η̇ ∂X
∂η

is
computed at full levels and is discretised as follows:(

η̇
∂X

∂η

)
l

= 0.5

((
η̇ ∂Π
∂η

)
l
(Xl+1 −Xl)

(∆Π)l
+

(
η̇ ∂Π
∂η

)
l−1

(Xl −Xl−1)

(∆Π)l

)
(201)

For the layer l = 1
(
η̇ ∂Π
∂η

)
η=0

can be different from 0 if a radiative upper condition is applied; one uses the top

value Xη=0 of X: (
η̇
∂X

∂η

)
1

= 0.5

((
η̇ ∂Π
∂η

)
l=1

(X2 −X1)

(∆Π)1
+

2
(
η̇ ∂Π
∂η

)
η=0

(X1 −Xη=0)

(∆Π)1

)
(202)

For the layer l = L,
(
η̇ ∂Π
∂η

)
L

can be different from 0 (if taking account of rainfall and evaporation in the continuity

equation); one uses the bottom value Xη=1 of X:(
η̇
∂X

∂η

)
L

= 0.5

(
2
(
η̇ ∂Π
∂η

)
η=1

(Xη=1 −XL)

(∆Π)L
+

(
η̇ ∂Π
∂η

)
l=L−1

(XL −XL−1)

(∆Π)L

)
(203)

The values of X,
(
η̇ ∂Π
∂η

)
and (∆Π) present in the RHS of equations (201), (202) and (203) are taken at instant t.

VFE treatment of vertical advection.

∗ General case:
Vertical advection is treated explicitly, and uses full level (η̇ ∂Π

∂η
). For a variable X, its vertical advection η̇ ∂X

∂η
is

computed at full levels and is discretised as follows:(
η̇
∂X

∂η

)
l

=

(
η̇
∂Π

∂η

)
l

(∆η)l
(∆Π)l

(
∂X

∂η

)
l

(204)

where (
∂X

∂η

)
l

= [Rderi]l〈X〉

(〈X〉 is the vector containing all layer values of X).

∗ Particuliar case of the moisture convergence:
The code present in routine CPPHINP currently uses a different vertical discretisation not described in detail.

33

10 Physics and physics-dynamics interface (3D model).

10.1 Time of evaluation.

In an Eulerian scheme physics can be evaluated at t −∆t (not lagged physics) or t + ∆t (lagged physics). The
lagged physics use as input the provisional t + ∆t variables available at the end of the grid-point calculations
(before the inversion of the semi-implicit system and the horizontal diffusion).

10.2 Physical tendencies, flux divergences, and flux.

∗ Physical tendencies and flux divergences: Physical tendencies write F = 1
ρ
∂F
∂z

in z-vertical

coordinate and F = −g ∂F
∂Π

in pressure Π-vertical coordinate. F is the flux.

∗ Relationship between fluxes and flux divergences: Between two hydrostatic pressure layers
Π(1) and Π(2), the fluxes difference writes:

F(Π(2))−F(Π(1)) =

∫ Π=Π(2)

Π=Π(1)

∂F
∂Π

dΠ (205)

The discretised form of this equation writes:

F
l
−F

l−1
=
[
∂F
∂Π

]
l
[∆Π]l (206)

10.3 Remark for VFE vertical discretisation.

Vertical integrals in the physics and transformations between fluxes and flux divergences keep the VFD
discretisation in this case. Operator Rinte is not used. Fluxes remain computed at half levels. When a flux
is needed at full levels knowing its value at half levels, the following average is used:

Fl = F
l−1

+
αl
δl

(
F
l
−F

l−1

)
10.4 Levels of physics-dynamics interfaces.

To summarize, we can say that calling the different physical parameterisations is done according to the following
scheme:

dynamics ->

physics-dynamics interface routines ->

physics caller routine ->

the different physical parameterisations.

For non-AROME MF physics, this kind of scheme can be retrieved in the following sequence of calls:

CPG -> MF_PHYS -> APLPAR -> AC.. and RAD.. routines.

Actions done in the physics-dynamics interface routines are:

• Calculation of input quantities which are used only in the physics (for example moisture convergence, solar
angle).

• Call the physics (via a physics caller routine).

• Conversion of the physics outputs (fluxes or tendencies of physics prognostic variables) into tendencies of
dynamics prognostic variables.

• Store tendencies in / add tendencies to appropriate buffers.

• Perform additional diagnostics.

• Temporal advance of surface and soil variables.

Some of them may have to call GP.. or GNH.. routines (do intermediate dynamical calculations), for example
GPHPRE.

In physics caller routines, we just find call to different physical parameterisation routines. These routines should
not do dynamics (call to GP.. routines like GPHPRE is forbidden) and should not know the kind of vertical
coordinate which is used in the adiabatic part of the model.

See documentation (IDPHYE) for more details about physics, and physics-dynamics interface.

34

10.5 The “delta m = 1” barycentric formulation.

The “δm = 0” assumption says that, when it rains, a particle of water is not replaced by a particle of dry air,
and when there is some evaporation (especially near the ground), there is no removal of dry air. This assumption
can lead to bad conservation of mass, especially for high resolution simulations (below 10 km). This assumption
remains acceptable for the ranges of horizontal resolutions where the hydrostatic hypothesis works well.
But a “δm = 1” formulation has been coded since several years, which takes account of the rainfall and the
evaporation in the dry air budget, for example by replacing a particle of water by a particle of dry air when
it rains. This “δm = 1” has evolved during the last years, going from a “non barycentric” formulation to a
“barycentric” formulation (the last one treats at the same level rainfall and evaporation). Since CY29T3/AL29T3,
the “barycentric” formulation of “δm = 1” formulation has been implemented in the code and we will give a short
description of it.

For “δm = 0”:

• when it rains, a particle of water is not replaced by a particle of dry air: the consequence is that the
diabatic term linked to rainfall is replaced by zero in the continuity equation.

• when there is evaporation, a created particle of water does not pull out a particle of dry air: the consequence
is that the diabatic term linked to evaporation is replaced by zero in the continuity equation.

• Fm becomes equal to zero.

• there is no modification of the vertical velocity, and η̇ ∂Π
∂η

at the surface is equal to zero.

For “δm = 1”:

• The precipitation flux and the evaporation flux must be taken into account, and Fm = FE +Fp is non-zero.
For the time being the following assumptions are done:

– FE is non-zero only at the surface, zero elsewhere.

– Fp is zero at the top of the atmosphere.

• η̇ ∂Π
∂η

is modified, excepted at the top of the atmosphere (where it remains to zero, unless LRUBC=.T.).

The “barycentric” formulation of “δm = 1” leads to the following modifications:

• Term ω: the RHS of equation (93) is the same for “δm = 0” and “δm = 1”. The consequence is that:[
ω

Π

]
ηl,δm=1

=
[
ω

Π

]
ηl,δm=0

• Term η̇ ∂Π
∂η

at the surface: [
η̇
∂Π

∂η

]
η=1,δm=1

=

[
η̇
∂Π

∂η

]
η=1,δm=0

+ g [FE + Fp]η=1

• Upper air term η̇ ∂Π
∂η

: [
η̇
∂Π

∂η

]
ηl,δm=1

=

[
η̇
∂Π

∂η

]
ηl,δm=0

+Bηlg [FE + Fp]η=1

• Diabatic part of ∂ log(Πs)
∂t

:[
∂ log(Πs)

∂t

]
δm=1

−
[
∂ log(Πs)

∂t

]
δm=0

= − 1

Πs
g [FE + Fp]η=1

35

11 The Eulerian discretisation of the 2D shallow-water system
of equations (spherical geometry).

11.1 Momentum equation.

∗ Definition of X, A and L.
X = V + δV(2Ω ∧ r) (207)

A = −2(Ω ∧V)−∇Φ (208)

L = −∇Φ + βCo[−2Ω ∧V] (209)

∗ Remarks.

• If β=1, the part of the non linear term which does not contain the Coriolis term is zero.

• It is desirable to discretise the momentum equation form given by equation (63). Vector DV can be
computed knowing the following quantities easily available in the grid-point part of the model: U , V , D,
ζ, 1

a cos θbne

∂U
∂λbne

, 1
a cos θbne

∂V
∂λbne

, 2
a

tan θbne.

11.2 Continuity equation.

∗ Definition of X, A and L.
X = Φ (210)

A = −(Φ− Φs)D (211)

L = −Φ∗(M
2
D
′
) (212)

11.3 Application to the 2D “vorticity” system of equations.

• For the 2D “vorticity” system of equations, start from the shallow-water model, and replace Φ and Φs by
zero in it.

36

12 The Eulerian discretisation of the 3D primitive equation
model.

12.1 Formulation of the momentum equation.

∗ Definition of X, A, L and F , top and bottom values.

X = V (213)

A = −2Ω ∧V −∇Φ−RT∇(log Π) (214)

L = −∇ [γT +RdT
∗ log(Πs)] + βCo[−2(Ω ∧V)] (215)

F = FV (216)

Top and bottom values are defined as follows:

Vη=0 = Vl=1 (217)

If δm = 0:
Vη=1 = Vl=L (218)

If δm = 1:
Vη=1 = 0 (219)

∗ Remarks.

• Coriolis term can also be put in the semi-implicit scheme by tuning βCo. Values βCo = 0 (LIMPF=.F.) and
βCo = 1 (LIMPF=.T.) are available. Caution: do not use LIMPF=.T. in variable resolution (formulation
of spectral computations is not correct in this case for the semi-implicit scheme).

• It is desirable to discretise the momentum equation form given by equation (70). Vector [DV]l on layer l
can be computed knowing the following quantities easily available in the grid-point part of the model: Ul,

Vl, M
2D
′
l , M

2ζ
′
l , [1

a cos θbne

∂U
∂λbne

]l, [1
a cos θbne

∂V
∂λbne

]l, [2
a

tan θbne]l.

∗ Discretisation of −2Ω ∧V at full levels:

[(−2Ω ∧V).i]l = 2Ω sin θVl (220)

[(−2Ω ∧V).j]l = −2Ω sin θUl (221)

∗ Discretisation of the pressure gradient term at full levels: The pressure gradient term
writes:

− (∇Φ +RT∇(log Π))

It contains the geopotential Φ = gz. Expression of gz is provided by equation (85). So the pressure gradient term
can be rewritten as follows:

−
(
∇Φs +∇

(∫ Π

Πs

−RT
Π
dΠ

)
+RT∇(log Π)

)
Term:

∇Φs +∇
(∫ Π

Πs

−RT
Π
dΠ

)
+RT∇(log Π)

is discretised as follows if LVERTFE=.F.:[
∇Φs +∇

(∫ Π

Πs
−RT

Π
dΠ
)

+RT∇(log Π)
]
l

=

∇Φs +
∑l+1

k=L
[∇(RT)]k δk +

∑l+1

k=L
(RT)k [∇δ]k

+ [∇(RT)]l αl + (RT)l [∇(α+ log Π)]l (222)

and as follows if LVERTFE=.T.:[
∇Φs +∇

(∫ Π

Πs
−RT

Π
dΠ
)

+RT∇(log Π)
]
l

=

∇Φs + [Rinte](surf,l)
〈
−∇(RT)δ+RT∇δ

∆η

〉
+ (RT)l [∇(log Π)]l (223)

(where 〈X〉 denotes the vertical vector of coordinates (Xk=1, ..., Xk=l, ..., Xk=L)).

37

∗ Discretisation of the grid-point Rayleigh friction: This term writes KfricU i, its discretisation
on layer l is KfricUli. An optional contribution can be added to V -component: this term writes KfricV j, its
discretisation on layer l is KfricVlj.

12.2 Thermodynamic equation.

∗ Definition of X, A, L and F , top and bottom values.

X = T (224)

A =
RT

cp

ω

Π
(225)

L = −τ(M
2
D
′
) (226)

F = FT (227)

Top:
Tη=0 = Tl=1 (228)

Bottom if δm = 0:
Tη=1 = Tl=L (229)

Bottom if δm = 1 (output of physics):
Tη=1 = Ts (230)

∗ Discretisation of the conversion term.[
RT

cp

ω

Π

]
l

=
RlTl
[cp]l

[
ω

Π

]
l

(231)

See part (12.7) for discretisation of ω
Π

at full levels.

12.3 Formulation of the continuity equation.

∗ Definition of X, A, L, and F .
X = log Πs (232)

A = − 1

Πs

∫ η=1

η=0

∇
(

V
∂Π

∂η

)
dη + V∇ [log Πs]−

1

Πs

[
η̇
∂Π

∂η

]
η=1

+
1

Πs

[
η̇
∂Π

∂η

]
η=0

(233)

L = −M
2

M2
νD (234)

F =
(
Fm

Πs

)
(235)

The actual form of continuity equation which is discretised replaces the sum of A and of the horizontal advection
term by a term which is a vertical integral of a divergence term.

∗ Discretisation of the vertical integral of the divergence term: The term to discretise is:

1

Πs

∫ η=1

η=0

∇
(

V
∂Π

∂η

)
dη

In the RHS of continuity equation, term
1

Πs
∇
(

V
∂Π

∂η

)
is rewritten under the sum of several terms:

1

Πs
V∇

(
∂Π

∂η

)
+

1

Πs

(
∂Π

∂η

)
∇V

• Term 1
Πs

V∇
(
∂Π
∂η

)
: using equation (167), the vertical integral of this term can be rewritten as:∫ η=1

η=0

V
∂B

∂η
(η)∇ log Πsdη

Discretisation of this term writes:

38

– VFD:
∑L

l=1
[∆B]lVl∇ log Πs

– VFE: [Rinte](top,surf)

〈
∆B
∆η

V∇ log Πs

〉
• Term 1

Πs

(
∂Π
∂η

)
∇V: discretisation of this term writes:

– VFD: 1
Πs

∑L

l=1
[∆Π]l∇Vl

– VFE: 1
Πs

[Rinte](top,surf)

〈
∆Π
∆η
∇V

〉
12.4 Moisture equation.

∗ Definition of X, A, L and F , top and bottom values.

X = q (236)

A = 0 (237)

L = 0 (238)

F = Fq (239)

Top:
qη=0 = ql=1 (240)

Bottom if δm = 0:
qη=1 = ql=L (241)

Bottom if δm = 1 (see CPQSOL, relative humidity is the same for η = ηL and η = 1):

qη=1 = qs (242)

12.5 Other GFL variables.

∗ Definition of X, A, L and F , top and bottom values, for advectable variables.
Equations are discretised as for humidity equation, the only difference is sometimes for the choice of vertical
boundary conditions at the top and bottom. For example, for liquid water ql:

X = ql (243)

A = 0 (244)

L = 0 (245)

Top:
[ql]η=0 = [ql]l=1 (246)

Bottom if δm = 0:
[ql]η=1 = [ql]l=L (247)

Bottom if δm = 1:
[ql]η=1 = 0 (248)

Vertical boundary conditions:

• quantities are assumed constant above the middle of the upper layer and below the middle of the lower
layer in case δm = 0.

• quantities are assumed constant above the middle of the upper layer in case δm = 1.

• advectable GFL variables other than humidity are assumed to be zero at the surface in case δm = 1.

∗ Particular case of non advectable pseudo-historic GFL variables: Equations given for
liquid water are still valid; advections have to be replaced by zero; definition of top and bottom values is useless.

12.6 Relationship between geopotential height gz and pressure depth.

∗ Geopotential height at half levels (case LVERTFE=.F. only): Discretisation of equation
(85) at half levels yields:

gz
l

= gzs +

k=l+1∑
k=L

[RkTk] δk (249)

See section (8.5) for discretisation of δ at full levels.

39

∗ Geopotential height at full levels:

• Case LVERTFE=.F.: It is computed from the geopotential height at half levels by the following
relationship:

gzl = gz
l
+ [RlTl]αl (250)

See section (8.5) for discretisation of α at full levels.

• Case LVERTFE=.T.:

gzl = gzs + [Rinte](surf,l)

〈
−RTδ

∆η

〉
(251)

See section (8.5) for discretisation of δ at full levels.

∗ Horizontal gradient of the geopotential height at half levels (case LVERTFE=.F.
only): One applies the operator ∇ to equation (249). That yields:

g [∇z]
l

= g∇zs +

k=l+1∑
k=L

[∇(RT)]k δk +

k=l+1∑
k=L

[RkTk] [∇δ]k (252)

See section (8.5) for discretisation of δ and ∇δ at full levels.

∗ Horizontal gradient of the geopotential height at full levels: One applies the operator ∇
to equation (250). That yields:

• Case LVERTFE=.F.:
g [∇z]l = g [∇z]

l
+ [∇(RT)]l αl + [RlTl] [∇α]l (253)

See section (8.5) for discretisation of α and ∇α at full levels.

• Case LVERTFE=.T.:

g [∇z]l = g∇zs + [Rinte](surf,l)

〈
−∇(RT)δ +RT∇δ

∆η

〉
(254)

See section (8.5) for discretisation of δ and ∇δ at full levels.

12.7 Diagnostic expression of some vertical velocities:

Discretisation is consistent with the one of operators S and N described in appendix 1.

∗ Term η̇ ∂Π
∂η at half levels if LVERTFE=.F.: for the half level l, equation (89) is discretised as

follows:

• Term:

Bηl

∫ η=1

η=0

∇
(

V
∂Π

∂η

)
dη

is discretised as follows:

B
l

[
L∑
k=1

[∆B]kVk∇Πs +

L∑
k=1

[∆Π]k∇Vk

]
• Term:

−
∫ η=ηl

η=0

∇
(

V
∂Π

∂η

)
dη

is discretised as follows:

−

[
l∑

k=1

[∆B]kVk∇Πs +

l∑
k=1

[∆Π]k∇Vk

]
• Term:

Bηl

[
η̇
∂Π

∂η

]
η=1

+ [1−Bηl]
[
η̇
∂Π

∂η

]
η=0

is discretised as follows:

B
l

[
η̇
∂Π

∂η

]
surf

+
[
1−B

l

] [
η̇
∂Π

∂η

]
top

40

∗ Term η̇ ∂Π
∂η at full levels if LVERTFE=.T.: for the layer l, equation (89) is discretised as follows:

• Term:

Bηl

∫ η=1

η=0

∇
(

V
∂Π

∂η

)
dη

is discretised as follows:

Bl[Rinte](top,surf)

〈
∆B

∆η
V∇Πs +

∆Π

∆η
∇V

〉
• Term:

−
∫ η=ηl

η=0

∇
(

V
∂Π

∂η

)
dη

is discretised as follows:

−[Rinte](top,l)

〈
∆B

∆η
V∇Πs +

∆Π

∆η
∇V

〉
• Term:

Bηl

[
η̇
∂Π

∂η

]
η=1

+ [1−Bηl]
[
η̇
∂Π

∂η

]
η=0

is discretised as follows:

Bl

[
η̇
∂Π

∂η

]
surf

+ [1−Bl]
[
η̇
∂Π

∂η

]
top

∗ Pressure coordinate vertical velocity ω: for the layer l, equation (93) is discretised as follows:

• Term 1
Πηl

: its discretisation at full levels is:

– Case LVERTFE=.F.: [
1

Π

]
l

=
δl

[∆Π]l
(255)

– Case LVERTFE=.T.: Equation (255) is still valid but in this case it can be rewritten in a simpler
way as follows: [

1

Π

]
l

=
1

[Π]l
=

1

Al +BlΠs
(256)

• “Vertical integral of divergence” term ∫ η=ηl

η=0

∇
(

V
∂Π

∂η

)
dη

– Case LVERTFE=.F.: This term can be easily computed at half levels and its discretisation on the
half level number l is:[∫ η=ηl

η=0

∇
(

V
∂Π

∂η

)
dη

]
l

=

k=l∑
k=1

[∆B]kVk∇Πs +

k=l∑
k=1

[∆Π]k∇Vk (257)

Computation of ω/Π needs this discretisation at full levels, that needs a weighting of the following
type:

[.]l = [.]
l−1

+
αl
δl

(
[.]
l
− [.]

l−1

)
(258)

That yields the following discretisation at full levels:[∫ η=ηl

η=0
∇
(
V ∂Π

∂η

)
dη
]
l

=
∑k=l−1

k=1
[∆B]kVk∇Πs +

∑k=l−1

k=1
[∆Π]k∇Vk + αl

δl
([∆B]lVl∇Πs + [∆Π]l∇Vl) (259)

– Case LVERTFE=.T.: This term is directly computed at full levels and its discretisation on the
layer number l is:[∫ η=ηl

η=0

∇
(

V
∂Π

∂η

)
dη

]
l

= [Rinte](top,l)

〈
∆B

∆η
V∇Πs +

∆Π

∆η
∇V

〉
(260)

• Product “Vertical integral of divergence” times − 1
Πηl

at full levels: discretised as:

41

– Case LVERTFE=.F.:

−
[

1
Π

∫ η=ηl

η=0
∇
(
V ∂Π

∂η

)
dη
]
l

= − δl
[∆Π]l

(∑k=l−1

k=1
[∆B]kVk∇Πs +

∑k=l−1

k=1
[∆Π]k∇Vk

)
− αl

[∆Π]l
[∆B]lVl∇Πs − αl∇Vl (261)

– Case LVERTFE=.T.:

−
[

1
Π

∫ η=ηl

η=0
∇
(
V ∂Π

∂η

)
dη
]
l

= − 1
Al+BlΠs

[Rinte](top,l)
〈

∆B
∆η

V∇Πs + ∆Π
∆η
∇V

〉
(262)

• Term
[
V∇Π

Π

]
on layer l is discretised as follows:[

V
∇Π

Π

]
l

= Vl

[∇Π

Π

]
l

Discretisation of ∇Π
Π

is given by equation (183) or equation (185) according to the value of LVERTFE.

• Term 1
Πηl

[
η̇ ∂Π
∂η

]
η=0

: its discretisation on the layer l is:

δl
[∆Π]l

[
η̇
∂Π

∂η

]
top

This term is non-zero only if a radiative upper boundary condition is applied (case LRUBC=.T.).

42

13 The Eulerian discretisation of the 3D fully compressible non-
hydrostatic model (NHEE).

Some of the discretisations are well described in (IDNHPB) and we will recall here some basics. See (IDNHPB)
for more details, especially for the intermediate calculations and the assumptions leading to the following
discretisations.

13.1 Discretisation of some intermediate quantities.

We have to discretise at least the following quantities:

• Half level total pressure.

• Total pressure depths at full levels.

• Surface wind Vsurf .

• Half levels wind when required.

• X = p
∂Π
∂η
RT
∇Φ

(
∂V
∂η

)
.

• gw and its horizontal gradient.

• d (knowing gw).

• D3.

• Laplacian term:
∂
(
∂(p−Π)
∂Π

)
∂η

.

∗ Half level total pressure:
It is required for finite difference treatment of some terms. The following assumptions are done:

• The top value of p−Π is assumed to be zero. If the top value of Π is zero, the top value of p is also zero.

The consequence is that: Q̂
l=0

= 0

• Q̂ is assumed to be constant between l = L and the surface: Q̂surf = Q̂l=L

• For the other half levels: Q̂
l

= 0.5(Q̂l + Q̂l+1)

From Q̂
l

and Π
l

we can compute p
l
.

∗ Total pressure depths at full levels:

• Finite difference discretisation (LVFE DELNHPRE=F): [∆p]l = p
l
− p

l−1
.

• Finite element discretisation if LVFE ECMWF=F and LVFE DELNHPRE=T: the following formula
is used:

[∆p]l = [∆Π]l

[
∂p

∂Π

]
l

where: [
∂p

∂Π

]
l

=
pl
Πl

+

[
∂
(
p−Π

Π

)
∂ log Π

]
l

Discretisation of
∂(p−Π

Π)
∂ log Π

at full levels is:[
∂
(
p−Π

Π

)
∂ log Π

]
l

=
[
Rderi

(
p−Π

Π

)]
l

[∆η]l
δl

• Finite element discretisation if LVFE ECMWF=T and LVFE DELNHPRE=T: the following formula
is used:

[∆p]l = [∆Π]l
pl
Πl

+ pl[∆ log (p/Π)]l

where:
[∆ log (p/Π)]l = [Rderi (log (p/Π))]l[∆η]l

∗ Surface wind:
Vsurf = Vl=L (263)

43

∗ Half level wind:
V
l

=W
l
Vl + (1−W

l
)Vl+1 (264)

where:

W
l

=
δl+1 − αl+1

δl+1 − αl+1 + αl
(265)

Remarks:

• W
l=L

is set to zero.

• Top boundary condition: Vtop = Vl=1.

• Bottom boundary condition: Vsurf = Vl=L.

∗ Quantity X:
• Finite difference discretisation (LVFE X TERM=F): It is better to rewrite X as follows for the

discretisation

X =
p

Π

1

RT
∇[gz]

∂V

∂ log Π

X is discretised at full levels as follows:

Xl =
[
p

Π

]
l

1

[RT]lδl

[
∇[gz]

l−1
(Vl −V

l−1
) +∇[gz]

l
(V

l
−Vl)

]
(266)

This discretisation uses ∇[gz] at half levels and V at both full and half levels.

