
MINIMIZATIONS IN THE CYCLE 44 OF ARPEGE/IFS.

YESSAD K. (METEO-FRANCE/CNRM/GMAP/ALGO)

March 6, 2017

Abstract:
This documentation describes the minimizations done in ARPEGE/IFS, for example in the 3DVAR and

4DVAR assimilation. First some algorithmic aspects are recalled about minimizers and solving of linear algebra
systems. There is then a specific description of the minimizers employed in ARPEGE/IFS (M1QN3, N1CG1 and
CONGRAD) and of the applications using these minimizers.

Résumé:
Cette documentation décrit les minimisations faites dans ARPEGE/IFS, par exemple dans les assimilations

3DVAR et 4DVAR. On rappelle d’abord quelques notions sur les minimiseurs et sur la résolution des systèmes
linéaires. On fournit ensuite une description spécifique des minimiseurs utilisés dans ARPEGE/IFS (M1QN3,
N1CG1 et CONGRAD) et des applications utilisant ces minimiseurs.

1

Contents

1 Introduction. 3

2 Some algorithms of minimization and of linear systems solving. 4
2.1 Purely direct algorithms. 4

2.1.1 Gauss method. 4
2.1.2 Gauss-Jordan method. 4
2.1.3 LU factorisation method. 4
2.1.4 Cholesky method. 4
2.1.5 QR factorisation method. 4

2.2 Iterative algorithms for small linear systems. 4
2.2.1 Jacobi method. 4
2.2.2 Gauss-Seidel method. 5
2.2.3 Relaxation method. 5

2.3 Iterative and “mixed” algorithms for large linear systems and minimization problems. 5
2.3.1 General considerations and denotations. 5
2.3.2 Preconditioning. 6
2.3.3 Newton method. 6
2.3.4 Quasi-Newton method. 7
2.3.5 Limited memory quasi-Newton method. 8
2.3.6 Truncated Newton method. 8
2.3.7 Fletcher-Reeves conjugate gradient method. 8
2.3.8 Polak-Ribière conjugate gradient method. 9
2.3.9 Gradient method with optimal step (or steepest descent method). 9
2.3.10 Conjugate gradient method combined with a Lanczos algorithm. 9
2.3.11 When to stop the algorithm. 11

3 Available minimizers in the “arpifs” and “algor” libraries: description and organigrammes. 12
3.1 Minimizer M1QN3 developed at INRIA. 12
3.2 Minimizer M1QN3R. 13
3.3 Minimizer N1CG1. 14
3.4 Minimizer CONGRAD. 15

4 Configurations of use of minimizations, and simulators. 16
4.1 Minimization for orography in climatological files (configuration 923). 16
4.2 Minimization in the 4DVAR assimilation. 16
4.3 Other applications using minimizers. 16

5 Modules and namelists. 17

6 Bibliography. 18
6.1 Publications. 18
6.2 Some internal notes and other ARPEGE notes. 18

2

1 Introduction.

ARPEGE/IFS needs to minimize a cost function for example in the 4DVAR assimilation but also to compute
a spectral orography in the climatological files (configuration 923). If the cost function is purely quadratic the
minimization is equivalent to solve a linear system of equations.

There are several ranges of ways to solve such problems, some apply to solve small linear systems, some other
to solve small or big linear systems, some other to minimize functions which are not necessary quadratic ones:

• Direct algorithms to invert linear systems: they can be used to invert rather small systems (the space
dimension has a range of several hundreds but not more):

– Gauss method.

– Gauss-Jordan method.

– LU factorisation (square matrices).

– Cholesky LLT factorisation (symmetric positive definite square matrices).

– QR factorisation (square matrices).

• Pure iterative algorithms to invert linear systems or minimize functions.

– Jacobi (solves a small linear system).

– Gauss-Seidel (solves a small linear system).

– Relaxation (solves a small linear system).

– Newton and quasi-Newton algorithm (minimization of a function which is not necessary a quadratic
one, the dimension of the problem can be large).

– Relaxation method (minimization, the dimension of the problem can be large).

– Gradient method (minimization, the dimension of the problem can be large).

• Mixed iterative algorithms to invert linear systems or minimize functions. What we say by “mixed” is that
these algorithms are direct algorithms (the maximum number of iterations is equal to the dimension of the
problem), but one uses them with a number of iterations significantly lower than the possible maximum,
so one uses them as iterative algorithms.