The discretisation of ∇[gz] at half levels is given by equation (305).

For NPDVAR=2, [p/Π]l = [exp(Q̂)]l.

• Finite element discretisation (LVFE X TERM=T): X is discretised at full levels as follows:

Xl =
[
p

Π

]
l

[∆η]l
[RT]lδl

∇[gz]l[RderiV]l (267)

∗ Quantity D3: D3 is computed at full levels and requires the preliminary computation of Xl.

[D3]l = Dl + Xl + dl
Rd

Rl
(268)

For NVDVAR=4 it is desirable to rewrite this equation by replacing dl by d4l − Xl.

∗ Retrieving full levels d from full levels ∆[gw]: Such a calculation is required for example when
reading initial files (where this is ∆[gw] at full levels which is stored).
It is desirable to rewrite the definition of d as follows:

d = − 1

RdT

p

Π

∂[gw]

∂ log Π

The discretisation writes:

dl = − 1

RdTlδl

[
p

Π

]
l
[∆[gw]]l (269)

∗ Retrieving [gw] from full levels d: This discretisation looks like the integration of the geopotential
equation. Note that w can be required also in the hydrostatic model.

• Finite difference discretisation (LVFE GW=F):

First the surface vertical velocity must be computed, using the surface boundary condition:

gwsurf = Vsurf∇[Φs] (270)

Integrating equation (269) from the surface, yields:

[∆[gw]]l = dlRdTlδl

[
Π

p

]
l

(271)

gw
l

= gwsurf +

k=l+1∑
k=L

(
dkRdTkδk

[
Π

p

]
k

)
(272)

and:

gwl = gw
l
+ dlRdTlαl

[
Π

p

]
l

(273)

44

• Finite element discretisation (LVFE GW=T):

Use equation (270) at the surface; for upper-air full level values of w discretisation is:

gwl = gwsurf + [Rinte](surf,l)

〈
−Π

p

dRdTδ

∆η

〉
(274)

∗ Retrieving ∇[gw] from full levels d and ∇d:
• Finite difference discretisation (LVFE GW=F):

First the horizontal gradient of the surface vertical velocity must be computed, using the surface boundary
condition:

∇[gwsurf] = ∇[Vsurf∇[Φs]] (275)

The RHS of this equation is the vector of components:

[∇zoUsurf][∇zoΦs] + Usurf [∇2
zo zoΦs] + [∇zoVsurf][∇meΦs] + Vsurf [∇2

zo meΦs]

and
[∇meUsurf][∇zoΦs] + Usurf [∇2

zo meΦs] + [∇meVsurf][∇meΦs] + Vsurf [∇2
me meΦs]

Integrating equation (269) from the surface, and applying the gradient operator, yields:

[∆∇[gw]]l = ∇[RdTl]

[
Π

p

]
l

dlδl +RdTl∇
[

Π

p

]
l

dlδl +RdTl

[
Π

p

]
l

∇dlδl +RdTl

[
Π

p

]
l

dl∇δl (276)

Note that ∇
[

Π
p

]
l

can be rewritten:

∇
[

Π

p

]
l

= −
[

Π

p

]
l

∇
[
log

p

Π

]
l

The half level values are given by:

∇[gw
l
] = ∇[gwsurf] +

k=l+1∑
k=L

[∆∇[gw]]k (277)

and:

∇[gwl] = ∇[gw
l
] +∇[RdTl]

[
Π

p

]
l

dlαl +RdTl∇
[

Π

p

]
l

dlαl +RdTl

[
Π

p

]
l

∇dlαl +RdTl

[
Π

p

]
l

dl∇αl (278)

• Finite element discretisation (LVFE GW=T): Use equation (275) at the surface; for upper-air full level
values of ∇[gw] discretisation is:

∇[gwl] = ∇[gwsurf] + [Rinte](surf,l)

〈
−
∇[Π

p
dRdTδ]

∆η

〉
(279)

with:[
∇
(

Π

p
dRdTδ

)]
l

= ∇[RdTl]

[
Π

p

]
l

dlδl +RdTl∇
[

Π

p

]
l

dlδl +RdTl

[
Π

p

]
l

∇dlδl +RdTl

[
Π

p

]
l

dl∇δl

Remarks: there are two difficulties which can appear for some options:

• Case NVDVAR=4: calculation of ∇d is required, but in this case this is ∇d4 which is available, and ∇X
is not convenient to compute. This is why there is an additional thermodynamic variable “NHX” which
contains X and ∇X.

• Case LSPRT=.T.: in this case RT is stored instead of T , and ∇[RT] is available in the code, but not
∇[RdT]. We can see in formula (276) that the computation of ∇[RdT] is required, and currently we have
approximated it by ∇[RT]. Using an alternate definition of d with R instead of Rd would allow to solve
this problem.

45

∗ Laplacian term
∂
(
∂(p−Π)
∂Π

)
∂η .

• VFD discretisation (LVFE LAPL=F): both derivatives are computed separately. ∂(p−Π)
∂Π

(at half levels)

appears in the RHS of the w-equation. ∂...
∂η

(at full levels) is applied when transforming w into d or in term
∂[dw
dt

]ad

∂η
in the RHS of the d or d4 equation.

• VFE discretisation (LVFE LAPL=T): this term requires some attention and its study is still an issue. It
seems that writing it into a combination of two first-order derivatives does not give a stable scheme. For
the time being the following formula is applied:

∂
(
∂(p−Π)
∂Π

)
∂η

=
1

Π

∂
(
p−Π

Π

)
∂η

∂
[
∂η
∂Π

Π2
]

∂η
+

∂η

∂ log Π

∂2
(
p−Π

Π

)
∂η2

(280)

Discretisation is:[
∂
(
∂(p−Π)
∂Π

)
∂η

]
l

=
1

Πl

[
Rderi

〈
p−Π

Π

〉]
l

[
Rderi

〈
∂η

∂Π
Π2
〉]

l
+

[∆η]l
δl

[
Rdderi

〈
p−Π

Π

〉]
l

(281)

where Rdderi is the second-order derivative VFE operator.

13.2 Momentum equation.

∗ Definition of X, A, L and F , top and bottom values.

X = V (282)

A = −2Ω ∧V − ∂p

∂Π
∇Φ−RT ∇p

p
(283)

L = −∇
[
γT − T ∗(γQ̂) +RdT

∗ log(Πs) +RdT
∗Q̂
]

+ βCo[−2(Ω ∧V)] (284)

F = FV (285)

Top and bottom values are defined as follows:

Vη=0 = Vl=1 (286)

If δm = 0:
Vη=1 = Vl=L (287)

If δm = 1:
Vη=1 = 0 (288)

Note that this bottom condition is not fully consistent with the one done in the remaining part of the NH code
(Vη=1 = Vl=L).

∗ Remarks. the remarks done for the hydrostatic model remain valid here. We must add an additional
remark: in some cases we need this equation also at the surface, with some assumptions (explicit treatment of
the Coriolis term, Vη=1 = Vl=L).

∗ Discretisation of −2Ω ∧V at full levels: It is the same as for the hydrostatic model.

∗ Discretisation of the pressure gradient term at full levels: It is modified compared to the
hydrostatic case.
The pressure gradient term writes:

−
(
∂p

∂Π
∇Φ +RT

∇p
p

)
It contains the geopotential Φ = gz.

• LVERTFE=.F.: the pressure gradient term is rewritten in order to isolate a main part which looks
like the hydrostatic pressure gradient term, and to isolate some purely anhydrostatic contributions. Its
discretisation at full levels is written under a sum of 4 terms. The first one looks like the hydrostatic
pressure gradient term; the following ones become zero in a hydrostatic model.

−
[
∇Φ +

Π

p
RT∇ log Π

]
l

−
[(

∆p

∆Π
− 1
)
∇Φ
]
l
−
[
RT∇

[
log

p

Π

]]
l
−
[
RT

(
1− Π

p

)
∇ log Π

]
l

46

– Term
[
∇Φ + Π

p
RT∇ log Π

]
l
: it looks like the pressure gradient term in the hydrostatic model, but

with an additional factor Π
p

; its treatment is similar to what is done in the hydrostatic model:[
∇Φ + Π

p
RT∇ log Π

]
l

=

∇Φs +
∑l+1

k=L

[
Π
p

]
k

[∇(RT)]k δk −
∑l+1

k=L

[
Π
p

]
k
∇ log

[
p
Π

]
k

(RT)kδk +
∑l+1

k=L

[
Π
p

]
k

(RT)k [∇δ]k
+
[

Π
p

]
l
[∇(RT)]l αl −

[
Π
p

]
l
∇ log

[
p
Π

]
l
(RT)lαl +

[
Π
p

]
l
(RT)l [∇(α+ log Π)]l (289)

– Term
[(

∆p
∆Π
− 1
)
∇Φ
]
l
: its discretisation is:[(

∆p

∆Π
− 1
)
∇Φ
]
l

=

(
[∆p]l
[∆Π]l

− 1

)
[∇Φ]l (290)

For [∇Φ]l see equation (303). Discretisation of [∆p]l has already been studied.

– Term
[
RT∇

[
log p

Π

]]
l
: its discretisation is:[

RT∇
[
log

p

Π

]]
l

= [RT]l∇Q̂l (291)

– Term
[
RT
(
1− Π

p

)
∇ log Π

]
l
: its discretisation is:[

RT

(
1− Π

p

)
∇ log Π

]
l

= [RT]l

[
1− Πl

pl

] [∇Π

Π

]
l

(292)

See part (8.4) for the discretisation of
[
∇Π
Π

]
l
.

• LVERTFE=.T.:

−
[
∂p

∂Π
∇Φ +RT

∇p
p

]
l

= − [∆p]l
[∆Π]l

[∇Φ]l − [RT]l

[
∇p
p

]
l

(293)

where:

– [∇Φ]l is discretised with applying the operator Rinte (see equation (304)).

– [∆p]l has been already studied above.

–
[∇p
p

]
l
: for NPDVAR=2 it is convenient to rewrite this term as follows:[

∇p
p

]
l

= [∇Q̂]l +
[∇Π

Π

]
l

∗ Discretisation of the pressure gradient term at the surface: It is computed in the RHS

of equation giving dVsurf
dt

, in the case LVERTFE=.F. . Currently the pressure gradient term at the surface is set
to the pressure gradient term at the full level l = L.

∗ Discretisation of the grid-point Rayleigh friction: It is the same as for the hydrostatic model.

13.3 Thermodynamic equation.

∗ Definition of X, A, L and F , top and bottom values.

X = T (294)

A = −RT
cv

D3 (295)

L = −RdT
∗

cvd

[
M

2
D
′

+ d
]

(296)

F =
[
cp
cv
FT

]
(297)

Top:
Tη=0 = Tl=1 (298)

Bottom if δm = 0:
Tη=1 = Tl=L (299)

Bottom if δm = 1 (output of physics):
Tη=1 = Ts (300)

47

∗ Discretisation of the conversion term.[
RT

cv
D3

]
l

=
RlTl
[cv]l

[D3]l (301)

See part (13.1) for discretisation of D3 at full levels.

13.4 Continuity equation.

Discretisation is identical to the hydrostatic model one.

13.5 Moisture and other GFL equations.

Formulation is identical to the hydrostatic model.

13.6 Relationship between geopotential height gz and pressure depth.

∗ Geopotential height at half levels (case LVERTFE=.F. only): Discretisation of equation
(103) at half levels yields:

gz
l

= gzs +

k=l+1∑
k=L

Πk

pk
[RkTk] δk (302)

See section (8.5) for discretisation of δ at full levels.

∗ Geopotential height at full levels:
• Case LVERTFE=.F.: It is computed from the geopotential height at half levels by the following

relationship:

gzl = gz
l
+

Πl

pl
[RlTl]αl (303)

See section (8.5) for discretisation of α at full levels.

• Case LVERTFE=.T.:

gzl = gzs + [Rinte](surf,l)

〈
−Π

p

RTδ

∆η

〉
(304)

See section (8.5) for discretisation of δ at full levels.

∗ Horizontal gradient of the geopotential height at half levels (case LVERTFE=.F.
only): One applies the operator ∇ to equation (302). That yields:

g [∇z]
l

= g∇zs +
∑k=l+1

k=L

Πk
pk

[∇(RT)]k δk −
∑k=l+1

k=L

Πk
pk
∇ log pk

Πk
[RkTk] δk

+
∑k=l+1

k=L

Πk
pk

[RkTk] [∇δ]k (305)

See section (8.5) for discretisation of δ and ∇δ at full levels.

∗ Horizontal gradient of the geopotential height at full levels: One applies the operator ∇
to equation (303). That yields:

• Case LVERTFE=.F.:

g [∇z]l = g [∇z]
l
+

Πl

pl
[∇(RT)]l αl −

Πl

pl
∇ log

pl
Πl

[RlTl]αl +
Πl

pl
[RlTl] [∇α]l (306)

See section (8.5) for discretisation of α and ∇α at full levels.

• Case LVERTFE=.T.:

g [∇z]l = g∇zs + [Rinte](surf,l)

〈
−

Π
p
∇(RT)δ − Π

p
∇(log p

Π
)RTδ + Π

p
RT∇δ

∆η

〉
(307)

See section (8.5) for discretisation of δ and ∇δ at full levels.

13.7 Diagnostic expression of some vertical velocities.

Formulation is identical to the hydrostatic model one.

48

13.8 Vertical divergence d and gw equations.

∗ Definition of X, A, L and F , top and bottom values, for the vertical divergence.

X = d (308)

A = −dD3 + d∇V − gp

RdT
∂Π
∂η

∂
[
dw
dt

]
ad

∂η
+

gp

RdT
∂Π
∂η

(∇w)

(
∂V

∂η

)
(309)

L = − g2

RdT ∗a
(L∗Q̂) (310)

F = − d[
∂Π
∂η

]F ′m − [gp

RdT
∂Π
∂η

∂Fw

∂η

]
(311)

Top:
dη=0 = dl=1 (312)

Bottom if δm = 0:
dη=1 = dl=L (313)

Bottom if δm = 1: currently cf. δm = 0. Note that this bottom condition is not fully consistent with the one
done on the horizontal wind and the vertical velocity w.

∗ Definition of X, A, L and F , top and bottom values, for the vertical velocity.

X = w (314)

A = g
∂(p−Π)

∂Π
(315)

F = Fw (316)

Top:

• LVFE GW=.F.: wη=0 is computed by the general formula giving w at half levels.

• LVFE GW=.T.: top value of w is useless.

Bottom if δm = 0:
wη=1 = Vsurf∇zsurf (317)

Bottom if δm = 1: currently the same as for δm = 0. Remark: we also need the equation of the surface vertical
velocity.

∗ Discretisation of term g ∂(p−Π)
∂Π :

• LVFE GW=.F., if LVERTFE=.T., LVFE ECMWF=.F. and LVFE DELNHPRE=.T.:[
g
∂(p−Π)

∂Π

]
l

= g[Rderi (p−Π)]
l

ηl+1 − ηl
Πl+1 −Πl

(318)

• LVFE GW=.F., other cases: [
g
∂(p−Π)

∂Π

]
l

= g
[p−Π]l+1 − [p−Π]l

Πl+1 −Πl
(319)

At the top of the model, this formula becomes:[
g
∂(p−Π)

∂Π

]
top

= g
[p−Π]l=1

Πl=1 −Πtop
(320)

• LVFE GW=.T.: This quantity must be evaluated at full levels: use the full level [∆p]l (see its
discretisation in part 13.1).

Additional remark for LGWADV=T: once updated temporally gw, using the gw equation, it is
recommended to apply vertical derivatives on temporal increments (and not directly on the temporally
updated gw) to restore the temporally updated d. This precaution is to ensure that we discretise
d(t+∆t) = d(t−∆t)+2∆t ∂d

∂t
and not something looking like: d(t+∆t) = Rderi(Rinte(d(t−∆t)))+2∆t ∂d

∂t
.

49

∗ Discretisation of the RHS of [gwsurf] equation: This calculation must be done in some cases
(LGWADV=F): This RHS is the sum of the product:

dVsurf

dt
∇Φs

and the “Jacobian” term:
Vsurf (Vsurf∇[∇Φs])

• dVsurf
dt

has already been studied above.

• The “Jacobian” term can be developed as follows:

U2
surf [∇2

zo zoΦs] + 2UsurfVsurf [∇2
zo meΦs] + V 2

surf [∇2
me meΦs]

∗ Discretisation of the RHS of the vertical divergence d equation:
• Term −dD3 + d∇V at full levels:

[−dD3 + d∇V]l = −dl[D3]l + dl[∇V]l (321)

This discretisation can be applied for both finite difference and finite element vertical discretisations.

• Term − gp

RdT
∂Π
∂η

∂[dwdt]
ad

∂η
:

– LVFE GW=.F.: This term is rewritten:

− gp

RdTΠ

∂
[
dw
dt

]
ad

∂ log Π

Its discretisation at full levels is:[
− gp

RdTΠ

∂
[
dw
dt

]
ad

∂ log Π

]
l

= − pl
Πl

g

RdTlδl

[[
dw

dt

]
ad,l
−
[
dw

dt

]
ad,l−1

]
(322)

– LVFE GW=.T.: It is desirable to isolate the Laplacian term:[
dw

dt

]
ad

=
[
dw

dt

]
lap

+
[
dw

dt

]
oth

The Laplacian contribution provides the term:

− g2p

RdT
∂Π
∂η

∂
(
∂(p−Π)
∂Π

)
∂η

Its discretisation at full levels is:[
− g2p

RdT
∂Π
∂η

∂
(
∂(p−Π)
∂Π

)
∂η

]
l

= − pl
Πl

g2

RdTlδl
[∆η]l

[
∂
(
∂(p−Π)
∂Π

)
∂η

]
l

The discretisation of
∂
(
∂(p−Π)
∂Π

)
∂η

has been studied in part 13.1.

Remark: the discretisation of this term, combined with the discretisation of the RHS of the w equation,
must respect the constraint “C2” of (IDVNH2.1).

• Term Z = − gp

RdT
∂Π
∂η

(∇w)
(
∂V
∂η

)
: its discretisation looks like the one of X.

– LVFE Z TERM=.F.: This term is rewritten:

Z = − gp

RdTΠ
(∇w)

(
∂V

∂ log Π

)
Its discretisation at full levels is:

Zl = − pl
Πl

g

RdTlδl

[
∇[w]

l−1
(Vl −V

l−1
) +∇[w]

l
(V

l
−Vl)

]
(323)

This discretisation uses ∇[w] at half levels and V at both full and half levels. The discretisation of
∇[gw] at half levels is given by equation (277).

– LVFE Z TERM=.T.: Z is discretised at full levels as follows:

Zl = − pl
Πl

g[∆η]l
RdTlδl

∇[w]l[RderiV]l (324)

50

∗ Use of d4 as prognostic variable: In equation (112), the calculation of ∂X
∂t

is not done by an Eulerian
temporal advection but simply by a diagnostic evaluation. In the Eulerian scheme without any predictor-corrector
scheme, the discretisation of ∂X

∂t
follows:

∂X

∂t
=

Xo − X−

∆t
(325)

∗ LGWADV:

• LGWADV=F: d or d4 is the prognostic variable for both explicit model and linear terms. The RHS of
gw equation is computed for intermediate calculations.

• LGWADV=T: gw is the prognostic variable for explicit model; linear terms are computed separately for
the d or d4 equation. Order of calculations follows:

– Compute w(t), and w(t−∆t) too for leap-frog advection.

– Compute the RHS of gw equation.

– Provide an explicit value of w(t+ ∆t).

– Convert it into an explicit value of d(t+ ∆t).

– Add X contribution and linear terms to provide the d4(t+ ∆t) entering spectral computations.

LGWADV=T is currently coded for the semi-Lagrangian advection, not for the Eulerian advection.

13.9 Pressure departure equation.

∗ Definition of X, A, L and F , top and bottom values.

X = Q̂ (326)

A = −cp
cv
D3 −

ω

Π
(327)

L = −
[
cpd

cvd

(M
2
D
′

+ d)−
cpd

RdT ∗
τ(M

2
D
′
)
]

(328)

F =
cp
cvT

FT (329)

Top:

Q̂η=0 = 0 (330)

Bottom if δm = 0:
Q̂η=1 = Q̂l=L (331)

Bottom if δm = 1 (output of physics):

Q̂η=1 = Q̂l=L (332)

∗ Discretisation of the RHS term.[
−cp
cv
D3 −

ω

Π

]
l

= − [cp]l
[cv]l

[D3]l −
[
ω

Π

]
l

(333)

See part (13.1) for discretisation of D3 at full levels. Discretisation of ω
Π

has already been studied.

51

14 The Eulerian discretisation of the 3D quasi-compressible
non-hydrostatic model (NHQE).

14.1 Discretisation of some intermediate quantities.
We have to discretise at least the following quantities:

• Surface wind Vsurf .

• Half levels wind when required.

• XS and XD.

• κ at half levels.

• exp(κQ̂) and exp(−κQ̂) (levels and half levels).

• gw and its horizontal gradient.

• d (knowing gw).

• D3.

Apart from some vertical integrals (the discretisation of which is provided for both VFE and VFD), the
discretisations provided are generally valid for VFD only (especially for vertical derivatives or expressions requiring
half level quantities). VFE discretisation is still under study.

∗ [∆Π] at half levels 1 to L − 1: This quantity appears at several locations, and there is a specificity

for l = 1.

• Half levels 2 to L− 1: [∆Π]
l

= Πl+1 −Πl

• Half level 1: [∆Π]
l=1

= Π2/δ1 −Π1(α2 − δ2)

∗ κ at half levels: This quantity appears in the horizontal pressure gradient term:

• Half levels 1 to L− 1: κ
l

= 0.5(κl + κl+1)

• Top: κtop = κl=1

• Bottom: κsurf = κl=L

∗ Q̂ at half levels: Discretisation is similar to the NHEE one, and is used for the horizontal pressure
gradient term:

• Q̂top = 0

• Q̂surf = Q̂l=L

• For the other half levels: Q̂
l

= 0.5(Q̂l + Q̂l+1)

Calculation of half level p and of full level ∆p is not necessary.

∗ exp(κQ̂) at full levels: exp(κQ̂) at full levels is simply:

[exp(κQ̂)]l = exp(κlQ̂l)

∗ exp(κQ̂) at half levels for horizontal pressure gradient term:

• Half levels 1 to L− 1 for horizontal pressure gradient term: [exp(κQ̂)]
l

= exp(κ
l
Q̂
l
)

• Surface: exp(κQ̂)surf = exp(κQ̂)l=L

• Top: exp(κQ̂)top = 1

52

∗ exp(κQ̂) at half levels for w equation RHS: It is different and more complicated.

• Half levels 2 to L− 1:

Wl =
αlΠl+1

Πl+1αl − (αl+1 − δl+1)Πl

[exp(κQ̂)]
l

=Wl[exp(κQ̂)]l+1 + (1−Wl) [exp(κQ̂)]l

• Half level 1:

W1 =
Π2/δ1

Π2/δ1 −Π1(α2 − δ2)

[exp(κQ̂)]
l=1

=W1[exp(κQ̂)]2 + (1−W1) [exp(κQ̂)]1

• Top:

Wtop =
Π2/δ1 − α1Π2

Π2/δ1 −Π1(α2 − δ2)

[exp(κQ̂)]top =Wtop[exp(κQ̂)]2 + (1−Wtop) [exp(κQ̂)]1

• Surface: exp(κQ̂)surf = exp(κQ̂)l=L

∗ Surface wind and half level wind: same discretisation as in the NHEE model.

∗ Quantity XS at full levels: It is close to the NHEE discretisation of X. For VFD discretisation
(LVFE XTERM=F) that yields:

[XS]l =
1

RlT̃lδl

[
[∇Φ]

l−1
(Vl −V

l−1
) + [∇Φ]

l
(V

l
−Vl)

]
∗ Quantity XD at full levels: It is better to use the following alternate expression to avoid SD − SD
kind cancellation; this is more accurate:

XD = (1− κ)

(
~V
∇Π

Π
− 1

Π

∫ η

top

[~V∇Πs]
∂B

∂η
dη′
)

(334)

which also writes:

XD = (1− κ)
(
~V
∇Π

Π
− S([∂B/∂Π][~V∇Πs])

)
Discretisation at full levels writes:

[XD]l = (1− κl)
(
[~V]l[∇Π/Π]l − [S([∂B/∂Π][~V∇Πs])]l

)
See appendix 1, part b, for VFD and VFE discretisation of [S([∂B/∂Π][~V∇Πs])]l.

∗ Quantity D3: Discretisation at full levels writes:

[D3]l = Dl + dl + [XS]l = Dl + d4l − [XD]l

But D3 does not appear explicitly in the code.

∗ Retrieving full levels d from full levels ∆[gw]: The discretisation writes:

dl = − 1

RT̃lδl
[∆[gw]]l

∗ Retrieving [gw] from full levels d: This discretisation looks like the integration of the geopotential

equation. We can start from the NHEE equations, replacing RdT by RT̃ and Π/p by 1; the surface condition
(equation (270)) is still valid.

• Finite difference discretisation (LVFE GW=F):

[∆[gw]]l = dlRlT̃lδl

gw
l

= gwsurf +

k=l+1∑
k=L

(dkRkT̃kδk)

gwl = gw
l
+ dlRlT̃lαl

• Finite element discretisation (LVFE GW=T):

gwl = gwsurf + [Rinte](surf,l)

〈
−dRT̃ δ

∆η

〉
53

∗ Retrieving ∇[gw] from full levels d and ∇d: We can start from the NHEE equations, replacing

RdT by RT̃ and Π/p by 1; the surface condition (equation (275) is still valid.

• Finite difference discretisation (LVFE GW=F):

[∆∇[gw]]l = ∇[RlT̃l]dlδl +RlT̃l∇dlδl +RlT̃ldl∇δl

∇[gw
l
] = ∇[gwsurf] +

k=l+1∑
k=L

[∆∇[gw]]k

∇[gwl] = ∇[gw
l
] +∇[RlT̃l]dlαl +RlT̃l∇dlαl +RlT̃ldl∇αl

• Finite element discretisation (LVFE GW=T):

∇[gwl] = ∇[gwsurf] + [Rinte](surf,l)

〈
−∇[dRT̃ δ]

∆η

〉
with: [

∇
(
dRT̃ δ

)]
l

= ∇[RlT̃l]dlδl +RlT̃l∇dlδl +RlT̃ldl∇δl

14.2 Momentum equation.

∗ Definition of X, A, L and F , top and bottom values.

X = V (335)

A = [−2(Ω ∧V)]− exp(κQ̂)

(
1 + Π

∂Q̂

∂Π

)
∇Φ−RT̃ exp(κQ̂)

(∇Π

Π
+∇Q̂

)
(336)

L = −∇[γT̃ +RdT
∗ log(Πs) +RdT

∗Q̂] + βCo[−2(Ω ∧V)] (337)

F = FV (338)

Top and bottom values are defined as follows:

Vη=0 = Vl=1 (339)

If δm = 0:
Vη=1 = Vl=L (340)

If δm = 1:
Vη=1 = 0 (341)

Note that this bottom condition is not fully consistent with the one done in the remaining part of the NH code
(Vη=1 = Vl=L).

∗ Remarks. the remarks done for the hydrostatic model remain valid here. We must add an additional
remark: in some cases we need this equation also at the surface, with some assumptions (explicit treatment of
the Coriolis term, Vη=1 = Vl=L).

∗ Discretisation of −2Ω ∧V at full levels: It is the same as for the hydrostatic model.

∗ Discretisation of the pressure gradient term at full levels: It is significantly different from
the NHEE one. The horizontal pressure gradient term is written as follows, to isolate the pseudo-hydrostatic part
−∇Φ−RT̃ ∇Π

Π
:

A1[−∇Φ−RT̃ ∇Π

Π
+A2]

The choice currently retained is to set A1 = 1 and to write A2 (which contain anhydrostatic effects) as the sum
of five contributions denoted A21 to A25:

A21 = −RT̃ (exp(κQ̂)− 1)
∇Π

Π

A22 = −RT̃ exp(κQ̂)∇Q̂

A23 = − 1

κ

∂Π(exp(κQ̂)− 1)

∂Π
∇Φ

A24 =
(

1

κ
− 1
)

(exp(κQ̂)− 1)∇Φ

54

A25 =
1

κ
Q̂exp(κQ̂)

(
Π
∂κ

∂Π

)
∇Φ

Discretisation of −∇Φ−RT̃ ∇Π
Π

is as close as possible to the hydrostatic model one:[
∇Φ +RT̃

∇Π

Π

]
l

= [∇Φ]
l
+
[
∇(RT̃)

]
l
αl +

[
RlT̃l

]
[∇(α+ log Π)]l

Discretisation of A21 and A22 is valid for VFD and VFE and follows:

[A21]l = −[RT̃]l([exp(κQ̂)]l − 1)
[∇Π

Π

]
l

[A22]l = −[RT̃]l[exp(κQ̂)]l[∇Q̂]l

Discretisation of A23 to A25 is given at least for VFD discretisation and follows:

[A23]l = − 1

κl

Π
l
([exp(κQ̂)]

l
− 1)−Π

l−1
([exp(κQ̂)]

l−1
− 1)

[∆Π]l
[∇Φ]l

[A24]l =
(

1

κl
− 1
)

([exp(κQ̂)]
l
− 1)[∇Φ]l

[A25]l =
1

κl
Q̂l[exp(κQ̂)]l

κ
l
− κ

l−1

δl
[∇Φ]l

Term [A25]l is provisionally neglected.

∗ Discretisation of the pressure gradient term at the surface: It is computed in the RHS

of equation giving dVsurf
dt

, in the case LVERTFE=.F. . Currently the pressure gradient term at the surface is set
to the pressure gradient term at the full level l = L.

∗ Discretisation of the grid-point Rayleigh friction: It is the same as for the hydrostatic model.

14.3 Thermodynamic equation.

∗ Definition of X, A, L and F , top and bottom values.

X = T (342)

A =
RT̃

cp

ω

Π
(343)

L = −τ(M
2
D
′
) (344)

F = exp(−κQ̂))FT (345)

Top:
Tη=0 = Tl=1 (346)

Bottom if δm = 0:
Tη=1 = Tl=L (347)

Bottom if δm = 1 (output of physics):
Tη=1 = Ts (348)

∗ Discretisation of the conversion term.[
RT̃

cp

ω

Π

]
l

=
RlT̃l
[cp]l

[
ω

Π

]
l

= κlT̃l

[
ω

Π

]
l

(349)

It is very similar to the hydrostatic conversion term.

14.4 Continuity equation.
Discretisation is identical to the hydrostatic model one.

14.5 Moisture and other GFL equations.
Formulation is identical to the hydrostatic model.

55

14.6 Relationship between geopotential height gz and pressure depth.

We can start from the NHEE equations, replacing RT by RT̃ and Π/p by 1;

∗ Geopotential height at half levels (case LVERTFE=.F. only): Discretisation of equation
(123) at half levels yields:

gz
l

= gzs +

k=l+1∑
k=L

[
RkT̃k

]
δk (350)

∗ Geopotential height at full levels:
• Case LVERTFE=.F.:

gzl = gz
l
+
[
RlT̃l

]
αl (351)

• Case LVERTFE=.T.:

gzl = gzs + [Rinte](surf,l)

〈
−RT̃δ

∆η

〉
(352)

∗ Horizontal gradient of the geopotential height at half levels (case LVERTFE=.F.
only): One applies the operator ∇ to equation (350). That yields:

g [∇z]
l

= g∇zs +

k=l+1∑
k=L

[
∇(RT̃)

]
k
δk +

k=l+1∑
k=L

[
RkT̃k

]
[∇δ]k (353)

∗ Horizontal gradient of the geopotential height at full levels: One applies the operator ∇
to equation (351). That yields:

• Case LVERTFE=.F.:
g [∇z]l = g [∇z]

l
+
[
∇(RT̃)

]
l
αl +

[
RlT̃l

]
[∇α]l (354)

• Case LVERTFE=.T.:

g [∇z]l = g∇zs + [Rinte](surf,l)

〈
−∇(RT̃)δ +RT̃∇δ

∆η

〉
(355)

14.7 Diagnostic expression of some vertical velocities.
Formulation is identical to the hydrostatic model one.

14.8 Vertical divergence d and gw equations.

∗ Definition of X, A, L and F , top and bottom values, for the vertical divergence.

X = d (356)

A = −d(d+ XS)− gΠ

RT̃ ∂Π
∂η

∂
[
dw
dt

]
ad

∂η
+

gΠ

RT̃ ∂Π
∂η

(∇w)

(
∂V

∂η

)
(357)

L = − g2

RdT ∗a
(L∗κQ̂) (358)

F = − d[
∂Π
∂η

]F ′m − [gΠ

RT̃ ∂Π
∂η

∂Fw

∂η

]
(359)

Top:
dη=0 = dl=1 (360)

Bottom if δm = 0:
dη=1 = dl=L (361)

Bottom if δm = 1: currently cf. δm = 0. Note that this bottom condition is not fully consistent with the one
done on the horizontal wind and the vertical velocity w.

56

∗ Definition of X, A, L and F , top and bottom values, for the vertical velocity.

X = w (362)

A =
g

κ

[
∂Π(exp(κQ̂)− 1)

∂Π
+ (κ− 1)(exp(κQ̂)− 1)

]
(363)

F = Fw (364)

Top:

• LVFE GW=.F.: wη=0 is computed by the general formula giving w at half levels.

• LVFE GW=.T.: top value of w is useless.

Bottom if δm = 0:
wη=1 = Vsurf∇zsurf (365)

Bottom if δm = 1: currently the same as for δm = 0. Remark: we also need the equation of the surface vertical
velocity.

∗ Discretisation of term g
κ

[
∂Π(exp(κQ̂)−1)

∂Π + (κ− 1)(exp(κQ̂)− 1)

]
: It is significantly different

from the NHEE one, and studies to properly code it are still in progress. Current discretisations are given for
VFD applied to terms other than vertical integrals (valid for LVFE GW=F, LVFE DELNHPRE=F). Generic
discretisation at half levels 0 to L− 1 writes:

g

κ
l

([
∂Π(exp(κQ̂)− 1)

∂Π

]
l

+ (κ
l
− 1)([exp(κQ̂)]

l
− 1)

)
• Term (κ

l
− 1)([exp(κQ̂)]

l
− 1) uses half level discretisation of κ and exp(κQ̂) studied above.

• For half levels 2 to L− 1, discretisation of term containing ∂/∂Π is:[
∂Π(exp(κQ̂)− 1)

∂Π

]
l

=
Πl+1([exp(κQ̂)]l+1 − 1)−Πl([exp(κQ̂)]l − 1)

Πl+1 −Πl

• For half level 1 take account of the particuliar discretisation of [∆Π]
l−1

:[
∂Π(exp(κQ̂)− 1)

∂Π

]
l=1

=
Π2([exp(κQ̂)]2 − 1)−Π1([exp(κQ̂)]1 − 1)

Π2/δ1 −Π1(α2 − δ2)

• At the top:[
∂Π(exp(κQ̂)− 1)

∂Π

]
top

=
Π2([exp(κQ̂)]1 − 1)−Π1([exp(κQ̂)]1 − 1)

Π2/δ1 −Π1(α2 − δ2)
=

(Π2 −Π1)([exp(κQ̂)]1 − 1)

Π2/δ1 −Π1(α2 − δ2)

Revisions are expected for this discretisation; the current discretisation leads to numerical instabilities.

∗ Discretisation of the RHS of [gwsurf] equation: This calculation must be done in some cases
(LGWADV=F), and is identical to the NHEE model.

∗ Discretisation of the RHS of the vertical divergence d equation:
• Term −d(d+ XS) at full levels:

[−d(d+ XS)]l = −dl(dl + [XS]l)

This discretisation can be applied for both VFD and VFE.

• Term − gΠ

RT̃ ∂Π
∂η

∂[dwdt]
ad

∂η
:

– LVFE GW=.F.: This term is rewritten:

− g

RT̃

∂
[
dw
dt

]
ad

∂ log Π

Its discretisation at full levels is:[
− g

RT̃

∂
[
dw
dt

]
ad

∂ log Π

]
l

= − g

RlT̃lδl

[[
dw

dt

]
ad,l
−
[
dw

dt

]
ad,l−1

]
(366)

57

– LVFE GW=.T.: this case has not been yet studied.

• Term Z = − gΠ

RT̃ ∂Π
∂η

(∇w)
(
∂V
∂η

)
: its discretisation looks like the one of XS.

– LVFE Z TERM=.F.: This term is rewritten:

Z = − g

RT̃
(∇w)

(
∂V

∂ log Π

)
Its discretisation at full levels is:

Zl = − g

RlT̃lδl

[
∇[w]

l−1
(Vl −V

l−1
) +∇[w]

l
(V

l
−Vl)

]
(367)

This discretisation uses ∇[w] at half levels and V at both full and half levels. The discretisation of
∇[gw] at half levels is given by equation (277).

– LVFE Z TERM=.T.: this case has not been yet studied.

∗ Use of d4 as prognostic variable: In equation (131), the calculation of ∂X
∂t

is not done by an Eulerian
temporal advection but simply by a diagnostic evaluation (cf. what is done in the NHEE model).

∗ LGWADV: Same remarks and calculations order than for the NHEE model.

58

15 Discretisation of some other diagnosed quantities.

15.1 cp, R and κ.

For cp (air calorific capacity at constant pressure) at full levels:

[cp]l = cpd

(
1− [q]l − [ql]l − [qi]l

)
+ cpv [q]l + cpl [ql]l + cpi [qi]l (368)

where cpd is the dry air calorific capacity at constant pressure, cpv is the water vapour calorific capacity at
constant pressure, cpl is the liquid water calorific capacity, and cpi is the ice calorific capacity.
For R (air constant) at full levels:

[R]l = Rd

(
1− [q]l − [ql]l − [qi]l

)
+Rv [q]l (369)

where Rd is the dry air constant and Rv is the water vapour air constant.
For κ at full levels:

[κ]l =
[R]l
[cp]l

(370)

The ratio cv/cp at full levels is given by equation:[
cv
cp

]
l

= 1− [κ]l (371)

15.2 ∇(RT).

Its discretisation at full levels writes:

[∇(RT)]l = (Rv −Rd) [T]l [∇q]l + [R]l [∇T]l (372)

15.3 Potential temperature PT and its horizontal gradient.

Discretisation of PT at full levels writes:

[PT]l = [T]l

[
[Π]l

Π1000

]−[κ]l

(373)

where Π1000 = 100000 Pa
Discretisation of its horizontal gradient at full levels writes:

[∇(PT)]l = [PT]l

(
[∇T]l
[T]l

− [κ]l

[∇Π

Π

]
l

)
(374)

The expression of ∇Π
Π

at full levels is given in part (8.4).
Remark: in the cycle 46 the code does not match exactly formula (374); this has to be changed in the future.

15.4 Virtual potential temperature PTV .

Its discretisation at full levels writes:

[PTV]l = [TV]l

[
[Π]l

Π1000

]−κd

=
Rl
Rd

Tl

[
[Π]l

Π1000

]−κd

(375)

where Π1000 = 100000 Pa; κd = Rd/cpd.

15.5 Equivalent potential temperature PTE.

Its discretisation at full levels writes:

[PTE]l = [PT]l exp

[
Ll[qsat]l
[cpsat]lTl

]
(376)

where the discretisation of the potential temperature PT has been provided by formula (373). Discretisation of
[cpsat] at full levels writes:

[cpsat]l = cpd + (cpv − cpd)[qsat]l

59

15.6 Absolute vorticity ζabs.

Its discretisation at full levels writes:
[ζabs]l = [ζ]l + f (377)

15.7 Potential vorticity PV .

∗ Vertical finite difference discretisation.
Discretisation of PV at full levels is:

[PV]l = g
[
∂V

∂Π

]
l

[
M

a cos Θ

∂PT

∂Λ

]
l
− g
[
∂U

∂Π

]
l

[
M

a

∂PT

∂Θ

]
l
− g [ζabs]l

[
∂PT

∂Π

]
l

(378)

Discretisation of vertical derivatives relative to hydrostatic pressure: for a variable X:[
∂X

∂Π

]
l

= 0.5

(
Xl+1 −Xl−1

[∆Π]l

)
(379)

[
∂X

∂Π

]
l=1

=

(
Xl=2 −Xl=1

[∆Π]l=1

)
(380)[

∂X

∂Π

]
l=L

=

(
Xl=L −Xl=L−1

[∆Π]l=L

)
(381)

This discretisation is applied to X = U , X = V and X = PT .
Discretisation of the components of ∇(PT): see equation (374).

∗ Vertical finite element discretisation.
The same discretisations are currently used. VFE discretisation of vertical derivatives has not been implemented
for this quantity which is currently used only in the post-processing.

15.8 Shearing deformation SHD and stretching deformation STD.

Spherical geometry:

[STD]l = M

[
1

a cos Θ

∂U
′

∂Λ

]
l

− 0.5Dl (382)

[SHD]l = M

[
1

a cos Θ

∂V
′

∂Λ

]
l

− 0.5ζl (383)

Plane geometry:

[STD]l = M2[∂
′
xU
′]l − 0.5Dl (384)

[SHD]l = M2[∂
′
xV
′]l − 0.5ζl (385)

15.9 Hydrostatic vertical divergence dhyd.

Discretisation of dhyd at full levels is:

[dhyd]l = −Rl
Rd

[
cv
cp

]
l

[
ω

Π

]
l
− Rl
Rd

[∇V]l −
1

RdTl

[
∇ [gz] Π

∂V

∂Π

]
l

(386)

with:

• if finite differences discretisation applied to vertical derivatives:[
∇ [gz] Π

∂V

∂Π

]
l

=
1

δl

[(
[V]

l
− [V]l

)
[∇ [gz]]

l
+
(
[V]l − [V]

l−1

)
[∇ [gz]]

l−1

]
(387)

• if VFE discretisation applied to vertical derivatives:[
∇ [gz] Π

∂V

∂Π

]
l

=
[∆η]l
δl

[Rderi(V)]l [∇ [gz]]l (388)

One needs the discretisation of the horizontal wind at half levels: this discretisation has been given in part (13.1).
Discretisation of each other RHS terms has been previously studied in this documentation.

60

15.10 Hydrostatic height coordinate vertical velocity whyd.

∗ Vertical finite difference discretisation.
Discretisation of whyd matches the following equation:

g [whyd]
l

= g [whyd]surf +

k=L∑
k=l+1

RdTk [dhyd]k δk (389)

Discretisation of whyd at full levels is given by the following equation:

g [whyd]l = g [whyd]
l
+RdTl [dhyd]l αl (390)

At the surface:
g [whyd]surf = [V]l=L∇Φs (391)

∗ Vertical finite element discretisation.
One directly computes whyd at full levels.
Discretisation of whyd at full levels is given by the following equation:

g [whyd]l = g [whyd]surf + [Rinte](surf,l)

〈
RdTdhydδ

∆η

〉
(392)

At the surface, g [whyd]surf is still given by equation (391).

15.11 Moisture convergence CV GQ.

This quantity is evaluated at full levels. For NCOMP CVGQ=0 or 1, calculation is done as follows:

[CV GQ]l = − [V∇q]l −
[
η̇
∂q

∂η

]
l

(393)

For NCOMP CVGQ=2, calculation is done as follows:

[CV GQ]l =
[
∂q

∂t

]
l
−
[
dq

dt

]
l

(394)

NCOMP CVGQ=2 can be used only in the semi-Lagrangian scheme.
For the way of discretizing − [V∇q]l (which is an horizontal advection term) report to part 9.1. For the way of

discretizing −
[
η̇ ∂q
∂η

]
l

(which is a vertical advection term) report to part 9.2.

15.12 Montgomery potential Φmg and some other energetic quantities.

All these quantities are discretised at full levels. Formulae for enthalpy and kinetic energy are guaranteed at least
for the hydrostatic model.

• Montgomery potential: [Φmg]l = cpdTl + [gz]l.

• Dry static energy: sl = [cp]l Tl + [gz]l.

• Moist static energy: [sh]l = [cp]l Tl + [gz]l + Llql.

• Enthalpy: hl = [cp]l Tl + [gz]l + 0.5 ∗ (U2
l + V 2

l).

• Kinetic energy: [KE]l = 0.5 ∗ (U2
l + V 2

l).

15.13 Angular momentum of components MMA, MMB and MMC.

All these quantities are discretised on layer using the full level values of (UG;VG).

15.14 Entropy S.

Hydrostatic model: the entropies are discretised at full levels using the layer values of q, ql, qi, T and Π; the layer
values of Πv and Πd have to be taken consistently with the one of Π: [Πv]l = [q]l [Π]l and [Πd]l = (1− [q]l) [Π]l.

Non hydrostatic model: the hydrostatic pressure Π must be replaced by the total pressure p in the previous
formulae.

61

16 Miscellaneous (linear terms, Asselin filter, LBC).

16.1 Treatment of the linear terms.

The grid-point calculations of the model provide the quantity (X −∆tβL)+ for a subset of equations. Retrieving
X+ is done in the spectral computations after the direct spectral transforms and just before the horizontal
diffusion. The algorithm of solving the semi-implicit scheme is described in a specific documentation (IDSI)
about semi-implicit scheme.

16.2 The Asselin filter.

In a leap-frog scheme, a weak time filter is used after Asselin (1972). If Xfil denotes the filtered value of X:

Xo
fil = Xo + εass1(X−fil −X

o) + εass2(X+ −Xo) (395)

16.3 Lateral boundary coupling and upper boundary coupling.

A limited area model (LAM) needs to get information from the lateral boundaries. It can be done:

• By lateral boundary coupling, in grid-point space.
The LAM domain is divided into 3 zones (C for inner zone, I for intermediate zone, E for extension zone).
Davies (1976) relaxation is applied to fields:

Xcoupled = (1− αrel)Xcoupled + αrelXlbc (396)

αrel is equal to 1 in the extension zone, 0 in the inner zone, and varies between 0 and 1 in the intermediate
zone. αrel is vertically constant and can depend on the coupled variable.

• By upper boundary coupling.
The same kind of formula:

Xcoupled = (1− αnud)Xcoupled + αnudXlbc (397)

is still applied, but now αnud is vertically-dependent (generally non-zero near the model top only) and may
depend on the wavenumber too.

αnud writes:

αnud =
αvαhKnud

1 + αvαhKnud

αv is a vertically-dependent coefficient: 1 for l below a threshold lnen1; 0 for l above a threshold lnen2;
continuous and monotonic function between 0 and 1 otherwise. αv is identical for all variables.

αh is a wavenumber-dependent coefficient: 1 for low wavenumbers (below a threshold nnek0); 0 for high
wavenumbers (above a threshold nnek1); continuous and monotonic function between 0 and 1 otherwise.
αh is identical for all variables.

Knud is a tunable coefficient which may be different for each variable.

Such scheme is activated in practical to force the LAM large-scale patterns by the large scale model in the
high atmosphere.

There are two ways to activate such a scheme:

– Spectral nudging, in spectral space: both vertical and wavenumber dependencies are possible. Could
be applied in spectral space to spectral fields only.

– Grid-point nudging, in grid-point space: only vertical dependency is possible. Could be applied in
grid-point space to grid-point fields.

Xlbc is needed at each timestep, but coupling files are not read at each timestep (frequency of reading such files
is generally between 1h and 3h). A temporal linear, quadratic or cubic interpolation is applied to retrieve Xlbc

at the current instant from values read on files.

A call-tree for lateral boundary coupling and upper boundary coupling is given in part 19.6 .

62

17 The flux form of an equation and its discretisation.

17.1 The flux form of the equation of a variable X.

17.1.1 Introduction.

The aim is to evaluate the Eulerian tendency of an additive quantity QX corresponding to some content on an
additive quantity in a particle. The additive quantity QX is linked to an intensive quantity X. For example:

• For X = 1 the additive quantity Q1 is the total mass in a particle.

• For X = q (specific humidity), the additive quantity Qq is the water vapour mass in the same particle.

• For X = V, the additive quantity QV is the momentum in the same particle.

X and QX are linked by the following relationship:

QX = Q1X

Given a particle of dimensions δx, δy, δz, of density ρ: the total mass contained in this particle is

Q1 = ρδxδyδz

Using the hydrostatic relationship δΠ = −ρgδz, expression of Q1 can be rewritten as follows:

Q1 = −1

g
δxδyδΠ

Product δxδy involves a surface δSa which does not depend on the vertical nor on the hydrostatic pressure. Q1

writes:

Q1 = −1

g
δSaδΠ = −1

g

∂Π

∂η
δSaδη

All what does not depend on the time t has to be put in factor (for example g, δSa and δη); the Eulerian tendency
of ∂Π

∂η
X has to be taken to write the flux form of the evolution equation of X.

17.1.2 The flux form of the equation of X.

One does a combination between the Eulerian form of the evolution equation of X and the Eulerian form of
continuity equation to obtain it.
Equation for X writes:

∂X

∂t
= −V∇X − η̇ ∂X

∂η
+
[
dX

dt

]
ad

+ FX (398)

where
[
dX
dt

]
ad

is the adiabatic Lagrangian tendency of X. One here omits the horizontal diffusion terms and
semi-implicit correction terms.