– Conjugate gradient methods (minimization, the dimension of the problem can be large). There are
several versions of this algorithm, some for purely quadratic functions, some other which can be also
used for non quadratic functions.

– Conjugate gradient methods combined with a Lanczos algorithm (minimization, the dimension of
the problem can be large).

These algorithms are described in some mathematical books but for each of ones one will recall the principles
of them and the range of use in order to have a synthetic overview of them. What is indeed our main concern
in this documentation is the sub-list of iterative minimization algorithms which allow to minimize quadratic or
non-quadratic functions and to solve big linear systems (the dimension of the problem to solve being in a range
around tens or hundreds of thousands).

3

2 Some algorithms of minimization and of linear systems
solving.

2.1 Purely direct algorithms.

These algorithms generally apply to solve small linear systems. The system which has to be solved writes:

AX = B (1)

where A is a N ∗N matrix, X is the unknown vector of dimension N and B is the RHS known vector of dimension
N .

2.1.1 Gauss method.

The algorithm involves NI iterations which leads to replace the system AX = B by the system:

MAX = MB (2)

where the product [MA] is an upper triangular N ∗N matrix; this new system can be easily solved. This method
can be used for any invertible matrix A. This method requires N3/3 additions, N3/3 multiplications and N2/2
divisions.

2.1.2 Gauss-Jordan method.

This is a variant of the Gauss method but M is now computed in order to have a product [MA] which is diagonal.
This method can be used for example when the storage of A−1 is required.

2.1.3 LU factorisation method.

Matrix A is factorized into the matricial product LU where L is a lower triangular matrix, the diagonal elements
of which are all equal to 1, and U is an upper triangular matrix. This is a particular case of Gauss method where
M = L−1 but one assumes that L is stored. This method can be used when the same matrix has to be inverted
for a large number of unknown vectors X: in this case the matrices U and L are first pre-computed and stored.
This method can be used for any invertible matrix A which a minimum amount of “good” properties which are
not detailed in this documentation.

2.1.4 Cholesky method.

This is a particular application of the Gauss method when A is a definite positive symmetric matrix. In this case
A is factorised as A = BBT with the properties M = B−1 and MA = BT . B is a real lower triangular matrix. This
method requires N3/6 additions, N3/6 multiplications, N2/2 divisions and N square roots extractions.

2.1.5 QR factorisation method.

This is a variant of the Gauss method but M is chosen to be equal to Q−1 and A is factorised as QR where:

• Q is a unitary matrix.

• R is an upper triangular matrix.

• Q−1 can be written as the product of N − 1 Householder matrices: Q−1 = HN−1HN−2...H1.

This method can be used for any matrix A. If A is an invertible matrix, the factorisation QR is an unique one.

2.2 Iterative algorithms for small linear systems.

D is the diagonal part of A, −E (resp. −F) is the lower (resp. upper) triangular part of A. So A writes D − E − F.
These iterative methods are used for small linear systems and use the decomposition of matrix A into its diagonal
part, its lower triangular part and its upper triangular part.

2.2.1 Jacobi method.

• A is written A = D− (E + F).

• An iteration writes: Xk+1 = D−1(E + F)Xk + D−1B.

This method is convergent if the spectral radius (i.e. the maximum of the absolute values of the eigenvalues) of
the matrix [D−1(E + F)] is lower than 1.

4

2.2.2 Gauss-Seidel method.

• A is written A = (D− E)− F.

• An iteration writes: Xk+1 = (D− E)−1FXk + (D− E)−1B.

This method is convergent if the spectral radius of the matrix [(D− E)−1F] is lower than 1.

2.2.3 Relaxation method.

• A is written:

A =
(

1

ω
D− E

)
−
(

1− ω
ω

D + F

)
• An iteration writes:

Xk+1 =
(

1

ω
D− E

)−1 (1− ω
ω

D + F

)
Xk +

(
1

ω
D− E

)−1

B

This method is convergent if the spectral radius of the matrix
(

1
ω
D− E

)−1 (1−ω
ω

D + F
)

is lower than 1. When
matrix A is a definite positive hermitian matrix, this method is convergent if 0 < ω < 2 and the best convergence
is obtained for a value of ω which is always between 1 and 2.