Continuity equation can be rewritten under its flux form:

∂
[
∂Π
∂η

]
∂t

= −∇
[
V
∂Π

∂η

]
−
∂
[
η̇ ∂Π
∂η

]
∂η

− g ∂Fp

∂η
(399)

Combining equations (398) and (399), and after calculations not detailed, one obtains the flux form of the Eulerian
equation of X:

∂
[
∂Π
∂η
X
]

∂t
= −∇

[
V
∂Π

∂η
X

]
−
∂
[
Xη̇ ∂Π

∂η

]
∂η

+

[
∂Π

∂η

] [
dX

dt

]
ad

+

[
∂Π

∂η

]
FX − gX

∂Fp

∂η
(400)

17.2 Use of the discretisation of the flux form of equations.

The flux form of equations is used in some diagnostics, like the DDH package (horizontal diagnostics in boxes).
There is a specific documentation for the DDH package (Piriou, 2006), so no additional detail will be given here.
Only the list of variables diagnosed (to which is applied the flux form of equations) is given below:

• X = 1 (continuity equation).

• X = q (moisture equation).

• X = V (horizontal wind).

63

• X = 0.5(U2 + V 2) = 0.5V.V (kinetic energy).

• X = cpT .

• X = cpT + gz + 0.5(U2 + V 2) (total energy).

• X = ql (liquid water).

• X = qi (ice).

• X = M = r ∧ (Ω ∧ r + V) (kinetic momentum).

• X = S (entropy).

For some of these variables,
[
dX
dt

]
ad

is assumed to be zero (X = 1; q; cpT + gz + 0.5(U2 + V 2); ql; qi; S); for

some other ones which are not prognostic variables, computation of
[
dX
dt

]
ad

need some additional calculations (for

example for the kinetic energy).

17.3 The discretisation of the flux form of the equation of a variable X.

17.3.1 Left hand side.

In the LHS,
[
∂Π
∂η
X
]

is computed at full levels, and is discretised as follows:[
∂Π

∂η
X

]
l

=
[∆Π]l
[∆η]l

Xl

17.3.2 Term containing the horizontal divergence in the RHS.

This term is rewritten under a sum of 3 terms, in order to show the quantities ∇V, ∇Π and ∇X, and writes:

−
[
∂Π

∂η
X

]
∇V − [VX]∇∂Π

∂η
−
[
V
∂Π

∂η

]
∇X

Discretisation shows the quantities [∆Π]l, [∆η]l, [∇V]l, [X]l, [∆B]l. For the second term one uses the definition

of the hybrid vertical coordinate, showing ∂B
∂η

and Πs. So the discretised form of the sum of 3 terms writes:

−
[

[∆Π]l
[∆η]l

Xl

]
[∇V]l − [VlXl]

[
[∆B]l
[∆η]l

∇Πs

]
−
[
Vl

[∆Π]l
[∆η]l

]
l

[∇X]l

Remark: term −∇
[
V ∂Π

∂η
X
]

can be rewritten as −X∇
[
V ∂Π

∂η

]
−V ∂Π

∂η
∇X to show the quantity ∇

[
V ∂Π

∂η

]
easily

available in the model.

17.3.3 Term containing the vertical divergence in the RHS.

∗ Vertical finite difference discretisation: Its discretisation writes:

−

[
Xη̇ ∂Π

∂η

]
l
−
[
Xη̇ ∂Π

∂η

]
l−1

[∆η]l

• Vertical integration of continuity provides η̇ ∂Π
∂η

at half levels, so this is η̇ ∂Π
∂η

at half levels which has to be
used in the discretisation.

• X is known at full levels; its discretisation at half levels is given by formula:

X
l

= 0.5 (Xl +Xl+1)

The former expression can be rewritten as a difference of two fluxes (more exactly − g
[∆η]l

(flux
l
− flux

l−1
)) where:

flux
l

=
0.5(Xl +Xl+1)

g

[
η̇
∂Π

∂η

]
l

fluxtop =
Xtop

g

[
η̇
∂Π

∂η

]
top

fluxsurf =
Xsurf

g

[
η̇
∂Π

∂η

]
surf

The DDH package (routine CPDYDDH) stores these half level fluxes.

64

∗ Vertical finite element discretisation: What is currently coded is a mixed FD-VFE discretisation
where the operator Rderi is not used:

• Vertical integration of continuity provides η̇ ∂Π
∂η

at full levels; its discretisation at half levels is given by
formula: [

η̇
∂Π

∂η

]
l

= 0.5

([
η̇
∂Π

∂η

]
l

+

[
η̇
∂Π

∂η

]
l+1

)
• X is known at full levels; its discretisation at half levels is given by formula:

X
l

= 0.5 (Xl +Xl+1)

The discretisation currently proposed is:

• Layers 2 to L− 1:

−
[0.5 (Xl +Xl+1)]

[
0.5
([
η̇ ∂Π
∂η

]
l
+
[
η̇ ∂Π
∂η

]
l+1

)]
− [0.5 (Xl−1 +Xl)]

[
0.5
([
η̇ ∂Π
∂η

]
l−1

+
[
η̇ ∂Π
∂η

]
l

)]
[∆η]l

• Layer 1:

−
[0.5 (X1 +X2)]

[
0.5
([
η̇ ∂Π
∂η

]
1

+
[
η̇ ∂Π
∂η

]
2

)]
−Xtop

[
η̇ ∂Π
∂η

]
top

[∆η]1

• Layer L:

−
Xsurf

[
η̇ ∂Π
∂η

]
surf
− [0.5 (XL−1 +XL)]

[
0.5
([
η̇ ∂Π
∂η

]
L−1

+
[
η̇ ∂Π
∂η

]
L

)]
[∆η]L

This discretisation does not match completely the way of discretising a vertical derivative (which uses the operator
Rderi), but this is the discretisation which leads to the minimum amount of modifications in the DDH package
(routine CPDYDDH) compared to the case LVERTFE=.F., since the fluxes remain defined and stored at half
levels. The former expressions can be rewritten as a difference of two fluxes (more exactly − g

[∆η]l
(flux

l
−flux

l−1
))

where:

flux
l

=
0.5(Xl +Xl+1)

g

[
0.5

([
η̇
∂Π

∂η

]
l

+

[
η̇
∂Π

∂η

]
l+1

)]

fluxtop =
Xtop

g

[
η̇
∂Π

∂η

]
top

fluxsurf =
Xsurf

g

[
η̇
∂Π

∂η

]
surf

The DDH package (routine CPDYDDH) stores these half level fluxes.

17.3.4 Other terms in the RHS.

• Discretisation of term containing
[
dX
dt

]
ad

writes:

[∆Π]l
[∆η]l

[[
dX

dt

]
ad

]
l

• Discretisation of term containing FX writes:

[∆Π]l
[∆η]l

[FX]l

• Discretisation of term containing
∂Fp

∂η
writes:

−gXl
[∆Fp]l
[∆η]l

65

18 Organigramme.

18.1 Organigramme for the setup and control routines (direct code).

∗ General architecture under CNT0: The organigramme will not be detailed (that will be too long),
but it is possible to give some basics of its organisation:

CNT0 ->
* SU0YOMA ->

- setup before geometry (call tree not detailed)
- SUGEOMETRY (call tree not detailed)
- setup after geometry (call tree not detailed)

* SU0YOMB -> (call tree not detailed)
* some other routines not detailed here
* CNT1 ->

- SU1YOM -> (call tree not detailed)
- CNT2 -> CNT3 ->
* some routines not detailed here
* CNT4 ->

- some routines not detailed here
- STEPO -> (see below for more details)

• CNT0, CNT1, CNT2, CNT3, CNT4 control respectively the zero, first, second, third and fourth level
of the set-up.

• STEPO controls one time-step of the model integration.

∗ General architecture under STEPO:

STEPO ->
* Management of read/write: IOPACK
* Inverse spectral transforms: TRANSINVH -> TRANSINV_MDL
* Grid point computations: SCAN2M
* Grid-point coupling in LAM models: ECOUPL1 and ECOUPL2 (see below)
* Direct spectral transforms: TRANSDIRH -> TRANSDIR_MDL
* Spectral computations: (E)SPCM (see below), SPC2M.

The sequences of call to STEPO are controlled by a variable (often called CDCONF or CLCONF)
containing 9 letters or zeros [L1][L2][L3][L4][L5][L6][L7][L8][L9]

• L1 controls the file write/read.

• L2+L3 controls the inverse transforms.

• L4 controls the grid-point computations for dynamics and physics.

• L5 controls the grid-point computations for some diagnostics.

• L6 controls the grid-point computations for assimilation.

• L7 controls the coupling in LAM models.

• L8 controls the direct transforms.

• L9 controls the spectral computations.

For example a model integration time-step is defined by the sequence [L1]AAA00AAA.

∗ The different objects and their set-up:
Data are put into big structures, for example for the following items:

• Init object (variables are not gathered in a type).

• Geometry: type GEOMETRY, variable YRGEOMETRY in CNT0.

• Model object: type MODEL, variable YRMODEL in CNT0.

• Fields: type FIELDS, variable YRFIELDS in CNT0.

• Trajectory: type MTRAJ, variable YRMTRAJ in CNT0.

And also:

• VARBC: type CLASS VARBC, variable YVARBC in CNT0.

• TOVS control variable: type TOVSCV, variable YLTCV in CNT0.

• TOVS control variable for background: type TOVSCV BGC, variable YLTCV BGC in CNT0.

• Jo-table: type JO TABLE, variable YLJOT in CNT0.

• ODB: class DBASE, variable YLODB in CNT0.

• FULL-POS: type TFPOS, variable YLFPOS in CNT0.

66

The set-up code is done according to the following order:

• Set-up code starts to set-up the INIT object, under SU0YOMA and before calling SUGEOMETRY.

• Once the INIT object set-up is done (entering SUGEOMETRY), it is forbidden to modify the content
of INIT object.

• Set-up code does the set-up of the GEOMETRY object (variable YRGEOMETRY), via the call to
SUGEOMETRY.

• Once exited from SUGEOMETRY, it is forbidden to modify the content of YRGEOMETRY.

• YRGEOMETRY is a dummy argument of SUGEOMETRY; YRGEOMETRY or some of its
components is passed as dummy argument (intent IN) to routines called after SUGEOMETRY.

• YRGEOMETRY never appears in the set-up of object INIT.

• Once exited from SUGEOMETRY, the set-up fills the content of some other objects, like MODEL
(variable YRMODEL).

• Variables like YRMODEL, YRFIELDS, YRMTRAJ are always passed via a dummy argument to
routines using them.

• Variables like YRMODEL, YRFIELDS, YRMTRAJ never appear in the set-up of objects INIT and
GEOMETRY.

18.2 Organigramme under STEPO for the direct Eulerian 2D model.
STEPO -> SCAN2M -> GP_MODEL ->

* CPG2 -> GPTF2
* CPG2LAG -> GPTF1

• CPG2: unlagged grid-point computations.

• CPG2LAG: lagged grid-point computations.

• GPTF1: first part of the Asselin temporal filter.

• GPTF2: second part of the Asselin temporal filter.

Communications between unlagged grid-point computations and lagged grid-point computations need a buffer
using pointers of module PTRSLB2.

∗ Basic description of the data flow under routine STEPO: No detail will be given, one can
read the part 19 with the following changes:

• There is no GFL field.

• The distinction between GMV and GMVS does not exist any longer, all fields can be considered as GMV or
GMVS ones. The current way of coding considers the wind components as GMV fields, and the equivalent
height as a GMVS field, but this way of coding is not satisfactory and has to be changed in the future.

• In the GMV fields, there are no thermodynamic variables.

• The model is purely adiabatic, so there is no surface field for physics.

• The structure of the code has not been completely updated relatively to the equivalent one of the 3D model.
There are only two blocks in the grid-point calculations: a non-lagged block (CPG2) which is the equivalent
of CPG in the 3D model; a lagged block (CPG2LAG) which is the equivalent of CALL SL+CPGLAG
in the 3D model.

18.3 Organigramme under STEPO for the direct Eulerian 3D model.

∗ Organigramme:

STEPO -> SCAN2M -> GP_MODEL_HEAP or GP_MODEL_STACK -> GP_MODEL ->
* CPG_DRV -> CPG ->
- CPG_GP ->

* GPTF2
* GPMPFC
* GP_SPV
* surface_fields_mix.F90/GPPOPER
* CPG_GP_HYD -> some GP.. routines computing intermediate grid-point quantities.
* CPG_GP_NHEE -> some GP.. and GNH.. routines computing intermediate grid-point quantities.
* CPG_GP_NHQE -> some GP.. and GNH.. routines computing intermediate grid-point quantities.
* GPINISLB
* CP_FORCING (RHS of equations for 1D model with LSFORC=T)

- GPINIDDH
- EC_PHYS or EC_PHYS_LSLPHY (organigramme not detailed)
- MF_PHYS_PREP
- MF_PHYS (organigramme not detailed)
- CPG_DIA -> (routines for some diagnostics, organigramme not detailed)

67

- CPG_DYN ->
* CPEULDYN ->
- some GP.. routines computing intermediate g.p. quantities.
- some SI.. routines computing some linear terms used in SI scheme.
- VERDISINT -> VERDER (vertical derivatives for vertical finite elements scheme)

* VDIFLCZ (organigramme not detailed)
- CPG_END ->

* surface_fields_mix.F90/GPPOPER
* WRPHTRSF (organigramme not detailed)
* GPMPFC

* RADDRV (radiation scheme used at ECMWF, organigramme not detailed)
* EC_PHYS_DRV (organigramme not detailed)
* CPGLAG ->
- GPTF1
- GPRCP

∗ List of routines:
• CPG DRV: driver for unlagged grid-point computations.

• CPG: unlagged grid-point computations.

• CPG GP: beginning of unlagged grid-point computations; reads t − ∆t data in buffers, computes
some diagnostic grid-point quantities (call to some GP... and GNH... routines via CPG GP HYD,
CPG GP NHEE, CPG GP NHQE), does multiplications by the mapping factor, applies the second
part of the temporal filter.

• CPG DIA: interface for diagnostics (DDH,CFU,XFU) in the unlagged grid-point computations.

• CPG DYN: interface routine for unlagged part of the Eulerian dynamics and simplified Buizza physics.

• CPG END: end of unlagged grid-point computations; writes data in buffer, first part of the temporal
filter, divisions by the mapping factor.

• CPGLAG: lagged grid-point computations and final filling of t+ ∆t arrays.

• GPTF1: first part of the Asselin temporal filter.

• GPTF2: second part of the Asselin temporal filter.

• GPPOPER: Asselin temporal filter and some memory transfers for prognostic surface fields.

• GPMPFC: multiplications or divisions by the mapping factor or a power of the mapping factor to convert
reduced quantities into geographical quantities or the inverse.

• GPINIDDH: some initialisation for DDH diagnostics; a subset of data computed by this routine may be
modified by the unlagged physics.

• GPINISLB: initialisation of the buffer SLB2....

• EC PHYS: calls unlagged physics used at ECMWF.

• EC PHYS LSLPHY: calls split physics used at ECMWF.

• MF PHYS: calls unlagged physics used at METEO-FRANCE.

• MF PHYS PREP: preparation of input data for MF PHYS.

• VDIFLCZ: simplified Buizza physics.

• CPEULDYN: computes the RHS of Eulerian equations.

• CP FORCING: computes the RHS of Eulerian equations for 1D model with LSFORC=T.

• RADDRV: radiation scheme used at ECMWF.

• WRPHTRSF: write out the trajectory for surface arrays to work file.

∗ CPG GP HYD: calculations done at instant t: The following quantities are computed in the
following order:

• Hydrostatic pressure and quantities derivated from hydrostatic pressure:

– GPHPRE:

∗ computes half level hydrostatic pressure Π.

∗ computes ∆Π, 1
∆Π

, δ and α at full levels; the ratio between ∇Π/Π at full levels and ∇Πs;
1
Π

at

half levels and 1
Π
l
Π
l−1

.

∗ computes full level hydrostatic pressure Π.

– GPGRXYB: ∇δ, ∇α and ∇α+ log Π at full levels.

• Dynamical quantities for hydrostatic model:

– GPRCP: R, cp and κ = R/cp at full levels.

– GPRT: RT and its horizontal derivatives at full levels.

68

– GPCTY: vertical velocities η̇ ∂Π
∂η

(at half levels) and ω/Π (at full levels); the divergence integral
term.

– GPCTY FORC: the same vertical velocities but for 1D model with LSFORC=.T. .

– GPGEO: gz at full levels and half levels.

– GPGRGEO: horizontal gradient of gz at full levels and half levels.

– Kinetic energy at full levels.

– GPHLWI, GPHLUV and GPUVS if diagnostic of w is required.

– GPGRP: pressure gradient force term used in the RHS of the horizontal wind equation.

– GPXX, calculation of vertical divergence and GPGW if diagnostic of w is required.

• Adiabatic tendencies:

– GP TNDLAGADIAB UV: explicit adiabatic Lagrangian tendency of the horizontal wind.

Some of these calculations are required also at t−∆t for leap-frog advections.

∗ CPG GP NHEE: calculations done at instant t: The following quantities are computed in
the following order:

• Hydrostatic pressure and quantities derivated from hydrostatic pressure: cf. hydrostatic model (GPHPRE
and GPGRXYB).

• Dynamical quantities:

– GPRCP: R, cp and κ = R/cp at full levels.

– GPRT: RT and its horizontal derivatives at full levels.

– GNHPRE: p, p−Π, p
Π

and Π
p

at full levels.

– GNHPREH: p at half levels and ∆p at full levels.

– GNHGRPRE: ∇p, ∇p
p

and ∇Q̂ at full levels.

– GPCTY: vertical velocities η̇ ∂Π
∂η

(at half levels) and ω/Π (at full levels); the divergence integral
term.

– GPCTY FORC: the same vertical velocities but for 1D model with LSFORC=.T. .

– GPGEO: gz at full levels and half levels.

– GPGRGEO: horizontal gradient of gz at full levels and half levels.

– Kinetic energy at full levels.

– GPHLWI: weights for interpolation of winds to model half levels.

– GPHLUV: horizontal wind components at half levels (needs some weights computed in GPHLWI).

– GPUVS: Usurf and Vsurf .

– GNHEE GRP: pressure gradient force term used in the RHS of the horizontal wind equation.

– GPXX: X at full levels.

– d and its horizontal gradient at full levels.

– GPGW: gw at full levels and half levels.

– GNHGRGW: horizontal gradient of gw at full levels and half levels.

– GNHD3: D3 at full levels.

• Adiabatic tendencies:

– GP TNDLAGADIAB UV: explicit adiabatic Lagrangian tendency of the horizontal wind.

– GNH TNDLAGADIAB UVS: explicit adiabatic Lagrangian tendency of the surface horizontal
wind.

– GNH TNDLAGADIAB GW: explicit adiabatic Lagrangian tendency of gw.

– GNH TNDLAGADIAB SPD: explicit adiabatic Lagrangian tendency of the pressure departure
variable.

– GNH TNDLAGADIAB SVD: explicit adiabatic Lagrangian tendency of the vertical divergence
variable.

Some of these calculations are required also at t−∆t for leap-frog advections.

69

∗ CPG GP NHQE: calculations done at instant t: The following quantities are computed in
the following order:

• Hydrostatic pressure and quantities derivated from hydrostatic pressure: cf. hydrostatic model (GPHPRE
and GPGRXYB).

• Dynamical quantities:

– GPRCP: R, cp and κ = R/cp at full levels.

– GPRCPH: κ = R/cp at half levels.

– GPRT: RT and its horizontal derivatives at full levels.

– GNHPRE: p, exp(κQ̂) and exp(−κQ̂) at full levels.

– GNHQE PREH: exp(κQ̂) at half levels.

– GPCTY: vertical velocities η̇ ∂Π
∂η

(at half levels) and ω/Π (at full levels); the divergence integral
term.

– GPCTY FORC: the same vertical velocities but for 1D model with LSFORC=.T. .

– GPGEO: gz at full levels and half levels.

– GPGRGEO: horizontal gradient of gz at full levels and half levels.

– Kinetic energy at full levels.

– GPHLWI: weights for interpolation of winds to model half levels.

– GPHLUV: horizontal wind components at half levels (needs some weights computed in GPHLWI).

– GPUVS: Usurf and Vsurf .

– GNHQE GRP: pressure gradient force term used in the RHS of the horizontal wind equation.

– GPXX: XS at full levels.

– GNHQE XXD: XD at full levels.

– d and its horizontal gradient at full levels.

– GPGW: gw at full levels and half levels.

– GNHGRGW: horizontal gradient of gw at full levels and half levels.

• Adiabatic tendencies:

– GP TNDLAGADIAB UV: explicit adiabatic Lagrangian tendency of the horizontal wind.

– GNH TNDLAGADIAB UVS: explicit adiabatic Lagrangian tendency of the surface horizontal
wind.

– GNHQE TNDLAGADIAB GW: explicit adiabatic Lagrangian tendency of gw.

– GNHQE TNDLAGADIAB SVD: explicit adiabatic Lagrangian tendency of the vertical
divergence variable.

Some of these calculations are required also at t−∆t for leap-frog advections.

18.4 Inventory of GP... and GNH... routines computing intermediate
dynamical quantities (direct code).

∗ GP... routines: the most important ones called in the hydrostatic model:
• GPCTY: computes the vertical velocities η̇ ∂Π

∂η
(at half levels) and ω/Π (at full levels).

• GPCTY FORC: the same vertical velocities but for 1D model with LSFORC=.T. .

• GPGEO: computes geopotential height gz at full levels and half levels.

• GPGRGEO: computes the horizontal gradient of the geopotential height gz at full levels and half levels.

• GPGRP: computes the pressure gradient force term used in the RHS of the horizontal wind equation.

• GPGRXYB: computes the horizontal gradient of α and δ.

• GP KAPPA: computes the quantity κslhd depending on deformation, which is used for example in the
SLHD diffusion (see documentation (IDSL)).

• GP KAPPAT: alternate way to compute κslhd (SLHD applied to “thermic” variables).

• GP STDDIS: computes the quantity STDDIS used to compute COMAD interpolation weights in the
semi-Lagrangian scheme (see documentation (IDSL)).

• GPHPRE: computes hydrostatic pressure at full levels and half levels; computes different quantities linked
to hydrostatic pressure, like α, δ, 1/Π.

• GPRCP: computes cp, R and κ = R/cp at full levels.

• GPRH: computes relative humidity at full levels.

• GPRT: computes RT and its horizontal derivatives at full levels.

• GP SPV: computes Πs and its horizontal derivatives.

• GP TNDLAGADIAB UV: explicit adiabatic Lagrangian tendency of the horizontal wind.

Most of these routines have tangent linear and adjoint versions.

70

∗ Some other GP... routines:
• GPRCPH: computes κ = R/cp at half levels (NHQE).

• GPEPT: computes the equivalent potential temperature at full levels.

• GPGW: computes gw at full levels and half levels.

• GPHLUV: computes the horizontal wind components at half levels (needs some weights computed in
GPHLWI).

• GPHLWI: computes weights for interpolation of winds to model half levels.

• GPIET: computes the isobaric equivalent temperature at full levels.

• GPNOX: computes NO2 concentration at full levels.

• GPPRS0D: computes simulated reflectivities at full levels.

• GPPVO: computes the potential temperature and potential vorticity at full levels.

• GPPWC: computes the total content of specific humidity in columns bounded by the top and half levels.

• GPRH 2D: cf. GPRH but for specific applications.

• GPTCO3: computes total column ozone mass per surface unit.

• GPTET: computes the potential temperature at full levels.

• GPUVS: computes Usurf and Vsurf .

• GPXX: computes X (NHEE) or XS (NHQE) at full levels.

Most of these routines have tangent linear and adjoint versions.

∗ Some GNH... routines:
• GNHD3: computes D3 at full levels.

• GNHGRGW: computes the horizontal gradient of gw at full levels and half levels.

• GNHGRPRE: computes ∇p, ∇p
p

and ∇Q̂ at full levels.

• GNHGW2SVD: retrieves the vertical divergence d from gw.

• GNHGW2SVDAROME: special version of GNHGW2SVD called after the AROME physics.

• GNHPRE: computes p, p−Π, p
Π

and Π
p

at full levels.

• GNHPREH: computes p at half levels and ∆p at full levels (NHEE).

• GNHQE PREH: exp(κQ̂) at half levels.

• GNHQE XXD: computes XD (NHQE) at full levels.

• GNHSVD2GW: cf. GPGW but with additional intermediate calculations.

• GNHX: computes X, with additional intermediate calculations.

• GNHEE GRP: computes the pressure gradient force term used in the RHS of the horizontal wind equation
(NHEE).

• GNHQE GRP: computes the pressure gradient force term used in the RHS of the horizontal wind
equation (NHQE).

• GNH TNDLAGADIAB SPD: computes the explicit adiabatic Lagrangian tendency of the pressure
departure variable (NHEE).

• GNH TNDLAGADIAB UVS: computes the explicit adiabatic Lagrangian tendency of the surface
horizontal wind.

• GNH TNDLAGADIAB GW: computes the explicit adiabatic Lagrangian tendency of gw (NHEE).

• GNH TNDLAGADIAB SVD: computes the explicit adiabatic Lagrangian tendency of the vertical
divergence variable (NHEE).

• GNHQE TNDLAGADIAB GW: computes the explicit adiabatic Lagrangian tendency of gw (NHQE).

• GNHQE TNDLAGADIAB SVD: computes the explicit adiabatic Lagrangian tendency of the vertical
divergence variable (NHQE).

71

19 Basic description of the data flow under routine STEPO.

19.1 Introduction about OOPS-oriented structures.

Data are put into big structures, for example for the following items:

• Geometry: type GEOMETRY, variable YRGEOMETRY in CNT0.

• Model object: type MODEL, variable YRMODEL in CNT0.

• Fields: type FIELDS, variable YRFIELDS in CNT0.

• Trajectory: type MTRAJ, variable YRMTRAJ in CNT0.

And also:

• VARBC: type CLASS VARBC, variable YVARBC in CNT0.

• TOVS control variable: type TOVSCV, variable YLTCV in CNT0.

• TOVS control variable for background: type TOVSCV BGC, variable YLTCV BGC in CNT0.

• Jo-table: type JO TABLE, variable YLJOT in CNT0.

• ODB: class DBASE, variable YLODB in CNT0.

• FULL-POS: type TFPOS, variable YLFPOS in CNT0.

Variables referenced below are generally attributes of such structures. For simplification:

• One writes for example NPROMA (stands for YRGEOMETRY%YRDIM%NPROMA).

• One writes for example NFLEVG (stands for YRGEOMETRY%YRDIMV%NFLEVG).

• One writes for example NGPBLKS (stands for YRGEOMETRY%YRDIM%NGPBLKS).

• One writes for example GMV (stands for YRFIELDS%YRGMV%GMV).

• One writes for example NDIMGMV (stands for YRFIELDS%YRGMV%NDIMGMV).

• One writes for example YT0%MT (stands for YRFIELDS%YRGMV%YT0%MT).

• One writes for example GFL (stands for YRFIELDS%YRGFL%GFL).

• One writes for example SP SB (stands for YRFIELDS%YRSURF%SP SB).

Prognostic variables can be split into different classes:

• GMV variables.

• GFL variables.

• GMVS variables.

• 2D surface variables used in the physics.

A more detailed description of these classes has already been given in part 7.1. The GMV, GMVS, and a subset
of GFL variables, require spectral and grid-point arrays. The 2D surface variables used in the physics require only
grid-point arrays. Additional buffers are required to transmit data between the different parts of the grid-point
calculations.

19.2 The GMV structure data.

Most grid-point space “GMV” variables referenced below are attributes of YRFIELDS%YRGMV.

∗ Treatment of t − ∆t and t data in grid-point space: In grid-point space, the
t − ∆t and t GMV data are stored in the array GMV which is an allocatable array allocated with
(NPROMA,NFLEVG,NDIMGMV,NGPBLKS). Attribute NDIMGMV is the number of t − ∆t and
t GMV fields. It is always above or equal to the number of GMV prognostic variables; the number of
GMV prognostic variables is NFTHER+2, where NFTHER is the number of thermodynamic variables.
Calculation of NDIMGMV and allocation of GMV are done in routine SETUP GMV (encapsulated in
gmv subs mod.F90). To identify each variable (for example T at instant t), one needs a pointer (in our
example it is YT0%MT). Note that GMV contains not only prognostic variables (such as U , V , T) but also
horizontal derivatives, divergence, vorticity, and also some additional diagnostic quantities.

For quantities at instant t, pointers are YT0%M[X] for a quantity [X], and YT0%M[X]L, YT0%M[X]M for
zonal and meridian derivatives. Attribute YT0 is a variable of type TYPE T0 (this type is defined in module
TYPE GMVS). Pointers are computed in routine SETUP T0 (encapsulated in gmv subs mod.F90) and
these calculations determine the order of storing the t GMV fields in the array GMV.

For quantities at instant t−∆t, pointers are YT9%M[X] for a quantity [X], and YT9%M[X]L, YT9%M[X]M
for zonal and meridian derivatives. Attribute YT9 is a variable of type TYPE T9 (this type is defined in module
TYPE GMVS). Pointers are computed in routine SETUP T9 (encapsulated in gmv subs mod.F90) and
these calculations determine the order of storing the t−∆t GMV fields in the array GMV.

72

∗ Treatment of t + ∆t data in grid-point space: In grid-point space, the t +
∆t GMV data are stored in the array GMVT1 which is an allocatable array allocated with
(NPROMA,NFLEVG,YT1%NDIM,NGPBLKS). YT1%NDIM is the number of t + ∆t GMV fields. It
is always above or equal to the number of GMV prognostic variables. Calculation of YT1%NDIM is done in
routine SETUP T1 (encapsulated in gmv subs mod.F90). To identify each variable (for example T at instant
t+ ∆t), one needs a pointer (in our example it is YT1%MT).

For quantities at instant t + ∆t, pointers are YT1%M[X] for a quantity [X]. Attribute YT1 is a variable of
type TYPE T1 (this type is defined in module TYPE GMVS). Pointers are computed in routine SETUP T1
(encapsulated in gmv subs mod.F90) and these calculations determine the order of storing the t + ∆t GMV
fields in the array GMVT1.

∗ Spectral GMV data: Individual GMV fields are attributes of variable YRFIELDS%YRSPEC.

• Attributes VOR, DIV, T, SPD, SVD, NHX: contain spectral data respectively for vorticity, divergence,
temperature, pressure departure variable, vertical divergence variable, X.

• Attribute HV: collective array for thermodynamic variables. The “standard order” in this array is
temperature, pressure departure variable, vertical divergence variable.

• Attribute SP3D: collective array for all 3D variables.

Features about the SPECTRAL FIELD structure can be found in some “algor/module” modules, the name
starts by “spectral fields”.

∗ Number of variables: sum-up.

• Number of GMV prognostic variables: NFTHER+2.

• Number of thermodynamic GMV prognostic variables: NFTHER.

• Number of fields in the array GMV: NDIMGMV.

• Number of fields in the array GMVT1: YT1%NDIM.

• Position of a field X at the instant t in the array GMV: YT0%M[X].

• Position of the zonal derivative of a field X at the instant t in the array GMV: YT0%M[X]L.

• Position of the meridian derivative of a field X at the instant t in the array GMV: YT0%M[X]M.

• Position of a field X at the instant t−∆t in the array GMV: YT9%M[X].

• Position of the zonal derivative of a field X at the instant t−∆t in the array GMV: YT9%M[X]L.

• Position of the meridian derivative of a field X at the instant t−∆t in the array GMV: YT9%M[X]M.

• Position of a field X at the instant t+ ∆t in the array GMVT1: YT1%M[X].

19.3 The GMVS structure data.

Most grid-point space “GMVS” variables referenced below are attributes of YRFIELDS%YRGMV.

∗ Treatment of t − ∆t and t data in grid-point space: In grid-point space, the t −
∆t and t GMVS data are stored in the array GMVS which is an allocatable array allocated with
(NPROMA,NDIMGMVS,NGPBLKS). Attribute NDIMGMVS is the number of t − ∆t and t GMVS
fields. It is always above or equal to the number of GMVS prognostic variables. Calculation of NDIMGMVS
and allocation of GMVS are done in routine SETUP GMV (encapsulated in gmv subs mod.F90). To
identify each variable (for example log Πs at instant t), one needs a pointer (in our example it is YT0%MSP).
Note that GMVS contains not only prognostic variables (such as log Πs) but also horizontal derivatives.

Pointers YT0%M[X], YT0%M[X]L, YT0%M[X]M, YT9%M[X], YT9%M[X]L, YT9%M[X]M (see part
19.2) are also used to determine the order of storing the GMVS fields in the array GMVS.

∗ Treatment of t + ∆t data in grid-point space: In grid-point space, the t +
∆t GMVS data are stored in the array GMVT1S which is an allocatable array allocated with
(NPROMA,YT1%NDIMS,NGPBLKS). YT1%NDIMS is the number of t+ ∆t GMVS fields. It is always
above or equal to the number of GMVS prognostic variables. Calculation of YT1%NDIMS is done in routine
SETUP T1 (encapsulated in gmv subs mod.F90). To identify each variable (for example log Πs at instant
t+ ∆t), one needs a pointer (in our example it is YT1%MSP).

Pointers YT1%M[X] (see part 19.3) are also used to determine the order of storing the GMVT1S fields in the
array GMVT1S.

73

∗ Spectral GMVS data: Individual GMVS fields are attributes of array YRFIELDS%YRSPEC.

• Attribute SP: contains spectral data for log Πs.

• Attribute SP2D: collective array for all GMVS variables; also contains additional spectral data, such as
the surface orography.

∗ Number of variables: sum-up.

• Number of GMVS prognostic variables: 1.

• Number of fields in the array GMVS: NDIMGMVS.

• Number of fields in the array GMVT1S: YT1%NDIMS.

• Position of a field X at the instant t in the array GMVS: YT0%M[X].

• Position of the zonal derivative of a field X at the instant t in the array GMVS: YT0%M[X]L.

• Position of the meridian derivative of a field X at the instant t in the array GMVS: YT0%M[X]M.

• Position of a field X at the instant t−∆t in the array GMVS: YT9%M[X].

• Position of the zonal derivative of a field X at the instant t−∆t in the array GMVS: YT9%M[X]L.

• Position of the meridian derivative of a field X at the instant t−∆t in the array GMVS: YT9%M[X]M.

• Position of a field X at the instant t+ ∆t in the array GMVT1S: YT1%M[X].

19.4 The GFL structure data.

Most grid-point space “GFL” variables referenced below are attributes of YRFIELDS%YRGFL.

∗ Treatment of t − ∆t and t data in grid-point space: In grid-point space, the
t − ∆t and t GFL data are stored in the array GFL which is an allocatable array allocated with
(NPROMA,NFLEVG,YGFL%NDIM,NGPBLKS). Not that the array GFL contains not only prognostic
variables (such as q), but also horizontal derivatives, and non advectable pseudo-historic grid-point GFL variables
(such as qCPF).

YGFL%NDIM is the number of t − ∆t and t GFL fields in grid-point space. It is always above or equal
to the number of GFL prognostic variables; the number of GFL prognostic variables is YGFL%NUMFLDS.
Calculation of YGFL%NDIM is done in routines DEFINE GFL COMP and SET GFL ATTR (these
routines are encapsulated in gfl subs mod.F90). Allocation of GFL is done in routine SUSC2C.

To identify each variable (for example q at instant t), one needs a pointer (in our example it is YGFL%YQ%MP;
variable YGFL is in YOM YGFL). Note that GFL contains not only prognostic variables (such as q, ql, qi, qa,
O3) but also horizontal derivatives.

For quantities at instant t, pointers are YGFL%Y[X]%MP for a quantity [X], and YGFL%Y[X]%MPL,
YGFL%Y[X]%MPM for zonal and meridian derivatives. Attribute Y[X] is a variable of type
TYPE GFL COMP declared in module yom ygfl.F90; the attributes of this type are defined in the part
TYPE GFL COMP of module YOM YGFL. Pointers YGFL%Y[X]%MP, YGFL%Y[X]%MPL and
YGFL%Y[X]%MPM are computed in routine DEFINE GFL COMP (encapsulated in gfl subs mod.F90)
called by SUGFL2, and these calculations determine the order of storing the t GFL fields in the array GFL.
The “SUGFL2-standard order” of storing the different variables [X] is defined in routine SUGFL2. The purely
grid-point GFL variables (including the non advected pseudo-historic GFL variables) are stored first (in the
“SUGFL2-standard order”), then the GFL variables with a spectral representation are stored (in the “SUGFL2-
standard order”). Note that no horizontal derivative is available for purely grid-point GFL variables.

For quantities at instant t − ∆t, pointers are YGFL%Y[X]%MP9 for a quantity [X] (no zonal nor meridian
derivative is required for GFL variables at t − ∆t). Pointers YGFL%Y[X]%MP9 are computed in routine
SET GFL ATTR (encapsulated in gfl subs mod.F90) called by SUGFL3. The GFL variables are stored
in the “SUGFL3-standard order” (no distinction between spectral and purely grid-point variables) and this
“SUGFL3-standard order” defined in routine SUGFL3 can be different from the “SUGFL2-standard order”.
Note that no t−∆t variable is available for the non advected pseudo-historic GFL variables (because in this case
the discretisation always writes X(t+ ∆t)−X(t) = ∆tFX, even in a leap-frog scheme).

∗ Treatment of t + ∆t data in grid-point space: In grid-point space, the t +
∆t GFL data are stored in the array GFLT1 which is an allocatable array allocated with
(NPROMA,NFLEVG,YGFL%NDIM1,NGPBLKS). YGFL%NDIM1 is the number of t+ ∆t GFL fields
in grid-point space. It is always above or equal to the number of GFL prognostic variables. Allocation of
GFLT1 is done in routine GP MODEL in the direct code. Calculation of YGFL%NDIM1 is done in
routines DEFINE GFL COMP and SET GFL ATTR (encapsulated in gfl subs mod.F90). To identify
each variable (for example q at instant t + ∆t), one needs a pointer (in our example it is YGFL%YQ%MP1;
variable YGFL is in YOM YGFL). Note that GFLT1 contains prognostic variables at t+ ∆t.

74

For quantities at instant t + ∆t, Pointers are YGFL%Y[X]%MP1 for a quantity [X]. YGFL%Y[X]%MP1
is computed in DEFINE GFL COMP (encapsulated in gfl subs mod.F90) called by SUGFL2. The purely
grid-point GFL variables (including the non advected pseudo-historic GFL variables) are stored first (in the
“SUGFL2-standard order”), then the GFL variables with a spectral representation are stored (in the “SUGFL2-
standard order”).

∗ Spectral GFL data: There are individual arrays, and also a collective array for all GFL variables
(attributes of variable YRFIELDS%YRSPEC).

• Attribute GFL: collective array for GFL variables. In GFL, the spectral GFL variables are stored in the
“SUGFL2-standard order”.

• Attributes Q, L, I, O3: contain spectral data respectively for humidity, liquid water, ice and ozone.

Dimension of YRFIELDS%YRSPEC%GFL is (NFLSUR,NSPEC2,YGFL%NUMSPFLDS). The
number of spectral GFL prognostic variables is YGFL%NUMSPFLDS. The total number of GFL prognostic
variables is YGFL%NUMFLDS. The following relationship is always true:
YGFL%NUMSPFLDS ≤ YGFL%NUMFLDS ≤ YGFL%NDIM.
For example, if the GFL variables are q and ql and if we assume additionally:

• q is treated in spectral space and is advected, its horizontal derivatives are required.

• ql is treated as a purely grid-point data and is not advected, its horizontal derivatives are not required.

• the advection scheme is an Eulerian one.

In this case, the three above integer numbers have the following value: YGFL%NUMSPFLDS=1,
YGFL%NUMFLDS=2, YGFL%NDIM=6 (the last one corresponding to q(t), zonal and meridian derivatives
of q(t), q(t−∆t), ql(t), ql(t−∆t)).

YGFL%NUMSPFLDS and YGFL%NUMFLDS are computed in the sequence SU0YOMA − > SUGFL2
− > DEFINE GFL COMP (encapsulated in gfl subs mod.F90).

In spectral space, GFL variables can be accessed by each individual YRFIELDS%YRSPEC%[X] array, but
also via the collective array YRFIELDS%YRSPEC%GFL. In this case one needs to know the location of the
variable [X] which is searched for.

• If jnum is the numbering of the GFL field among the YGFL%NUMFLDS fields, the index
jnumsp among the subset of GFL fields which have a spectral representation is given by
YGFL%COMP(jnum)%MPSP (variable YGFL%COMP is in module YOM YGFL); jnumsp
always matches jnumsp ≤ jnum. In our above example, for q, jnum and jnumsp are equal to 1.

• If we want to know, for a specific variable [X], its location in YRFIELDS%YRSPEC%GFL, the answer
is given by YGFL%Y[X]%MPSP. In our above example, for q, YGFL%Y[X]%MPSP is equal to 1.

∗ Ordering of the GFL data: As seen previously, there are two standard orders, the first one defined
by SUGFL3 and the other one defined by SUGFL2. See code sources of SUGFL2 and SUGFL3 to know
about GFL orderings. The purpose of having two different standard orders is only to limit the chance of hidden
bugs. The important rule to be kept in mind is the following: No reference to the ordering of the GFL
variables must appear elsewhere than in:

• the sequence of calls to SET GFL ATTR in SUGFL3 .

• the sequence of calls to DEFINE GFL COMP in SUGFL2 .

No hard coded explicit reference to this order must appear elsewhere in the code, the other parts
must work for an indifferent order of the GFL variables and must use the pointers defined by the
attributes of the variables YGFL%COMP and YGFL%Y[X] .

∗ Groups of GFL variables: Some generic names (like AERO) contain several variables: for example
extra-GFL variables, qFORC, qEZDIAG, qGHG, qCHEM, qAERO, qERA40, qAEROUT, qUVP, qPHYS, qNOGW, qSLDIA,
qCRM. It is possible to add some new GFL variables in these groups without deeply modifying the code, but with
some minor modifications in the namelist (and also in the files to be read).

• The number of variables in each group is respectively NGFL EXT, NGFL FORC, NGFL EZDIAG,
NGHG, NCHEM, NAERO, NERA40, NAEROUT, NUVP, NGFL PHYS, NNOGW,
NSLDIA, NCRM (namelist NAMGFL). In YOM YGFL, these variables are attributes of YGFL.

• Some information for TFP GFL(jgfl)%CLNAME (extra-GFL), TFP GHG(jgfl)%CLNAME
(greenhouse gases), TFP CHEM(jgfl)%CLNAME (chemistry), TFP AERO(jgfl)%CLNAME
(aerosols), can be required in NAMAFN to give the name of the fields which appear in the files.

• Some modifications of the attributes of YEXT NL, YFORC NL, YEZDIAG NL, YGHG NL,
YCHEM NL, YAERO NL, YERA40 NL, YAEROUT NL, YUVP NL, YPHYS NL,
YNOGW NL, YSLDIA NL, YCRM NL, can be required in NAMGFL.

• The numbering of these GFL is included in YGFL%NUMSPFLDS and YGFL%NUMFLDS.

• About extra-GFL, some variables in the code have kept the letters SV or SCVA (for scalar variables).

75

∗ Number of variables: sum-up.

• Number of GFL variables (spectral and grid-point, including the non advected pseudo-historic ones):
YGFL%NUMFLDS.

• Number of spectral GFL variables: YGFL%NUMSPFLDS.

• Number of purely grid-point GFL variables: YGFL%NUMGPFLDS.

• Number of advectable GFL variables (spectral and grid-point): YGFL%NUMFLDS SL1.

• Number of advectable GFL variables (spectral and grid-point) which require a spline cubic vertical
interpolation in the semi-Lagrangian scheme: YGFL%NDIM SPL.

• Number of GFL variables having a time t−∆t representation: YGFL%NUMFLDS9.

• Number of GFL variables having a time t+ ∆t representation: YGFL%NUMFLDS1.

• Number of spectral GFL variables having a time t+ ∆t representation: YGFL%NUMSPFLDS1.

• Number of extra-GFL variables: YGFL%NGFL EXT.

• Number of forcing variables: YGFL%NGFL FORC.

• Number of easy diagnostics variables: YGFL%NGFL EZDIAG.

• Number of greenhouse gases: YGFL%NGHG.

• Number of chemistry components: YGFL%NCHEM.

• Number of aerosols: YGFL%NAERO.

• Number of ERA40 fields: YGFL%NERA40.

• Number of output aerosol fields: YGFL%NAEROUT.

• Number of output fields from UV processor: YGFL%NUVP.

• Number of GFL variables for physics diagnostics: YGFL%NGFL PHYS.

• Number of diagnostic fields for NORO GWD scheme: YGFL%NNOGW.

• Number of SL dynamics diagnostic fields: YGFL%NSLDIA.

• Number of CRM extra fields: YGFL%NCRM.

• Number of fields in the array GFL: YGFL%NDIM.

• Number of fields at time t in the array GFL: YGFL%NDIM0.

• Number of fields at time t−∆t in the array GFL: YGFL%NDIM9.

• Number of fields in the array GFLT1: YGFL%NDIM1.

• Number of fields in the array GFL, associated to variables which require a spline cubic vertical interpolation
in the semi-Lagrangian scheme: YGFL%NDIM SPL.

• Position of a field X at the instant t in the array GFL: YGFL%Y[X]%MP.

• Position of the zonal derivative of a field X at the instant t in the array GFL: YGFL%Y[X]%MPL.

• Position of the meridian derivative of a field X at the instant t in the array GFL: YGFL%Y[X]%MPM.

• Position of a field X at the instant t−∆t in the array GFL: YGFL%Y[X]%MP9.

• Position of a field X at the instant t+ ∆t in the array GFLT1: YGFL%Y[X]%MP1.

• Position of an advectable field X in an array of dimension YGFL%NUMFLDS SL1:
YGFL%Y[X]%MP SL1.

• Position of a spectral field X in the array SPGFL: YGFL%Y[X]%MPSP.

Note that some other dimensioning and logical variables are available in yom ygfl.F90.

∗ How to add new GFL variables or new GFL attributes. A specific user’s guide (IDNGFL)
has been written.

76

19.5 The 2D surface variables used in the physics structure data.

∗ Introduction: These fields are never transformed in spectral space and they are never advected (they
concern the inner soil or the surface where the wind is assumed to be zero). They describe mainly surface or soil
2D data, but some of them can describe an upper-air 2D data (for example 2 meter temperature, total convective
cloudiness), an upper-air 3D data, or a total atmospheric content (for example total column water vapour). Even
if these data are not always 2D surface data, we keep the generic name “2D surface data” for simplification.

The 2D surface variables are divided into two main classes: the prognostic surface variables and the diagnostic
surface variables. The class of diagnostic surface variables includes a couple of pseudo-prognostic variables which
need some care. The main code features describing these variables are in SURFACE FIELDS MIX and in
SU SURF FLDS.

All the variables SP .., YSP .., SD .., YSD .. referenced below are attributes of variable
YRFIELDS%YRSURF (type TSURF). Denotations SP .., YSP .., SD .., YSD .. respectively stand
for YRFIELDS%YRSURF%SP .., YRFIELDS%YRSURF%YSP .., YRFIELDS%YRSURF%SD ..,
YRFIELDS%YRSURF%YSD ...

∗ Prognostic surface variables: This class of variables can be divided into several groups, each group
has a short two-letter code and a long 3 to 5-letter code.

• SB=SOILB: soil quantities for the different reservoirs.

• SG=SNOWG: quantities linked to surface snow.

• SL=LAKEB: quantities linked to lake (FLAKE model).

• RR=RESVR: soil quantities for the surface and sometimes the first (upper) reservoir.

• CL=CLS : surface boundary layer prognostic quantities.

• OM=OML : prognostic quantities for ocean mixed layer model (KPP).

• EP=EXTRP: extra 3D prognostic fields.

• X2=XTRP2: extra 2D prognostic fields.

• CI=CANRI: 2D fields used in CANARI.

The comprehensive list of variables is not detailed here and one can find it in SURFACE FIELDS MIX.
Ordering the individual variables inside each group is given by the content of SU SURF FLDS. It is desirable
that the ordering of the declarations in SURFACE FIELDS MIX match the ordering of SU SURF FLDS.
No reference to variable ordering should appear elsewhere than in SU SURF FLDS and
SURFACE FIELDS MIX.

Buffers, pointers and number of variables in each group: sum-up:

• Group variables containing the data are SP [group two-letter code].

• Variable YSP [group two-letter code]D contains some dimensions. For example, there are
YSP [group two-letter code]D%NDIM fields in the above group variable.

• Variable YSP [group two-letter code] contains pointers and some other attributes. For example, if
[X] is the generic name of an individual variable in the current group, the pointer allowing to retrieve the
t-value (resp. t −∆t-value, t + ∆t-value) of [X] is YSP [group two-letter code]%Y[X]%MP0 (resp.
YSP [group two-letter code]%Y[X]%MP9, YSP [group two-letter code]%Y[X]%MP1).

• Some other dimensioning variables and some other attributes can be found in routine
SURFACE FIELDS MIX.

∗ Diagnostic surface variables: This class of variables can be divided into several groups, each group
has a short two-letter code and a long 5-letter code or 6-letter code.

• VF=VARSF : climatological/geographical parameters.

• VP=VCLIP : deep soil parameters.

• VV=VCLIV : vegetation parameters.

• VN=VCLIN : cloudiness predictors.

• VH=VCLIH : convective cloud parameters.

• VK=VCLIK : convective cloud pseudo-historic fields.

• VA=VCLIA : aerosols parameters.

• VG=VCLIG : ice-coupler parameters.

77

• VC=VO3ABC : climatological ozone profiles.

• V2=VDIAGO2: 2-D climatological/diagnostic fields for an ocean mixed layer model (KPP).

• V3=VDIAGO3: 3-D climatological/diagnostic fields for an ocean mixed layer model (KPP).

• VD=VDIAG : diagnostic fields (generally used only at ECMWF).

• SM=SATSIM : (ECMWF) simulated satellite images.

• WS=WAVES : surface quantities over sea (used by IFS).

• WW=WAM : surface quantities over sea (used by WAM).