2.3 Iterative and “mixed” algorithms for large linear systems and
minimization problems.

2.3.1 General considerations and denotations.

One tries to do a synthesis of existing algorithms and to explain them briefly, preferably using the same denotations
for all these algorithms. Literature provides a large number of books or papers explaining these algorithms,
with often different denotations. For example, (Bonnans et al., 1997) gives (in French) a good overview of
these algorithms, (IDNEWT) gives (in French) a synthetic overview of Newton and quasi-Newton algorithms,
(Shewchuk, 1994) is more oriented towards conjugate gradient methods with good practical examples. The
following denotations will be used:

• N is the dimension of the problem.

• NI is the number of iterations required.

• X is the unknown vector to be found by an iterative algorithm; the successive iterations give Xiter=0,
Xiter=1, ..., Xiter=NI . X has N components numbered from Xi=1 to Xi=N .

• The function to be minimized is f(X) (this is a scalar function).

• f is not necessary a quadratic function. f can be written as a sum of its second-order limited development
and of a residual term, around a reference value of X denoted by Xref ; if f(Xref) is different from zero we
can consider the function F defined by F (X) = f(X)− f(Xref) instead of f ; if Xref is different from zero
we can consider the function F defined by F (X−Xref) = f(X); so we can stick to the case where f(0) = 0
and where the second-order limited development is done around Xref = 0. In this case the second-order
limited development writes:

f(X) = J(X) = − < B,X > +0.5 < AX,X > +residual

where:

– < X,Y > is the scalar product of vectors X and Y. It can be the “canonical” scalar product or
some other scalar product.

– −B is the vector gradient of f at X = 0; the i-th component of B contains − ∂f
∂Xi

(X = 0).

– Matrix A contains the second-order derivatives ∂2f
∂XiXj

(X = 0) and is the Hessian operator of f at

X = 0.

• In the particular case where f is a quadratic function and where f(0) = 0, the residual “residual” becomes
zero, so f , which is also denoted by J in this case, writes:

f(X) = J(X) = 0.5 < AX,X > − < B,X >

The Hessian J ′′ defined by matrix A is no longer X-dependent. Taking the gradient of this equation writes:

g = [∇J](X) = AX−B

A necessary condition of minimum of f is that X zeroes the gradient of the RHS, i.e.:

AX−B = 0

5

The searched solution is still solution of a linear system. But the given solution can give a maximum of
f , a minimum of f or a “saddle” value of f so if one wants to be sure that it gives a minimum of f one
must assume some additional good properties for f . If the matrix A is a positive definite one, the searched
solution gives a minimum of f .

• Some methods stand to a minimization and can be used for non quadratic functions f , some other methods
apply to quadratic functions and assume the equivalence of “minimizing f” and “solving the linear system
AX = B.

• When solving the linear system AX = B, at each iteration:

– the residual term is riter = AXiter −B.

– the increment is Siter = Xiter+1 −Xiter.

– this increment Siter generally writes as ρiterditer where diter is the direction and ρiter is the step.

– the gradient increment is Yiter = giter+1 − giter.

2.3.2 Preconditioning.

A good conditioning of matrix A (i.e. the ratio of the absolute values of the extreme eigenvalues rcond = |λmin|
|λmax|

is as close as possible to 1) is required to have a quick convergence of the iterative algorithm.
Left preconditioning: in some cases it is more interesting to solve

H
−1

AX = H
−1

B

instead of:
AX = B

with a “good” matrix H the properties of which are not always easy to match. We wants at the same time that
this matrix H be:

• easily invertible, and if it is diagonal it would be even better. If A is a positive definite symmetric matrix,
H must be also a positive definite symmetric matrix.

• its “biggest” eigenvalue (in absolute value) is close to λmax, and its “lowest” eigenvalue (in absolute value)
is close to λmin.

• H−1A is not so far from identity and has a very good conditioning (considerably improved compared to the
one of A).

• H can be constant or can be recomputed at each iteration.

Some algorithms to provide a good conditioning will be described later. All algorithms will be described from
now on including matrix H.
Remark: an alternative way of using a preconditioner is to write the linear system to solve as follows (right
preconditioning):

AH
−1[HX] = B

the unknown to find being HX instead of X. H must have the “good properties” listed above.
Right and left preconditioning can be combined, the linear system to solve is rewritten as follows:

H
−1

AJ
−1[JX] = H

−1
B

H and J are two preconditioners.
One can find information about preconditioning for example in part 3 of (Barrett et al., 1994).
Let us list some examples of ways of computing preconditioning matrices.

• Quasi-Newton preconditioner: the inverse H−1 can be directly computed with the same recurrence method
as for the matrix W used in the Quasi-Newton method. It can be considered as a good approximation of
the inverse of A. For more details see for example (Morales and Nocedal, 1999).

• Another example of preconditioner is given in the part 6.5 of ECMWF documentation (TDECDAS).

2.3.3 Newton method.

This algorithm can be used for non-quadratic functions. One assumes that the function to minimize has a
minimum in the “region of minimum”. At each iteration of the minimization algorithm, one will minimize the
second-order limited development of f around the value X = Xiter. This is equivalent to solve a linear system
which changes at each iteration.

• One starts from an arbitrary “guess” X0 of the solution.

• Definition of A0 = J ′′(X0).

• Resolution of the linear system A0d0 = −∇J(X0) which provides d0.

6

• If d0 = 0 the algorithm ends.

• If d0 is not zero:

– Definition of the step ρ0: see below the general case for iteration “iter”.

– Computation of:
X1 = X0 + ρ0d0

• The following iterations write:

– Definition of Aiter = J ′′(Xiter).

– Computation of giter = ∇J(Xiter): that can be done by an analytic formula or by an iterative
formula which writes giter = giter−1 + ρiter−1Aiter−1diter−1.

– Computation of diter: resolution of the linear system Aiterditer = −∇J(Xiter) which provides diter.

– Computation of ρiter: several methods can be used, the two known ones are the following ones:

∗ use of a trust region (this is a rather tricky algorithm, the description of which will not be
provided in the current documentation; for more details see for example (IDNEWT)).

∗ linear research along the descent direction, using a Wolfe algorithm. Roughly one searches
for a value of ρiter (by dichotomy) which minimizes J(Xiter + ρiterditer) (or a polynomial
approximation of this function, often cubic). Moreover this value has to be bounded as follows:

J(Xiter + ρiterditer) ≤ J(Xiter) + α1ρiter < ∇J(Xiter); diter >

< ∇J(Xiter + ρiterditer); diter >≥ α2 < ∇J(Xiter); diter >

where 0 < α1 < 0.5 and α1 < α2 < 1.

– Computation of Xiter+1:
Xiter+1 = Xiter + ρiterditer

• Algorithm stops when the gradient ∇J(Xiter) has a “sufficiently” small norm (for more details see section
(2.3.11)).

• This algorithm is a purely iterative one (in theory it does not give the exact solution in a finite number of
iterations).

• The descent direction is generally not parallel to the gradient.

• Since A depends on the iteration, the main shortcoming of this algorithm is that it requires the inversion
of a big linear system at each iteration, which can be done in theory by some other methods described
in this documentation (Fletcher-Reeves conjugate gradient method for example), but which can become
very expensive (in time and memory), so the purely Newton method is generally replaced by cheaper
algorithms which replace A by an approximation easier to compute and to invert. That provides a class of
quasi-Newton methods described below.

2.3.4 Quasi-Newton method.

This algorithm can be used for non-quadratic functions and is a simplification of the Newton method. A is replaced
by an approximation H simpler to compute and to invert. H is generally computed by a recurrence. H must have
some interesting properties:

• At each iteration, H must be a good approximation of A.

• H is easy to compute (generally by an iterative algorithm) and to invert; if H is diagonal this is better.

The alternative way is to compute directly a good approximation W of A−1. In the literature one finds some methods
to compute such operators (W can be also used as preconditioners for steepest descent of conjugate gradient
methods), the most known is the Broyden-Fletcher-Goldbarb-Shanno (abbreviated into BFGS) algorithm. At
each iteration:

• the N -lines and one column matrix Siter containing the vector (Xiter −Xiter−1) is stored.

• the N -lines and one column matrix Yiter containing the vector (giter − giter−1) is stored.

• a guess W0 is computed (that can be the identity matrix).