• VX=VCLIX : auxiliary climatological parameters.

• XA=VEXTRA : extra 3D fields.

• DI=VEXTRDI: targeted 3D fields.

• XR=VEXTRR : extra 3D fields for radiation.

• X2=VEXTR2 : extra 2D fields.

• SFL=SFLUX : surface flux for EDKF.

• SFO=SFORC : surface forcing for 1D model (MUSC).

• OC=OCE : ocean model fields.

• PF : precipitation fraction.

The comprehensive list of variables is not detailed here and one can find it in SURFACE FIELDS MIX.
Ordering the individual variables inside each group is given by the content of SU SURF FLDS. It is desirable
that the ordering of the declarations in SURFACE FIELDS MIX match the ordering of SU SURF FLDS.
No reference to variable ordering should appear elsewhere than in SU SURF FLDS and
SURFACE FIELDS MIX.

Note that we can also divide these variables into 3 sub-classes:

• Constants: they have no time-evolution and they are always input data in the model dynamics and physics:
for example the land-sea mask.

• Diagnostics: they are generally diagnosed by the physics and kept at the current time-step only: they
are computed for diagnostics (XFU, DDH for example). The content is not conserved at the following
timestep. Example: the total convective cloudiness.

• Pseudo-prognostic variables: they are generally diagnosed by the physics and conserved until the following
timestep where they are used as input data by the physics. For MF purpose there are currently 7 pseudo-
prognostic variables:

– VF=VARSF: variable Z0F (gravity ∗ surface roughness length).

– VV=VCLIV: variable HV (resistance to evapotranspiration).

– VV=VCLIV: variable Z0H (gravity ∗ surface roughness length for heat).

– VH=VCLIH: variable PBLH (PBL height).

– VH=VCLIH: variable SPSH (variable for ALARO prognostic convection scheme).

– VH=VCLIH: variable QSH (surface moisture historic variable, used by TOUCANS).

– VK=VCLIK: variable UDGRO (convective cloud updraught top position).

Buffers, pointers and number of variables in each group: sum-up:

• Group variables containing the data are SD [group two-letter code].

• Variable YSD [group two-letter code]D contains some dimensions. For example, there are
YSD [group two-letter code]D%NDIM fields in the above group variable.

• Variable YSP [group two-letter code] contains pointers and some other attributes. For example, if [X]
is the generic name of an individual variable in the current group, the pointer allowing to retrieve its value
is YSD [group two-letter code]%Y[X]%MP.

• Some other dimensioning variables and some other attributes can be found in routine
SURFACE FIELDS MIX.

∗ Set-up:
• Pointer calculations, allocations are done in SU SURF FLDS.

• Some of the buffers (initial value of the prognostic variables, and input constants) are read on files via
SUGRIDA (ARPEGE files) or SUGRIDG (GRIB files). SUGRIDA and SUGRIDG directly fill the
surface buffers.

78

∗ Data flow under CPG: The buffers SP... and SD... are filled (they currently appear as dummy
arguments PSP... and PSD..., although YDSURF is passed too), without any intermediate local variable.

• In CPG GP, when leap-frog scheme, t data of SP... are copied in the t −∆t part of SP... via routine
GPPOPER.

• In CPG GP, when required, t−∆t part of SP... is copied in the t+ ∆t part of SP....

• In MF PHYS the t data (SL2TL) or t−∆t data (leap-frog) of SP... is used as input data of the physics.
Constants of SD... are used as input data. Diagnostics of SD... are diagnosed via the physics output.
Pseudo-historic variables of SD... enter the physics (input value is used) and are updated by the physics.
In some cases (MF PHYS called for only diagnostic purpose, without temporal evolution), it is necessary
to restore the input data at the end of MF PHYS. The t + ∆t part of SP... is updated via routine
CPTENDS.

• In CPG END the t + ∆t part of SP... is copied into the t part, with a temporal filter for leap-frog
schemes (call to GPPOPER).

∗ Other groups of surface variables: There are groups which have not been reported in the new
surface data scheme:

• VU=VCLIU: reference variables for nudging: stored in arrays XVU[X] of YOMNUD.

• VR=VRADF: radiation fields: stored in some arrays of YOMRADF.

• VT=VTILE: tile surface scheme fields (ECMWF only): stored in arrays R[X]TI of YOE TILE PROP.

∗ Additional remarks:

• ECMWF clearly makes a difference between the soil reservoirs (4 reservoirs) and the surface. The soil
reservoirs prognostic variables are always in the group SOILB, and the surface prognostic variables are
always in the group RESVR (this is not a very logical choice!).

• METEO-FRANCE does not always a distinction between the surface (“skin” variables) and the superficial
reservoir (there are 2 reservoirs: a superficial reservoir and a deep reservoir): the distinction is done for the
water content but not for temperature. The deep reservoir prognostic variables are always in the group
SOILB, and the surface (“skin”) and superficial reservoir prognostic variables are always in the group
RESVR.

• The surface buffer GPARBUF which is used in the externalised surface (SURFEX) still exists.

• The generic term “surface” is applied to several topics and the reader has to keep in mind the following
definitions in order to avoid confusions between the different topics called “surface”. The different topics
called “surface” are:

– The surface fields previously described, mainly stored in the buffers SP ... and SD

– The externalised surface projects SURFEX and MSE, using the array GPARBUF to communicate
surface data between the ARP/ALD routines and the SURFEX+MSE routines: it is currently used
in the AROME physics.

– The externalised ECMWF surface (project SUR) for ECMWF physics.

For example, to deallocate some buffers used in the ECMWF surface package one calls the
routine SURFDEALLO and to deallocate the SP ... and SD ... buffers one calls the routine
surface fields mix.F90/DEALLO SURF.

∗ How to add new surface variables or new surface attributes. A specific user’s guide
(IDNSUR) has been written.

19.6 Treatment of the data flow under routine STEPO.

∗ Introduction: The purpose is now to describe all the steps done under STEPO (one timestep) and
what are the different arrays involved. We give an overview of the data flow for GMV, GMVS, GFL and
grid-point surface fields under STEPO. One focusses on the Eulerian direct model but a short reference of the
semi-Lagrangian scheme will be also done.

The time where arrays were frequently reallocated and deallocated is now behind us, computers provide enough
memory to keep them allocated during all the model integration. Most of the variables among YRGFL,
YRGMVS, YRGMV, YRSURF, YRSPEC, remain allocated during all the model integration.

These arrays, generally encapsulated, are now passed via dummy arguments to STEPO and callees.

We recall that a timestep integration under STEPO has the following steps:

• I/O in spectral space.

79

• Inverse transforms.

• Grid-point calculations.

• Grid-point coupling for LAM models.

• Direct transforms.

• Spectral calculations.

∗ Spectral space: YRFIELDS%YRSPEC is passed as dummy argument to STEPO and its callees,
in particuliar to (E)SPCM. Dummy argument name is generally YDSPEC or YDSP. Individual quantities
YDSPEC%[X] or YDSP%[X] may appear in deeper pieces of the call-tree.

∗ Inverse spectral transformation: It is done under the routine TRANSINVH (ETRANSINVH
in LAM models) for the variable at instant t. The input spectral data is YDSPEC. The output grid-point data
(also containing derivatives) are YDGMV%GMV, YDGMV%GMVS and YDGFL%GFL.

∗ Grid-point space: Dummy argument of STEPO is YDFIELDS, with attributes YRGMV,
YRGMVS, YRGFL, YRSURF.

∗ Grid-point computations: It is done under GP MODEL (called under SCAN2M). The code is
organized into several loops on NPROMA-blocks (each unit of the loop does calculations for one NPROMA-
block). These different loops are:

• CPG DRV − > CPG: unlagged grid-point calculations.

• The ECMWF radiation scheme.

• The semi-Lagrangian interpolations (under CALL SL.. routines).

• The lagged physics.

• Some final lagged grid-point calculations (CPGLAG) (including the phase “1” of the Asselin temporal
filter).

Additional arrays are necessary to communicate data between the different parts of the grid-point calculations.

• For quantities to be interpolated in the semi-Lagrangian scheme: ZSLBUF1 in GP MODEL (more
details will be given later about how it is used under CPG and CALL SL).

• For other quantities to be transmitted: ZSLBUF2.

• For specific applications (PC schemes in particular) some specific arrays can be used: buffer GPPCBUF
and local array ZGPPC.

For more details:

• The array ZSLBUF1 (the dimensions of which are (YRSL%NASLB1;NFLDSLB1)) is allocated or
declared in GP MODEL HEAP or GP MODEL STACK. It is needed to store all data which will be
used in the semi-Lagrangian interpolations. This array has the name PB1 under CPG.

• The array ZSLBUF2 is allocated or declared in GP MODEL HEAP or GP MODEL STACK (name
PB2 under CPG).

• Under CPG some local arrays are used. The collective arrays are ZGPPC (used in the predictor-corrector
scheme), ZSLBUF1AU (intermediate array, the data of which will be transferred in PB1 for semi-
Lagrangian interpolations).

• In CPG, input dummy or global arrays are PGMV (GMV fields at instants t − ∆t and t), PGMVS
(GMVS fields at instants t − ∆t and t), PGFL (GFL fields at instants t − ∆t and t), and the surface
buffers PSP .. and PSD .. (surface fields for unlagged MF physics at instant t or t−∆t).

• CPG GP:

– does the part two of the Asselin temporal filter (GPTF2).

– converts the reduced variables into geographical variables via a multiplication by a power of the
mapping factor (GPMPFC).

– computes some intermediate variables linked with the hydrostatic surface pressure (routine
GP SPV).

– does memory transfers in the surface buffer PSP ...

– computes some intermediate grid point variables like δ, α, RT , cp, gz, Φ, etc..., which are used as
input of the physics, the dynamics and some diagnostics.

– computes adiabatic RHS of equations.

80

– calls GPINISLB which puts some results in PGMVT1, PGMVT1S, PGFLT1, PB2.

When exiting CPG GP: in the semi-Lagrangian scheme PGMVT1, PGMVT1S and PGFLT1 contain
0; in the Eulerian scheme these arrays contains X(t−∆t) after modification by the phase two of the Asselin
filter.

• Unlagged physics: it is the MF physics (managed by MF PHYS). It uses as input the t variables for a
SL2TL scheme and the t −∆t variables for a leap-frog scheme. After computation of the physical fluxes
and divergences of fluxes the physical tendencies are computed and added to the RHS of the equations; the
physical tendencies are put in the interpolation buffer in a SL scheme and in PGMVT1, PGMVT1S and
PGFLT1 in an Eulerian scheme. At the end of this stage: for an Eulerian scheme, these T1-arrays contain
X(t−∆t) +FX(t−∆t); for a SL3TL scheme, ZSLBUF1AU then PB1 contains X(t−∆t) +FX(t−∆t);
for a SL2TL scheme, ZSLBUF1AU then PB1 contains X(t) + FX(t). The current physics has a vertical
dependency but no horizontal dependency (the only horizontal dependency is the computation of the
moisture convergence as input to the MF convection scheme, the moisture convergence needs the horizontal
derivatives of the moisture). Some diagnostics can be done after the physics (CFU, XFU, DDH).

• Adiabatic dynamics: done under CPG DYN: it includes the calculation of advections, linear terms.

– Eulerian scheme: adds 2∆t [A− βL] at time t to the arrays PGMVT1, PGMVT1S and PGFLT1;
stores ∆tβL time t−∆t in the array P[X]SI.

– SL3TL scheme: increments the buffer (ZSLBUF1AU in CPG) with data which will be interpolated
at the origin point O, and PGMVT1, PGMVT1S and PGFLT1 with data which will be evaluated
at the final point. For more details, see the documentation about the semi-Lagrangian scheme.

– SL2TL scheme: does roughly the same thing as in the SL3TL scheme, and also updates the part of
PGMV and PGMVS corresponding to the pointers YDGMV%YT9%M[X]NL.

• CPG END: end of the unlagged grid-point calculations.

– calls GPPOPER: updates the prognostic surface buffers with the t+ ∆t surface variables.

– redivides some quantities by a power of the mapping factor in order to retrieve reduced variables
(GPMPFC).

• CALL SL: called in a semi-Lagrangian scheme only; does the trajectory research, the interpolations,
and adds the interpolated quantities. At the end of this stage, the arrays PGMVT1, PGMVT1S and
PGFLT1 contain a “provisional” value of X(t + ∆t) equal to the true X(t + ∆t) (to be computed after
resolution of the semi-implicit scheme) plus an increment equal to β∆tL(t+∆t)−β∆tL(t); the “provisional”
value of X(t+ ∆t) will be used as input data for the lagged physics.

• Lagged physics (currently ECMWF physics only): It uses as input the “provisional” value of X(t + ∆t).
After computation of the physical fluxes and divergences of fluxes the physical tendencies are computed
and added to the RHS of the equations (arrays PGMVT1, PGMVT1S and PGFLT1).

• CPGLAG:

– does the part “one” of the Asselin temporal filter via GPTF1.

– adds β∆tL(t) in order to get X(t+ ∆t) + β∆tL(t+ ∆t).

– divides the wind components by M in order to retrieve the reduced wind components.

at the end of CPGLAG:

– the t data have been moved in the t−∆t part of PGMV, PGMVS and PGFL.

– the t+ ∆t data are in PGMVT1, PGMVT1S and PGFLT1.

• At the end of GP MODEL, ZSLBUF2
is deallocated. YRGMV%GMVT1 and YRGMV%GMVT1S contain X(t + ∆t) + β∆tL(t + ∆t)
for GMV and GMVS variables. YRGFL%GFLT1 contains X(t + ∆t) for GFL variables. Note that
X(t+ ∆t) is a provisional value on which the horizontal diffusion has not still been applied.

∗ Direct spectral transformation: It is done under the routine TRANSDIRH (ETRANSDIRH in
LAM models) for the variable X(t+∆t)+β∆tL(t+∆t) (GMV and GMVS variables) or X(t+∆t) (GFL variables).
The grid-point input array are YDGMV%GMVT1, YDGMV%GMVT1S and YDGFL%GFLT1, the
output spectral data is YDSPEC.

∗ Spectral computations: They are done under routine SPCM (ESPCM for LAM models) on
attributes of YRFIELDS%YRSPEC. Some array copies are necessary for some applications, especially in
distributed mode on several processors.

81

∗ Lateral boundary coupling in LAM models: It is done just before the direct Fourier transforms
by the routine ECOUPL1 called by STEPO on variables YDGMV%GMVT1, YDGMV%GMVT1S and
YDGFL%GFLT1.

STEPO -> ECOUPL1 ->
* ESC2R (temporal interpolation to get coupler at current timestep)
* ESEIMPLS (add linear terms to coupler)
* ESRLXT1 (grid-point relaxation)

Upper boundary coupling is done in grid-point calculations:

STEPO -> ECOUPL2 ->
* ESC2R (temporal interpolation to get coupler at current timestep)
* ESEIMPLS (add linear terms to coupler)
* ESURLXT1 (grid-point relaxation)

Spectral nudging is done in spectral calculations:

STEPO -> ESPCM ->
* ESPSC2R (temporal interpolation to get coupler at current timestep)
* ESPCPL (spectral relaxation)

Reading coupling files, and transferring couplers in specific buffers is done in ELSRW.

CNT4 or DFI3 -> ELSRW -> ERLBC ->
* SUEINIF (read coupler in file)
* ELSWA3 ->
- inverse transforms to get grid-point coupler.
- intermediate memory transfers.
- EPAK3W and EPAK3WSP (memory transfers in specific buffers).

19.7 Restriction to a dry model.

The implementation of the GFL structure data would allow, in theory, to run a dry adiabatic model (with physics
it is more problematic, since the physical package uses the moisture in several parts; at least the radiation scheme,
the gravity wave drag scheme and the vertical diffusion scheme could be used in a dry model). This configuration
has indeed never been validated, and there probably remains some parts of the code where the use of moisture is
hard coded (in some GP... routines especially).

It is possible to run an adiabatic dry model as follows:

• activate only q for GFL variables.

• set initial value q = 0 everywhere.

82

20 Tangent linear code.

20.1 Basics about TL code.

The coded linearised formulae will not be detailed in this documentation: the tangent linear code is taken line
by line, thus it depend on the way the direct code is written. The main features of the tangent linear code are
roughly the following ones:

• the tangent linear code looks like the direct code but with a differentiated shape. For example if the direct
code contains an instruction like

Z = XY

the tangent linear code will contain at the same place the instruction

Z = XY5 +X5Y

using some trajectory variables subscripted by index “5”. In the tangent linear code, X is a perturbation.

• There is additionally a “trajectory” code which is a copy of the direct code, but applied to the trajectory
variables subscripted by index “5”.

The tangent linear code performs the evolution of a “linear” perturbation; for example if the direct model
discretizes the scalar 2D equation:

dX

dt
= KX2

where K is a constant, the tangent linear model discretizes the equation:

d[δX]

dt
= 2KX[δX]

One can see that the evolving variable is now [δX] and that the “trajectory” information provided by the direct
model (here X) is also required. In our case [δX] is assumed to be small enough to match the identity:

K[X + ∆X]2 −KX2 ' 2KX[δX]

which means that [δX] has to remain negligible compared to 2X. At each time step the matrix defining the linear
transformation is in our case [2KX].

20.2 Tangent linear code for the 2D model: organigramme under STEPOTL
for the Eulerian 2D model.

STEPOTL -> SCAN2MTL -> GP_MODEL_TL ->

* CPG2TL ->

- GPTF2

* CPG2LAGTL ->

- GPTF1

• CPG2TL: TL of unlagged grid-point computations.

• CPG2LAGTL: TL of lagged grid-point computations.

• GPTF1: first part of the Asselin temporal filter.

• GPTF2: second part of the Asselin temporal filter.

Communications between unlagged grid-point computations and lagged grid-point computations need a buffer
using pointers of module PTRSLB2.

83

20.3 Tangent linear code for the 3D model: organigramme under STEPOTL
for the Eulerian 3D model.

STEPOTL -> SCAN2MTL -> GP_MODEL_TL ->

* CPG_DRV_TL -> CPGTL ->

- Allocations

- CPG5_GP (for trajectory) ->

* some routines reading trajectory (RDPHTRAJM)

* GPMPFC5 (for trajectory)

* GP_SPV (for trajectory)

* some GP.. routines computing intermediate grid-point quantities for trajectories.

- CPG_GP_TL ->

* GPTF2

* GPMPFC (for model variables)

* some GP..TL routines computing intermediate grid-point quantities for model variables.

* GPINISLB

- MF_PHYSTL (organigramme not detailed)

- CPG_DYN_TL ->

* CPEULDYNTL ->

- some SI.. routines computing some linear terms used in SI scheme.

* VDIFLCZTL (organigramme not detailed)

- CPG_END_TL ->

* GPMPFC (for model variables)

- GPMPFC5 (for trajectory)

- Deallocations

* EC_PHYS_TL (organigramme not detailed)

* CPGLAGTL ->

- GPTF1

• CPG DRV TL: driver for TL of unlagged grid-point computations.

• CPGTL: TL of unlagged grid-point computations.

• CPG GP TL: TL of beginning of unlagged grid-point computations; reads t−∆t data in buffers, computes
some diagnostic grid-point quantities (call to some GP... routines), does multiplications by the mapping
factor, applies the second part of the temporal filter.

• CPG DYN TL: TL of interface routine for unlagged part of the Eulerian dynamics and simplified Buizza
physics.

• CPG END TL: TL of end of unlagged grid-point computations; writes data in buffer, first part of the
temporal filter, divisions by the mapping factor.

• CPGLAGTL: TL of lagged grid-point computations.

• GPMPFC: multiplications/divisions by the mapping factor.

• GPMPFC5: trajectory version of GPMPFC.

• GPTF1: first part of the Asselin temporal filter.

• GPTF2: second part of the Asselin temporal filter.

• VDIFLCZTL: TL of simplified Buizza physics.

• EC PHYS TL: calls TL of lagged physics used at ECMWF.

• MF PHYSTL: calls TL of unlagged physics used at METEO-FRANCE.

• CPEULDYNTL: computes the RHS of TL of Eulerian equations.

Communications between unlagged grid-point computations and lagged grid-point computations need a buffer
using pointers of module PTRSLB2.

84

20.4 Testing the tangent linear code: configurations 501, 521 and 522.

∗ Aim, and configurations: The aim is to test that the tangent linear code provided in the code, is the
genuine tangent linear code of the direct code and that there is no bug in it. Configuration 501 performs this test
for the 3D primitive equation model or the 3D non-hydrostatic model. Configurations 521 and 522 perform this
test respectively for the 2D shallow water model and for the 2D “vorticity” equation model.

∗ Algorithm: The algorithm will be described for a “generic” 2D variableX (that can be for example log(Πs))
but it can extend to a vector of variables containing all layers of different 3D variables and some additional 2D
variables. The number of timesteps run is denoted by Nstop.

• The test configuration reads two files and computes a perturbation. The two files can be identical. One of
these files contains the initial state; for our generic 2D variable X the initial state is denoted by X0. An
initial perturbation [δX]0 is also computed.

• First the model performs a direct integration of Nstop timesteps, like in the configurations 1, 201 or 202.
That provides the different forecast steps of X: X1, X2, ..., XNstop . This trajectory is stored in a buffer;
it will be used to run the tangent linear model.

• The model then performs a tangent linear integration to compute the evolution of the perturbation [δX];
this integration uses the trajectory X0 to XNstop and provides [δX]1 to [δX]Nstop .

• The model then does a loop (index jλ from 0 to 10); for each value of jλ the model runs a direct integration
with an initial state of Y0 = [X + 10−jλδX]0 and forecasts Y1 to YNstop . In spectral space, for each couple
of wavenumbers (m,n), the following ratio is computed:

RNstop(m,n) =
YNstop(m,n)−XNstop(m,n)

10−jλ [δX]Nstop(m,n)

(what is printed on the listing is a subset of RNstop(m,n) taken at random). The test must show that
RNstop(m,n) converges towards 1 when jλ increases.

∗ Organigramme: Only the basic features of the organigramme of configurations 501, 521 and 522 is given
here (for example the canonical injections and the printing routines are omitted); for details about STEPO and
STEPOTL see above.

• From CNT0 to TESTLI: CNT0 − >

– SU0YOMA − > (0-level setup; organigramme not detailed)

– SU0YOMB − > (0-level setup; organigramme not detailed)

– CTL1 − > SU1YOM − >
∗ SUVAZX − > SUSPEC − > (reads the second file (name ICMSH[.]IMIN))

∗ SUSPEC − > (reads the initial conditions file (name ICMSH[.]INIT))

– TESTLI − > (see below; controls all the algorithm of testing the tangent linear code)

• Under TESTLI:

– SUPERT − > (computes the perturbation [δX]0).

– CNT3 − > CNT4 − > STEPO − > (direct model integration which computes X1, X2, ...,
XNstop).

– CNT3TL − > CNT4TL − >
∗ STEPO − > TRANSINVH − > (converts the trajectory X1 to XNstop into grid-point space).

∗ STEPOTL − > (runs the tangent linear model to provide [δX]1 to [δX]Nstop).

– in a loop on jλ from 0 to 10:

∗ CNT3 − > CNT4 − > STEPO − > (direct model integration which computes Y1, Y2, ...,
YNstop from the perturbed initial state Y0 = [X + 10−jλδX]0)

∗ computes the ratio RNstop and prints it for a subset of wavenumbers (m,n).

85

21 Adjoint code.

21.1 Basics about AD code.

One starts from the linear tangent code and “adjoints” the code: for example a matricial expression of the
following type

Y = MX

leads to the expression
X = X + tMY

in the adjoint code.

21.2 Adjoint code for the 2D model: organigramme under STEPOAD for
the Eulerian 2D model.

STEPOAD -> SCAN2MAD -> GP_MODEL_AD ->

* CPG2LAGAD ->

- GPTF1AD

* CPG2AD ->

- GPTF2AD

• CPG2AD: AD of unlagged grid-point computations.

• CPG2LAGAD: AD of lagged grid-point computations.

• GPTF1AD: AD of first part of the Asselin temporal filter.

• GPTF2AD: AD of second part of the Asselin temporal filter.

Communications between unlagged grid-point computations and lagged grid-point computations need a buffer
using pointers of module PTRSLB2.

21.3 Adjoint code for the 3D model: organigramme under STEPOAD for
the Eulerian 3D model.

STEPOAD -> SCAN2MAD -> GP_MODEL_AD ->

* CPGLAGAD ->

- GPTF1AD

* EC_PHYS_AD (organigramme not detailed)

* CPG_DRV_AD -> CPGAD ->

- Allocations

- CPG5_GP (for trajectory) ->

* some routines reading trajectory (RDPHTRAJM).

* GPMPFC5 (for trajectory)

* GP_SPV (for trajectory)

* some GP.. routines computing intermediate grid-point quantities for trajectories.

- CPG_END_AD ->

* GPMPFC

- CPG_ZERO_AD

- CPG_DYN_AD ->

* VDIFLCZAD (organigramme not detailed)

* CPEULDYNAD ->

- some SI.. routines computing some linear terms used in SI scheme.

- MF_PHYSAD (organigramme not detailed)

- CPG_GP_AD ->

* some GP..AD routines computing intermediate grid-point quantities for model variables.

* GPMPFC (for model variables)

* GPTF2AD

- GPMPFC5 (for trajectory)

86

• CPG DRV AD: driver of AD of unlagged grid-point computations.

• CPGAD: AD of unlagged grid-point computations.

• CPG GP AD: AD of beginning of unlagged grid-point computations; reads t − ∆t data in buffers,
computes some diagnostic grid-point quantities (call to some GP... routines), does multiplications by
the mapping factor, applies the second part of the temporal filter.

• CPG DYN AD: AD of interface routine for unlagged part of the Eulerian dynamics and simplified Buizza
physics.

• CPG END AD: AD of end of unlagged grid-point computations; writes data in buffer, first part of the
temporal filter, divisions by the mapping factor.

• CPG ZERO AD: zeroing some arrays before adjointing.

• CPGLAGAD: AD of lagged grid-point computations.

• GPMPFC: multiplications/divisions by the mapping factor.

• GPMPFC5: trajectory version of GPMPFC.

• GPTF1AD: AD of first part of the Asselin temporal filter.

• GPTF2AD: AD of second part of the Asselin temporal filter.

• VDIFLCZAD: AD of simplified Buizza physics.

• EC PHYS AD: calls AD of lagged physics used at ECMWF.

• MF PHYSAD: calls AD of unlagged physics used at METEO-FRANCE.

• CPEULDYNAD: computes the RHS of AD of Eulerian equations.

Communications between unlagged grid-point computations and lagged grid-point computations need a buffer
using pointers of module PTRSLB2.

21.4 Testing the adjoint code: configurations 401, 421 and 422.

∗ Aim, and configurations: The aim is to test that the adjoint code provided in the code, is the genuine
adjoint code of the tangent linear code and that there is no bug in it. Configuration 401 performs this test for
the 3D primitive equation model or the 3D non-hydrostatic model. Configurations 421 and 422 perform this test
respectively for the 2D shallow water model and for the 2D “vorticity” equation model.

∗ Algorithm: The algorithm will be described for a “generic” 2D variableX (that can be for example log(Πs))
but it can extend to a vector of variables containing all layers of different 3D variables and some additional 2D
variables. The number of timesteps run is denoted by Nstop.

• The test configuration reads two files and computes two perturbations. The two files can be identical. One
of these files contains the initial state; for our generic 2D variable X the initial state is denoted by X0. An
initial perturbation [δX]0 and a “final” perturbation [δY]Nstop are also computed.

• First the model performs a direct integration of Nstop timesteps, like in the configurations 1, 201 or 202.
That provides the different forecast steps of X: X1, X2, ..., XNstop . This trajectory is stored in a buffer;
it will be used to run the tangent linear and the adjoint models.

• The model then performs a tangent linear integration to compute the evolution of the perturbation [δX];
this integration uses the trajectory X0 to XNstop and provides [δX]1 to [δX]Nstop .

• The model then performs an adjoint integration to compute the “adjoint” evolution of the perturbation
[δY]; this integration uses the trajectory X0 to XNstop , starts from [δY]Nstop and provides [δY]Nstop−1 to
[δY]0.

• If one denotes by M the matricial operator verifying:

[δX]Nstop = M[δX]0

(this is a product of Nstop matrices), the two following scalar products are computed:

S1 =
〈
M[δX]0, [δY]Nstop

〉
S2 =

〈
[δX]0, M

T [δY]Nstop

〉
These scalar products are defined in spectral space. These scalar products are compared; they must be
identical if the provided adjoint code is correct relative to the tangent linear code.

87

∗ Organigramme: Only the basic features of the organigramme of configurations 401, 421 and 422 is given
here (for example the canonical injections and the printing routines are omitted); for details about STEPO,
STEPOTL and STEPOAD see above.

• From CNT0 to TESADJ: CNT0 − >

– SU0YOMA − > (0-level setup; organigramme not detailed)

– SU0YOMB − > (0-level setup; organigramme not detailed)

– CAD1 − > SU1YOM − >
∗ SUVAZX − > SUSPEC − > (reads the second file (name ICMSH[.]IMIN))

∗ SUSPEC − > (reads the initial conditions file (name ICMSH[.]INIT))

– TESADJ − > (see below; controls all the algorithm of testing the adjoint code)

• Under TESADJ:

– SUPERT − > (computes the perturbations [δX]0 and [δY]Nstop).

– CNT3 − > CNT4 − > STEPO − > (direct model integration which computes X1, X2, ...,
XNstop).

– CNT3TL − > CNT4TL − >
∗ STEPO − > TRANSINVH − > (converts the trajectory X1 to XNstop into grid-point space).

∗ STEPOTL − > (runs the tangent linear model to provide [δX]1 to [δX]Nstop).

– CNT3AD − > CNT4AD − >
∗ STEPO − > TRANSINVH − > (converts the trajectory X1 to XNstop into grid-point space).

∗ STEPOAD − > (runs the adjoint model from the perturbation [δY]Nstop in order to provide
[δY]Nstop−1 to [δY]0).

– Checks comparing the two scalar products S1 and S2 that the adjoint code is really the adjoint of
the tangent linear code.

88

22 Some distributed memory features.

Note that some variables referenced below may be attributes of structures.

∗ Message passing division into processors, structure of grid-point data.

The total number of processors is NPROC. There are two levels of parallelisation. Distribution on these two
levels is different in the different spaces of calculations.

NPROC=NPRGPNS∗NPRGPEW. The total number of processors involved in the A-level parallelisation is
NPRGPNS. The total number of processors involved in the B-level parallelisation is NPRGPEW.

One 2D model field has NGPTOTG points divided into NPRGPNS*NPRGPEW sets of NGPTOT points
treated by each processor. NGPTOT may be processor-dependent (with very small variations): the maximum
value of NGPTOT is NGPTOTMX. A processor treats complete columns in grid-point space.

For one given processor, the NGPTOT points are divided into packets of length NPROMA (the useful number
of values in each packet is lower or equal than NPROMA). NPROMA is identical for all processors. There are
NGPBLKS blocks of NPROMA packets:

NGPBLKS = int[(NGPTOT + NPROMA− 1)/NPROMA]

A NPROMA-packet does not always contain a set of complete latitudes.

There are necessary transpositions (reorganisation of data) between grid point computations and Fourier
transforms because Fourier transforms need complete latitudes.

∗ Transmission of data used in several “JKGLO” blocks in the grid-point
computations.

There are several “JKGLO” blocks in the grid-point calculations. Calculations start for the first block, for the
NGPBLKS packets of NPROMA points. Calculations for the second block follow then, and so on. Some data
may be needed in more than one block.

Some of these data can be stored in the arrays GMVT1, GMVT1S, GFLT1, GMV, GMVS, GFL, but
some other more specific data require a special buffer, allocated and deallocated in GP MODEL (local name is
ZSLBUF2, dummy name is generally PB2 under CPG, CALL SL and CPGLAG). This array is used both
in the Eulerian and semi-Lagrangian schemes. Each individual quantity stored in ZSLBUF2 can be retrieved
by a pointer with a name looking like MSLB2... (in PTRSLB2). Pointers starting by letters MSLB2... are
pre-computed in the set-up routine SUSLB.

For example the “t” linear contribution which is used in the semi-implicit scheme and which appears in the RHS of
temperature equation, can be stored in ZSLBUF2(.,MSLB2TSI:MSLB2TSI+NFLEVG-1,.); it is currently
computed under CPG DYN, and needed for example under CPGLAG which is in a different JKGLO block.
No halo computation is necessary for this buffer.

∗ Case LEQ REGIONS=T.

This case is relevant only when NPRGPEW>1 (B-level parallelisation at least in the grid-point calculations),
and use a global model with a reduced Gaussian grid. This is an optimised version of the LEQ REGIONS=F case
which is well designed for reduced Gaussian grid and it improves the load balance in this case. A comprehensive
description can be found in (Mozdzynski, 2006). To sum-up, we can say that:

• the A-level grid-point distribution splits the Earth into N REGIONS NS bands. N REGIONS NS
can be slightly different from NPRGPNS.

• for each band jroca, the B-level grid-point distribution splits the band into N REGIONS(jroca) zones:
the minimum value of N REGIONS is at the poles of the computational sphere (equal to 1 in the examples
provided by Mozdzynski); the maximum value of N REGIONS is at the equator of the computational
sphere and this maximum is equal to N REGIONS EW. The meridian variations of N REGIONS are
highly correlated to those of NLOENG.

• In the examples provided by Mozdzynski, NPRGPNS=NPRGPEW=NPRTRW=NPRTRV and we
notice that N REGIONS NS is slightly below NPRGPNS, and that N REGIONS EW is slightly
below 2∗NPRGPEW.

When LEQ REGIONS=F, variables N REGIONS NS, N REGIONS and N REGIONS EW are still
used but in this case:

• N REGIONS NS=NPRGPNS.

• N REGIONS=NPRGPEW everywhere.

• N REGIONS EW=NPRGPEW.

89

23 Specific Eulerian model variables in modules and namelists.

These modules are auto-documented so description of each variable is provided in the code source. We can recall
here the most important variables to know for each module:

• PARDIM (parameter dimensions).

• PTRSLB2 (pointers for arrays to communicate information between the different blocks in the grid-point
calculations).

• PTRGPPC (pointers for grid point array (GPPC) for PC schemes).

• YEMLBC.. modules for lateral or vertical coupling and spectral nudging: all variables. Some of these
variables are in namelists NEMELBC0A and NEMELBC0B.

• YEMDYN (LAM model dynamics): LESIDG, RTHRESIDG. RTHRESIDG is in namelist NEMDYN.

• YOMARG (0-level control, former command line) and YOMCT0 (0-level control):

– All NAMARG variables: for ex. NCONF, LELAM, LECMWF, LSLAG, NSUPERSEDE.

– LR3D, LR2D, LRSHW, LRVEQ.

– LTWOTL.

– LREGETA, LVFE REGETA.

– LNHDYN, LNHEE, LNHQE.

– LRPLANE.

– LAROME.

– LCALLSFX, LSFXLSM.

– LSFORC, LSFORCS.

Some of these variables are in namelist NAMCT0.

• YOMCVER (vertical finite element discretisation keys). Some of these variables are in namelist
NAMCVER.

• YOMDIM, YOMDIMV and YOMDIMF (dimensioning): most of variables. Some of these variables
are in namelist NAMDIM.

• YOMDYNA (adiabatic dynamics: first part):

– LAPRXPK, NDLNPR, RHYDR0 (vertical discretisation).

– L3DTURB (3D turbulence).

– LSLDIA, LRPRSLTRJ (diagnostics).

– LRUBC.

– NPDVAR, NVDVAR, ND4SYS, LNH PDVD, LNHX, LNHXDER (NH model).

– LGWADV, NGWADVSI, LRDBBC (treatment of vertical divergence equation in NH model).

Some of these variables are in namelist NAMDYNA.

• YOMDYN (adiabatic dynamics: second part):

– REPS1, REPS2, REPSM1, REPSM2, REPSP1 (Asselin filter).

– RKRF, NMAXLEVRF, RRFZ1, RRFPLM (Rayleigh friction).

– RTEMRB, NRUBC (upper radiative boundary condition).

– LSIDG, BETADT, RBT, RBTS2, NITERHELM, LIMPF (semi-implicit scheme).

– REFGEO, SIPR, SITR, SITRA, SITRUB, SIPRUB, SITIME, SIRPRG, SIRPRN (reference values
used in the semi-implicit scheme).

– NSITER, NCURRENT ITER, LRHDI LASTITERPC (predictor-corrector scheme).

– NCOMP CVGQ, LDRY ECMWF.

– LRFRIC, LRFRICISOTR (Rayleigh friction).

Some of these variables are in namelist NAMDYN.

• YOMGPPCB (contains buffer for gridpoint workfile needed for PC schemes).

• YOMGPPB (contains buffer for the externalised SURFEX surface scheme).

• YOMMP0 and YOMMP (distributed memory environment, see documentation (IDDM) for more
details).

• YOMRIP0 (model date). Some of these variables are in namelist NAMRIP0.

• YOMRIP (timestep dependent variables), in particuliar TSTEP, TDT, CSTOP and NSTOP. Some of
these variables are in namelist NAMRIP.

• YOMSTA (constants for standard atmosphere).

90

• TYPE FADS (to define the Field Arpege Descriptors).

• Modules for trajectory stored for TL and AD models:

– TRAJECTORY MOD (manages trajectory for TL and AD runs in a unified way).

– TRAJ MAIN MOD (manages main trajectory).

– TRAJ PHYSICS MOD (manages physics trajectory).

– TRAJ SEMILAG MOD (manages semi-Lagrangian trajectory).

– TRAJ SURFACE MOD (manages surface trajectory).

• Modules for geometry:

– YOMGSGEOM (geographic space grid-point geometry)

– YOMCSGEOM (computational space grid-point geometry)

– YOMOROG (orography)

– YOMGEM (horizontal geometry): some variables are in namelist NAMGEM.

– SPGEOM MOD (spectral geometry).

– YOMVERT (vertical geometry and VFE operators).

– YOMVV1 (namelist variables for vertical geometry): variables are in namelist NAMVV1.

– YEMGEO (LAM model geometry): some variables are in namelist NEMGEO.

– YEMLBC GEO (LAM model geometry for LBC).

– TYPE GEOMETRY, TYPE SPGEOM.

• Modules for GMV dataflow:

– YOMGMV (grid-point arrays for GMV fields).

– TYPE GMVS (derived types for GMV).

– GMV SUBS MOD (contains encapsulated routines for GMV management).

• Modules for GFL dataflow:

– YOMGFL (grid-point arrays for GFL fields).

– YOM YGFL (descriptors of GFL arrays). Some of these variables are in namelist NAMGFL.

– GFL SUBS MOD (contains encapsulated routines for GFL management).

• Modules for surface dataflow:

– SURFACE FIELDS MIX (surface dataflow).

• YOMSP and YOMSP5 (spectral arrays).

We give there a sum-up of the main modules and structures belonging to ifs init part, geometry part, and model
structures. This is important to understand what is OOPS-compliant.

• Part ifs init: the set-up is done before calling SUGEOMETRY; content of these modules should not be
modified by SUGEOMETRY or after calling SUGEOMETRY. List contains at least:

– YOMMP0

– YOMGSTATS

– YOMLUN

– YOMMSC

– YOMCST

– YOMARG

– YOMCT0 and YEMCT0

– ENKF MIX

– YOMJFH

– YOMDYNA

– YOMCVER

– YOMDYNCORE

– YEMLBC INIT

– YOMVAR

– YOMRIP0

– YOMINI

91

– YOMIOP

– YOMTIM

– YOMVWRK

– YOMTRANS

– INTDYN MOD

• Geometry: sets-up the following structures and modules; some of these variables are attributes of variable
YRGEOMETRY; content of these variables should not be modified after the call to SUGEOMETRY.

– YOMVV1: not encapsulated, vertical geometry only

– YOMDIM

– YOMDIMV

– YEMDIM

– YOMVERT

– YOMGEM

– YEMGEO

– YEMLBC GEO

– YOMMP

– YEMMP

– YOMLEG

– YOMLAP

– YEMLAP

– YOMSTA

– SPGEOM MOD

– YOMCSGEOM

– YOMGSGEOM

– YOMVSPLIP

– YOMVSLETA

– YOMHSLMER

• Model structures and fields structures: all what is computed after SUGEOMETRY. For example, content
of the following modules:

– YOMGMV

– YOMGFL

– SURFACE FIELDS MIX

– YOMSP

– YOMSP5

– YOMTRAJ

– YEMLBC MODEL

– YEMLBC FIELDS

– FIELDS MOD

To be OOPS-compliant, the code should pass these variables via dummy arguments (and never via use of
modules) in routines called under STEPO/AD/TL.

92

24 Bibliography.

24.1 Publications.

• Bénard, P., 2003: Stability of semi-implicit and iterative centred implicit time discretization for various
equation systems used in NWP. Mon. Wea. Rev., 131, 2479-2491.

• Bénard, P., J. Vivoda, J. Mas̃ek, P. Smoĺıková, K. Yessad, C. Smith, R. Brozkova, and J.-F. Geleyn, 2010:
Dynamical kernel of the ALADIN-NH spectral limited-area model: revised formulation and sensitivity
experiments. Quart. J. Roy. Meteor. Soc., 136, 155-169.

• Brousseau, P., Y. Seity, D. Ricard and J. Léger, 2016: Improvement of the forecast of convective activity
from the AROME-France system. Quart. J. Roy. Meteor. Soc., 142, 2231-2243.

• Bubnová, R., G. Hello, P. Bénard, and J.F. Geleyn, 1995: Integration of the fully elastic equations cast
in the hydrostatic pressure terrain-following coordinate in the framework of the ARPEGE/Aladin NWP
system. Mon. Wea. Rev., 123, 515-535.

• Courtier, Ph., and J. F. Geleyn, 1988: A global model with variable resolution. Application to the shallow-
water equations. Q. J. R. Meteorol. Soc., 114, 1321-1346.

• Courtier, Ph., C. Freydier, J. F. Geleyn, F. Rabier and M. Rochas, 1991: The ARPEGE project at
METEO-FRANCE. ECMWF Seminar Proceedings 9-13 September 1991, Volume II, 193-231.

• Davies, H.C., 1976: A lateral boundary formulation for multi-level prediction models. Quart. J. Roy.
Meteor. Soc., 102, 405-418.

• Geleyn, J.F., and R. Bubnová, 1995: The fully elastic equations cast in hydrostatic pressure coordinate:
accuracy and stability aspects of the scheme as implemented in ARPEGE/Aladin. Atm. Ocean, special
issue memorial André Robert.

• Girard, C., and Y. Delage, 1990: Stable schemes for nonlinear vertical diffusion in atmospheric circulation
models. Mon. Wea. Rev., 118, 137-146.

• Gravel, S., and A. Staniforth, 1992: Variable resolution and robustness. Mon. Wea. Rev., 120, 2633-2640.

• Laprise, R., 1992: The Euler equations of motion with hydrostatic pressure as an independent variable.
Mon. Wea. Rev., 120, 197-207.

• Laprise, R., 1992: The resolution of global spectral models. Bulletin American Meteor. Society, 73,
1453-1454.

• Pailleux, J., J.-F. Geleyn, M. Hamrud, Ph. Courtier, J.-N. Thépaut, F. Rabier, E. Andersson, D. Burridge,
A. Simmons, D. Salmond, R. El Khatib, C. Fischer, 2014: Twenty-five years of IFS/ARPEGE. ECMWF
Newsletter nr 141, 22-30.

• Ritchie, H., and M. Tanguay, 1996: A comparison of spatially-averaged Eulerian and semi-Lagrangian
treatments of mountains. Mon. Wea. Rev., 124, 167-181.

• Robert, A., 1981: A stable numerical integration scheme for the primitive meteorological equations. Atmos.
Ocean, 19, 35-46.

• Untch, A., and M. Hortal, 2004: A finite-element scheme for the vertical discretization of the semi-
Lagrangian version of the ECMWF forecast model. Q. J. R. Meteorol. Soc., 130, 1505-1530.

• White, A. A., 2000: A view of the equations of meteorological dynamics and various approximations.
Forecasting Research Scientific Paper nr, 58, 106pp.

• White, A. A., B. J. Hoskins, I. Roulstone and A. Staniforth, 2005: Consistent approximate models of the
global atmosphere: shallow, deep, hydrostatic, quasi-hydrostatic and non-hydrostatic. Q. J. R. Meteorol.
Soc., 131, 2081-2107.

• Williamson, D. L., and J. G. Olson, 1994: Climate simulations with a semi-Lagrangian version of the
NCAR community climate model. Mon. Wea. Rev., 122, 1594-1610.

24.2 Some internal notes and other ARPEGE notes.

• (TDECDYN) 2017: IFS technical documentation (CY43R3). Part III: dynamics and numerical procedures.
Available at “https://software.ecmwf.int/wiki/display/IFS/Official+IFS+Documentation”.

• (TDECTEC) 2017: IFS technical documentation (CY43R3). Part VI: technical and computational
procedures. Available at “https://software.ecmwf.int/wiki/display/IFS/Official+IFS+Documentation”.

• (IDAB) Bénard, P., 2008: On the design of the vertical coordinate η. Internal note (7pp).

• (IDNHPB) Bénard, P., 2013: Scientific documentation for ALADIN NH model (version 3.1). Internal note
(94pp), available on “http://www.umr-cnrm.fr/gmapdoc/”.

• (IDPRLAM) Bénard, 2011: “Rotated/Tilted Mercator” geometry in ALADIN. Internal note, 26pp,
available on “http://www.umr-cnrm.fr/gmapdoc/”.

93

• Bénard, P., 2004: Study of the VFE discretisation in view of NH modelling. Internal note, 37pp.

• De Boor, C., 2001: A practical guide to splines. Applied mathematical sciences 27, Springer-Verlag: New
York.

• (IDPHYE) Gérard, L., 2001: Physical parameterizations in ARPEGE/ALADIN (CY23T1/AL14 ?).
Internal note, available on “http://www.umr-cnrm.fr/gmapdoc/”. (this documentation has been written
in 2000 for CY23T1/AL14 and some parts seem have been updated for more recent cycles).

• (IDRDFL) Hamrud, M., 2003: Revised data flow in IFS/ARPEGE (internal note).

• (IDPRAL) Janous̃ek, M., 2001: New port of the new geographical routines to ALADIN/ARPEGE (internal
note).

• (IDMOAL) Joly, A., 1992: ARPEGE/ALADIN: adiabatic model equations and algorithm (internal note,
56 pp).

• (IDEQR) Mozdzynski, G., 2006: A new partitioning approach for IFS. Internal note, 6pp.

• (IDDDH) Piriou, J.-M., 2014: Diagnostics in Horizontal Domains (DDH). Variables and budget equations,
in horizontal mean. ARPEGE, ALADIN and AROME models. Guide for users and developpers. Internal
note, 75pp, available on “http://www.umr-cnrm.fr/gmapdoc/”.

• (NTA30) Rochas, M., et Ph. Courtier, 1992: La méthode spectrale en météorologie. Note de travail
ARPEGE numéro 30, 58pp.

• (IDVNH1) Smoĺıková, P., 2001: New strategies for non-hydrostatic temporal scheme. Internal note.

• (IDVNH2) Smoĺıková, P., 2002: New NH variables: d4 in three dimensions (in the cycle CY25T1). Internal
note.

• Smoĺıková, P., and Jozef Vivoda, 2013: Finite elements used in the vertical discretization of the fully
compressible forecast model ALADIN-NH. ALADIN - HIRLAM Newsletter no 1, 31-47.

• Untch, A., and M. Hortal, 2001: A finite element scheme for the vertical discretization in the semi-
Lagrangian version of the ECMWF forecast model. (internal note, 9 pp).

• (IDMES) Yessad, K., 2012: Definition of mesh-size in spectral models: application to ARPEGE/IFS,
ALADIN, AROME. Internal note, 5pp.

• (IDBAS) Yessad, K., 2018: Basics about ARPEGE/IFS, ALADIN and AROME in the cycle 46 of
ARPEGE/IFS (internal note).

• (IDSL) Yessad, K., 2018: Semi-Lagrangian computations in the cycle 46 of ARPEGE/IFS (internal note).

• (IDSI) Yessad, K., 2018: Semi-implicit spectral computations in the cycle 46 of ARPEGE/IFS (internal
note).

• (IDDH) Yessad, K., 2018: Horizontal diffusion in the cycle 46 of ARPEGE/IFS (internal note).

• (IDTS) Yessad, K., 2018: Spectral transforms in the cycle 46 of ARPEGE/IFS (internal note).

• (IDDM) Yessad, K., 2018: Distributed memory features in the cycle 46 of ARPEGE/IFS (internal note).

• (IDNGFL) Yessad, K., 2018: User’s guide to add new GFL variables or new GFL attributes in
ARPEGE/IFS, ALADIN, AROME: cycle 46. Internal note, 10pp, available on the internet server
“http://www.umr-cnrm.fr/gmapdoc/”.

• (IDNSUR) Yessad, K., 2018: User’s guide to add new surface variables or new surface attributes
in ARPEGE/IFS, ALADIN, AROME: cycle 46. Internal note, 8pp, available on the internet server
“http://www.umr-cnrm.fr/gmapdoc/”.

• (IDLAM) Zagar, M., and C. Fischer, 2007: The ARPEGE/ALADIN Tech’Book: Implications of LAM
aspects on the global model code for CY33/AL33. Internal note, 31pp, available on the internet server
“http://www.umr-cnrm.fr/gmapdoc/”.

94

Appendix 1: vertical integrals and their discretisation.

Model dynamics uses different type of vertical integrals: VFD (vertical finite difference) and VFE (vertical finite
element) discretisations will be given.

a) S type vertical integrals (from the top).

Expression of integral (used for example in GPSKAP, SITNU, GPCTY) is:

[SZ]η =
1

Πη

∫ η′=η

η′=0

∂Π

∂η
Zdη′

Discretisation:

• VFD discretisation at full level l: [SZ]l = αlZl + δl
[∆Π]l

∑k=l−1

k=1
[∆Π]kZk

• VFE discretisation at full level l: [SZ]l = δl
[∆Π]l

[Rinte](top,l)

〈
[∆Π]Z
[∆η]

〉
= 1

Πl
[Rinte](top,l)

〈
[∆Π]Z
[∆η]

〉
• Discretisation at half level l, for both VFD and VFE: [SZ]

l
= 1

Π
l

∑k=l

k=1
[∆Π]kZk

VFD discretisation matches the following identity:

[SZ]l =
αlΠl

[∆Π]l
[SZ]

l
+

(δl − αl)Πl−1

[∆Π]l
[SZ]

l−1

which can be approximated as follows:

[SZ]l '
αl
δl

[SZ]
l
+

(δl − αl)
δl

[SZ]
l−1

b) Extension to [S([∂B/∂Π]Z)].

Expression of integral (used for example in GPCTY, GNHQE XXD) is:[
S
(
∂B

∂Π
Z
)]

η
=

1

Πη

∫ η′=η

η′=0

dB

dη
Zdη′

Discretisation:

• VFD discretisation at full level l:
[
S
(
∂B
∂Π
Z
)]
l

= αl
[∆B]l
[∆Π]l

Zl + δl
[∆Π]l

∑k=l−1

k=1
[∆B]kZk

• VFE discretisation at full level l:
[
S
(
∂B
∂Π
Z
)]
l

= δl
[∆Π]l

[Rinte](top,l)

〈
[∆B]Z
[∆η]

〉
• Discretisation at half level l, for both VFD and VFE:

[
S
(
∂B
∂Π
Z
)]
l

= 1
Π
l

∑k=l

k=1
[∆B]kZk

c) N type vertical integrals on the whole column.

This is an extension of [SZ]η to η = 1. Expression of integral (used for example in GPCTY, SITNU) is:

[NZ] =
1

Πs

∫ η′=1

η′=0

∂Π

∂η
Zdη′

Discretisation:

• VFD discretisation: [NZ] = 1
Πs

∑k=L

k=1
[∆Π]kZk

• VFE discretisation: [NZ] = 1
Πs

[Rinte](top,surf)

〈
[∆Π]Z
[∆η]

〉
d) Extension to [N([∂B/∂Π]Z)].

This is an extension of [S([∂B/∂Π]Z)]η to η = 1. Expression of integral (used for example in GPCTY) is:[
N
(
∂B

∂Π
Z
)]

=
1

Πs

∫ η′=1

η′=0

dB

dη
Zdη′

Discretisation:

• VFD discretisation:
[
N
(
∂B
∂Π
Z
)]

= 1
Πs

∑k=L

k=1
[∆B]kZk

• VFE discretisation:
[
N
(
∂B
∂Π
Z
)]

= 1
Πs

[Rinte](top,surf)

〈
[∆B]Z
[∆η]

〉
95

e) G type vertical integrals (from the bottom).

Expression of integral (used for example in GPGEO to compute gz, GPGW to compute gw, SIGAM) is:

[GZ]η =

∫ η′=1

η′=η

1

Π

∂Π

∂η
Zdη′ = −

∫ Π′=Π

Π′=Πs

Z
dΠ′

Π′

Discretisation:

• VFD discretisation at full level l: [GZ]l = αlZl +
∑k=L

k=l+1
δkZk

• VFE discretisation at full level l: [GZ]l = [Rinte](l,surf)

〈
Zδ

[∆η]

〉
= −[Rinte](surf,l)

〈
Zδ

[∆η]

〉
• Discretisation at half level l, for both VFD and VFE: [GZ]

l
=
∑k=L

k=l+1
δkZk

VFD discretisation matches the following identity:

[GZ]l =
(

1− αl
δl

)
[GZ]

l
+
αl
δl

[GZ]
l−1

Neglecting the vertical variations of Z compared to those of α and δ:

[GZ]
l
' αl
δl+1 − αl+1 + αl

[GZ]l+1 +
δl+1 − αl+1

δl+1 − αl+1 + αl
[GZ]l

f) G type vertical integrals on the whole column.

Expression of integral (used for example to compute top atmosphere value of gz or gw) is:

[GZ]top =

∫ η′=1

η′=0

1

Π

∂Π

∂η
Zdη′ = −

∫ Π′=Πtop

Π′=Πs

Z
dΠ′

Π′

Discretisation:

• VFD discretisation: [GZ]top =
∑k=L

k=1
δkZk

• VFE discretisation: [GZ]top = [Rinte](top,surf)

〈
Zδ

[∆η]

〉
g) ∇G type vertical integrals (from the bottom).

Expression of integral (used for example in GPGRGEO to compute ∇(gz), GNHGRGW to compute ∇(gw))
is:

∇[GZ]η = ∇

(∫ η′=1

η′=η

1

Π

∂Π

∂η
Zdη′

)
= −∇

(∫ Π′=Π

Π′=Πs

Z
dΠ′

Π′

)
Discretisation:

• VFD discretisation at full level l: [∇GZ]l = αl[∇Z]l + Zl[∇α]l +
∑k=L

k=l+1
(δk[∇Z]k + Zk[∇δ]k)

• VFE discretisation at full level l: [∇GZ]l = [Rinte](l,surf)

〈
δ(∇Z)+Z(∇δ)

[∆η]

〉
• Discretisation at half level l, for both VFD and VFE: [∇GZ]

l
=
∑k=L

k=l+1
(δk[∇Z]k + Zk[∇δ]k)

h) ∇G +∇(log Π) type vertical integrals (from the bottom).

Such a quantity appears at least to compute the horizontal pressure gradient term. We give its VFD discretisation
at full levels:

[∇GZ + (∇(log Π))Z]l = αl[∇Z]l + Zl[∇(α+ log Π)]l +

k=L∑
k=l+1

(δk[∇Z]k + Zk[∇δ]k)

[∇(α+ log Π)]l has sometimes a simpler expression than separate quantities [∇α]l and [∇(log Π)]l. For accuracy,
discretisation must use the simpler expression of [∇(α+ log Π)]l which is pre-computed in GPGRXYB.

96

Appendix 2: expressions for ∇α and ∇δ at full levels.

a) Expressions for ∇α and ∇δ at full levels if LVERTFE=.F. and NDLNPR=0.

∗ For δ:

[∇δ]l = ∇ log

(
Π
l

Π
l−1

)
= ∇ log

(
Π
l

)
−∇ log

(
Π
l−1

)
=

[∇Π]
l

Π
l

−
[∇Π]

l−1

Π
l−1

=

[
B
l

Π
l

−
B
l−1

Π
l−1

]
∇Πs

Thus:

[∇δ]l =

[
B
l

Π
l

−
B
l−1

Π
l−1

]
∇Πs (401)

This formula can be rewritten as follows (the code uses this expression):

[∇δ]l = −
A
l
B
l−1
−A

l−1
B
l

Π
l
Π
l−1

∇Πs (402)

∗ For α:

[∇α]l = −
Π
l−1

Π
l
−Π

l−1

[∇δ]l −∇
[

Π
l−1

Π
l
−Π

l−1

]
δl = −

Π
l−1

Π
l
−Π

l−1

[∇δ]l −
[∇Π]

l−1

Π
l
−Π

l−1

δl −∇
[

1

Π
l
−Π

l−1

]
Π
l−1

δl

Expressions 1
(Π
l
−Π

l−1
)2

and ∇Πs are put in factor. The term containing [∇δ]l yields:

−Π
l−1

(Π
l
−Π

l−1
)
[
B
l

Π
l

−
B
l−1

Π
l−1

]
(Π

l
−Π

l−1
)2

∇Πs

The sum of terms containing δl writes:

−(Π
l
−Π

l−1
)B

l−1
δl + Π

l−1
B
l
δl −Π

l−1
B
l−1

δl

(Π
l
−Π

l−1
)2

∇Πs

=
(−Π

l
B
l−1

+ Π
l−1

B
l−1

+ Π
l−1

B
l
−Π

l−1
B
l−1

)δl

(Π
l
−Π

l−1
)2

∇Πs

=
(Π

l−1
B
l
−Π

l
B
l−1

)δl

(Π
l
−Π

l−1
)2

∇Πs =
Π
l
Π
l−1

[
B
l

Π
l

−
B
l−1

Π
l−1

]
δl

(Π
l
−Π

l−1
)2

∇Πs

From the previous equations, [∇α]l can be rewritten:

[∇α]l =
Π
l
Π
l−1

log
(

Π
l

Π
l−1

)
−Π

l−1
(Π

l
−Π

l−1
)

(Π
l
−Π

l−1
)2

[
B
l

Π
l

−
B
l−1

Π
l−1

]
∇Πs (403)

∗ For α+ log Π: Horizontal gradient of this term is used in the discretization of the pressure gradient term
in the RHS of momentum equation: it expression is in fact significantly simpler than the ones of the horizontal
gradients of α and δ taken separately. Starting from formulae giving ∇Π

Π
and ∇α (formula (403)) at full levels

one can see that:

• the sum of terms containing B
l
δl is zero.

• the sum of terms containing B
l−1

δl is zero.

• the sum of the other terms containing B
l−1

is zero.

• (Π
l
−Π

l−1
)2 can be eliminated at the numerator and denominator of the other terms containing B

l−1
.

The consequence is that [∇(α+ log Π)]l can be rewritten:

[∇(α+ log Π)]l =
B
l

Π
l

∇Πs (404)

97

b) Expressions for ∇α and ∇δ at full levels if LVERTFE=.F. and NDLNPR=1.

∗ For δ:
δl =

∆Πl

Πl
=

∆Πl√
Π
l−1

Π
l

(405)

One applies operator ∇ to equation (405):

[∇δ]l =
[

1

Π

]
l

(
[∇Π]

l
− [∇Π]

l−1

)
−
[

1

Π

]
l

(
Π
l
−Π

l−1

) [∇Π

Π

]
l

which can be rewritten:

[∇δ]l =
[

1

Π

]
l

(
[∆B]l∇Πs −

(
Π
l
−Π

l−1

) [∇Π

Π

]
l

)
(406)

Expression of [∇δ]l contains the two quantities
[

1
Π

]
l

and
[
∇Π
Π

]
l
, the equations of which (equations (190) and

(183)) have to be used. That yields:

[∇δ]l =
1√

Π
l
Π
l−1

[∆B]l −
(
Π
l
−Π

l−1

) [∆B]l + δl
A
l
B
l−1
−A

l−1
B
l(

Π
l
−Π

l−1

)(
Π
l
−Π

l−1

)
∇Πs

The sum of terms containing [∆B]l is zero, so the previous equation can be rewritten as:

[∇δ]l = −
δl
[
A
l
B
l−1
−A

l−1
B
l

]√
Π
l
Π
l−1

(
Π
l
−Π

l−1

)∇Πs (407)

If the hydrostatic pressure at the top of the model is zero:

[∇δ]l=1 = 0

∗ For α:

αl = 1−

√
Π
l−1

Π
l

= 1− Πl

Π
l

(408)

One applies operator ∇ to equation (408):

[∇α]l = −
[

1

Π

]
l
[∇Π]

l−1
−Π

l−1

[
−
[

1

Π

]
l

[∇Π

Π

]
l

]
which can be rewritten:

[∇α]l =
[

1

Π

]
l

(
Π
l−1

[∇Π

Π

]
l
− [∇Π]

l−1

)
(409)

Expression of [∇α]l contains the two quantities
[

1
Π

]
l

and
[
∇Π
Π

]
l
, the equations of which (equations (190) and

(183)) have to be used. That yields:

[∇α]l =
1√

Π
l
Π
l−1

Π
l−1

[∆B]l + δl
A
l
B
l−1
−A

l−1
B
l(

Π
l
−Π

l−1

)(
Π
l
−Π

l−1

) −B
l−1

∇Πs

This expression is rewritten in order to factorise the two terms A
l
B
l−1
−A

l−1
B
l

and 1/
(
Π
l
−Π

l−1

)
.

Π
l−1

[∆B]l /
(
Π
l
−Π

l−1

)
−B

l−1

=
(
Π
l−1

B
l
−Π

l−1
B
l−1
−Π

l
B
l−1

+ Π
l−1

B
l−1

)
/
(
Π
l
−Π

l−1

)
=
(
Π
l−1

B
l
−Π

l
B
l−1

)
/
(
Π
l
−Π

l−1

)
=
((
A
l−1

+B
l−1

Πs

)
B
l
−
(
A
l
+B

l
Πs

)
B
l−1

)
/
(
Π
l
−Π

l−1

)
= −

(
A
l
B
l−1
−A

l−1
B
l

)
/
(
Π
l
−Π

l−1

)
Thus:

[∇α]l =
1√

Π
l
Π
l−1

[
A
l
B
l−1
−A

l−1
B
l(

Π
l
−Π

l−1

)][
−1 +

δlΠl−1(
Π
l
−Π

l−1

)]∇Πs

98

Term −1 + δlΠl−1
/
(
Π
l
−Π

l−1

)
in factor can be still rewritten:

Π
l
−Π

l−1

Πl
Π
l−1(

Π
l
−Π

l−1

) − 1 =
Π
l−1

Πl
− 1 = −αl

Thus:

[∇α]l = −
αl
[
A
l
B
l−1
−A

l−1
B
l

]√
Π
l
Π
l−1

(
Π
l
−Π

l−1

)∇Πs (410)

Top value: [∇α]l=1 = 0.

c) Expression for ∇δ at full levels for VFE.

Equation δl = [∆Π]l
Πl

can be rewritten log(δl) = log([∆Π]l)− log(Πl). Applying ∇ yields:

[∇δ]l
δl

=
[∇[∆Π]]l

[∆Π]l
−

[∇Π]l
Πl

But [∇[∆Π]]l = [∆B]l∇Πs and [∇Π]l = Bl∇Πs. So:

[∇δ]l =

[
[∆B]l
[∆Π]l

− Bl
Πl

]
δl∇Πs

Factor
[

[∆B]l
[∆Π]l

− Bl
Πl

]
can also be rewritten [∆B]lΠl−[∆Π]lBl

[∆Π]lΠl
, i.e. Al[∆B]l+Bl[∆B]lΠs−[∆A]lBl−[∆B]lBlΠs

[∆Π]lΠl
, i.e.

Al[∆B]l−[∆A]lBl
[∆Π]lΠl

.
Thus:

[∇δ]l =
Al[∆B]l − [∆A]lBl

[∆Π]lΠl
δl∇Πs (411)

99

Appendix 3: expression of the vertical integration and of the
vertical derivative matricial operators (vertical finite element
scheme).

The content of this section is valid for the code provided by ECMWF in 2004 (LVFE ECMWF=T). New
formulations used if (LVFE ECMWF=F) are not described in detail (see (Smoĺıková and Vivoda, 2013), (de
Boor, 2001)); in this case set-up is done by routine SUVERTFEB.

a) Introduction.

The algorithm is described in (Untch and Hortal, 2001), (Untch and Hortal, 2004). A vertically-dependent field
X can be projected on a finite element basis ei, i being the layer numbering.

X(η) =

i=L∑
i=0

Xiei(η) (412)

Its vertical integral

S(η) =

∫ η

top

X(η
′
)dη
′

has the following finite element representation:

S(η) =

i=L+1∑
i=1

Sidi(η) (413)

The basis di is the same as ei excepted for some boundary values (top and bottom) where some differences can
occur. One can show that the discretisation of vertical integration is equivalent to write the matricial product:

A〈S〉 = B〈X〉 (414)

which is equivalent to write:
〈S〉 = A−1B〈X〉 = [Rinte](top)〈X〉 (415)

where 〈S〉 is the vector of components (S1, S2, ..., SL, SL+1) and 〈X〉 is the vector of components (X1, X2, ..., XL).
For i = 1 to i = L quantities Xi and Si are defined and computed at full levels. SL+1 is the vertical integral on
the whole atmosphere. The setup code of the model successively computes A, A−1, B and the product A−1B.
[Rinte](top) is a (L+ 1) ∗L matrix and [Rinte](top,l) is the vector containing the l-th line of [Rinte](top). Sl is given
by the scalar product:

Sl = [Rinte](top,l)〈X〉
The L+ 1-th line of [Rinte](top) contains [Rinte](top,surf) (discretisation of the integral on the whole atmosphere):

SL+1 = Ssurf = [Rinte](top,surf)〈X〉

One can also discretise an integral from the surface (for example to compute the geopotential height).∫ η

surf

X(η
′
)dη
′

can be rewritten: ∫ η

top

X(η
′
)dη
′
−
∫ surf

top

X(η
′
)dη
′

= S(η)− S(η = 1)

discretised by operator [Rinte](surf,l) = [Rinte](top,l) − [Rinte](top,surf).

b) Basis used in the vertical finite element scheme.

∗ Linear finite elements. For 0 ≤ i ≤ L+ 1: di(η) = ei(η). Definition of ei is:

• ei(η) = 0 for η < ηi−1.

• ei(η) = (η − ηi−1)/(ηi − ηi−1) for ηi−1 ≤ η ≤ ηi.
• ei(η) = (ηi+1 − η)/(ηi+1 − ηi) for ηi ≤ η ≤ ηi+1.

• ei(η) = 0 for η > ηi+1.

100

∗ Hermite cubic finite elements. di(η) is generally equal to ei(η) excepted for i ≤ 2 and η < η1.
Definition of ei is:

• ei(η) = 0 for η < ηi−2.

• for ηi−2 ≤ η ≤ ηi, ei(η) is a third-order polynomial which matches with ei(ηi−2) = 0, ei(ηi) = 1,[
de
dη

]
i
(ηi−2) = 0,

[
de
dη

]
i
(ηi) = 0. After some long calculations which are not detailed in this documentation

that yields:

ei(η) =
1

[ηi − ηi−2]3

[
−2η3 + 3(ηi−2 + ηi)η

2 − 6(ηiηi−2)η + (η3
i−2 − 3η2

i−2ηi)
]

• for ηi ≤ η ≤ ηi+2, ei(η) is a third-order polynomial which matches with ei(ηi+2) = 0, ei(ηi) = 1,[
de
dη

]
i
(ηi+2) = 0,

[
de
dη

]
i
(ηi) = 0. After some long calculations which are not detailed in this documentation

that yields:

ei(η) =
1

[ηi − ηi+2]3

[
−2η3 + 3(ηi+2 + ηi)η

2 − 6(ηiηi+2)η + (η3
i+2 − 3η2

i+2ηi)
]

• ei(η) = 0 for η > ηi+2.

c) Vertical integration matricial operator.

∗ General expression of matrices A and B. After equation (4.3) of (Untch and Hortal, 2001),
(Untch and Hortal, 2004) and taking t = d (what is done in the code) one obtains:

A(i,j) =

∫ η=1

η=0

di(η)dj(η)dη (416)

B(i,j) =

∫ η=1

η=0

[
dj(η)

∫ η
′
=η

η
′
=0

di(η
′
)dη
′

]
dη (417)

A and B are (L+ 1) ∗ (L+ 1) matrices. A is a symmetric one.

∗ More details about matrices A and B for linear finite elements. The vertical integrals
of equations (416) and (417) can be analytically computed using formulae giving ei and di. For A that yields:

• A is a symmetric tridiagonal matrix.

• A(1,1) = η2
3

.

• A(i,i) =
ηi+1−ηi−1

3
for 2 ≤ i ≤ L− 1.

• A(L,L) =
1−ηL−1

3
.

• A(L+1,L+1) = 1−ηL
3

.

• A(i,i−1) = A(i−1,i) =
ηi−ηi−1

6
for 2 ≤ i ≤ L.

• A(L+1,L) = A(L,L+1) = 1−ηL
6

• The other coefficients are equal to zero.

For B that yields:

• B(1,1) = 5
24
η1

2 + 1
4
η1(η2 − η1)

• B(j,1) = 1
4
η1(ηj+1 − ηj−1) for 2 ≤ j ≤ L.

• B(L+1,j) = 1
4
(1− ηL)(ηj − ηj−2) for 2 ≤ j ≤ L.

• B(L+1,L+1) = 1
3
(1− ηL)2 + 1

4
(ηL − ηL−1)(1− ηL)

• B(L,L+1) = 1
8
(ηL − ηL−1)2 + 1

4
(ηL − ηL−1)(1− ηL) + 1

6
(1− ηL)2

• B(j,i) = 1
4
(ηi − ηi−2)(ηj+1 − ηj−1) for i < j.

• B(j,j) = 1
4
(ηj−1 − ηj−2)(ηj − ηj−1) + 5

24
(ηj − ηj−1)2 + 1

4
(ηj+1 − ηj)(ηj − ηj−2)

• B(j,j+1) = 1
8
(ηj − ηj−1)2 + 1

4
(ηj − ηj−1)(ηj+1 − ηj) + 1

8
(ηj+1 − ηj)2

• B(j,j+2) = 1
24

(ηj+1 − ηj)2

• B(j,i) = 0 for i > j + 2.

101

∗ More details about matrices A and B for Hermite cubic finite elements. The vertical
integrals of equations (416) and (417) can be analytically computed using formulae giving ei and di. Expression
of the coefficients of B and A is rather tricky and is not detailed in this documentation; Matrix A is symmetric
with a non-zero main diagonal and three non-zero upper and lower side diagonals.

d) Vertical derivative matricial operator.

Not yet described.

e) Where to find the code?

∗ Vertical integral. The setup routines computing the matrix A−1B are SUVERTFE1 for the linear
finite elements and SUVERTFE3 for Hermite cubic finite elements. The product A−1B is stored after one
line shift in the array RINTE (module YOMVERT) which actually contains a matrix (L + 1) ∗ L. The
intermediate quantities A, A−1 and B are stored in the local arrays ZAMAT, ZAMATI and ZBMAT. The
vertical integration, giving 〈S〉 for layers 1 to L and the additional layer L matching with the surface, knowing 〈X〉
for layers 1 to L, is done by routine VERINT. One can notice that the matrix product A−1B is a full matrix,
contrary to the one which is used in the case LVERTFE=.F. which is triangular with some additional good
properties (currently the routine VERINT is used only in the case LVERTFE=.T.). For most applications and
uses of ARPEGE/IFS and ALADIN, the content of routines SUVERTFE1 and SUVERTFE3 can be seen as
a “black box”.

∗ Vertical derivative. The vertical derivative operator Rderi is stored in the array RDERI, or RDERB
if top and bottom boundary conditions are taken into account (module YOMVERT). RDERI is computed
in the setup routine SUVERTFE3D or SUNH VERTFE3D. RDERB is computed in the setup routine
SUNH VERTFE3DBC. The vertical derivation is done by routine VERDER. More details will be given in a
future version of this documentation.

f) Additional remark: operator Rinte for case LVERTFE=.F. .

If LVERTFE=.F. the vertical integration is also a matricial product but in this case the operator Rinte is
considerably simpler and tridiagonal. One can compute an operator Rinte giving integrals at half levels (from the
top), the matrix is L ∗ L and has the following content:

[∆η]1 0 ... 0 ... 0
[∆η]1 [∆η]2 ... 0 ... 0
[∆η]1 [∆η]2 ... 0 ... 0
[∆η]1 [∆η]2 ... [∆η]l ... 0
[∆η]1 [∆η]2 ... [∆η]l ... 0
[∆η]1 [∆η]2 ... [∆η]l ... [∆η]L

Since coefficients are constant on a column, but not temporally constant, the use of routine VERINT is not very
interesting in this case (mode multiplications) and the code can be let as it is currently, but VERINT and a
pre-computation of RINTE could be possible in the model set-up. The operator Rinte which provides integrals
at full levels (from the top) has the following shape:

[∆η]1
(
1− α1

δ1

)
0 ... 0 ... 0

[∆η]1 [∆η]2
(
1− α2

δ2

)
... 0 ... 0

[∆η]1 [∆η]2 ... 0 ... 0

[∆η]1 [∆η]2 ... [∆η]l

(
1− αl

δl

)
... 0

[∆η]1 [∆η]2 ... [∆η]l ... 0
[∆η]1 [∆η]2 ... [∆η]l ... [∆η]L

(
1− αL

δL

)

• In the linear model, replace αl

δl
by

α∗
l
δ∗
l

.

• αl
δl

=
Π
l
−Πl

Π
l
−Π

l−1

remains close to 1/2.

We can also provide the vertical integration matrix for integrations from the bottom:
[∆η]1

α1
δ1

[∆η]2 ... [∆η]l ... [∆η]L
0 [∆η]2

α2
δ2

... [∆η]l ... [∆η]L
0 0 ... [∆η]l ... [∆η]L
0 0 ... [∆η]l

αl
δl

... [∆η]L
0 0 ... 0 ... [∆η]L
0 0 ... 0 ... [∆η]L

αL
δL

102