• a recurrence formula gives W1 to Witer:

Witer =

(
I − 1

YTiterSiter
SiterY

T
iter

)
Witer−1

(
I − 1

YTiterSiter
SiterY

T
iter

)
+

1

YTiterSiter
SiterS

T
iter

Since W is never stored (N ∗ N matrix, too big in memory), all the S and Y have to be stored, and all the
recurrence from W0 has to be performed to each iteration (for S and Y the total amount of data stored at iteration
“iter” is (2iter) ∗ N). The previous iterative algorithm is applied to vector −∇J(Xiter) and gives the vector
−Witer∇J(Xiter). The quasi-Newton method follows the same scheme as the Newton method, excepted that:

diter = −A−1
iter∇J(Xiter)

is replaced by:
diter = −Witer∇J(Xiter)

7

2.3.5 Limited memory quasi-Newton method.

When the number of iterations NI necessary to find the solution becomes important, the number of pairs (S, Y)
becomes important to be stored, and some algorithms limiting the storage to a “good” subset of pairs (S, Y) have
been developed. NM is the maximal number of pairs kept (for iterations number NM + 1 to NI). The choice of
the iterations kept is generally the NM last pairs but it can be something else. Practically a value of NM around
5 is a good choice. One now assumes that, for the iteration iter, the selected pairs are (S(iter,m1), Y(iter,m1)) to
(S(iter,mNM

), Y(iter,mNM
)). mNM is generally (but not necessary) equal to iter; m1 is generally (but not necessary)

equal to iter + 1−NM; the list of m selected can depend of iter.
For the iteration iter:

• one defines a guess W(iter,m=m1) which is generally a diagonal matrix Diter; it can be the identity matrix
(this is generally the case for D0) but some authors have developed better algorithms to compute Diter; for
example the scalar initial scaling mode (“SIS” algorithm) yields:

Diter =
YTiter−1Siter−1

YTiter−1Yiter−1
I

• the recurrence formula giving W(iter,m=mi) knowing W(iter,m=mi−1) writes:

W(iter,m=mi) = F(iter,m=mi)W(iter,m=mi−1)F(iter,m=mi) +
1

YT (iter,m=mi)S(iter,m=mi)

S(iter,m=mi)S
T
(iter,m=mi)

where F is:

F(iter,m=mi) =

(
I − 1

YT (iter,m=mi)S(iter,m=mi)

S(iter,m=mi)Y
T
(iter,m=mi)

)
More details are given for example in (IDQN3).

2.3.6 Truncated Newton method.

Looks like the Newton method. The resolution of the linear system Aiterditer = −∇J(Xiter) is still done (without
approximation of the Hessian) by an iterative algorithm but the convergence criterion is coarse for lower values of
iter (so the resolution can be done quickly with a small amount of iterations); when iter increases the convergence
criterion becomes more severe (in the purely Newton method the convergence criterion does not depend on iter).
To sum up, the computation of diter is relatively cheap for lower values of iter and more and more expensive
when iter increases.

2.3.7 Fletcher-Reeves conjugate gradient method.

This algorithm can be used for quadratic functions. One assumes that the function is a positive definite quadratic
one. The aim is to minimize:

f(X) = J(X) = 0.5 < AX,X > − < B,X >

and this equivalent to solve the following linear system:

H
−1

AX = H
−1B

• One starts from an arbitrary “guess” X0 of the solution.

• Definition of H0.

• Computation of d0 = −H−1
0 ∇J(X0).

• If d0 = 0 the algorithm ends.

• If d0 is not zero:

– Definition of:

ρ0 =
< ∇J(X0);−d0 >

< Ad0; d0 >
=
< H−1

0 ∇J(X0);∇J(X0) >

< Ad0; d0 >

– Computation of:
X1 = X0 + ρ0d0

• The following iterations write:

– Definition of Hiter and computation of H−1
iter.

– Computation of giter = ∇J(Xiter): that can be done by an analytic formula or by an iterative
formula which writes giter = giter−1 + ρiter−1Aditer−1.

8

– Computation of diter:

diter = −H−1
iter∇J(Xiter) +

< H−1
iter∇J(Xiter);∇J(Xiter) >

< H−1
iter−1∇J(Xiter−1);∇J(Xiter−1) >

diter−1

– Computation of ρiter:

ρiter =
< H−1

iter∇J(Xiter);∇J(Xiter) >

< Aditer; diter >
=
< ∇J(Xiter);−diter >

< Aditer; diter >

– Computation of Xiter+1:
Xiter+1 = Xiter + ρiterditer

• Algorithm stops when the gradient ∇J(Xiter) has a “sufficiently” small norm (for more details see section
(2.3.11)).

• This algorithm converges in a finite number of iterations, the maximum possible number is N .

• Two different iterations of ∇J(X) (and also two different iterations of diter) are “orthogonal” relative to
the scalar product defined with matrix H−1.

• The descent direction is not parallel to the gradient.

2.3.8 Polak-Ribière conjugate gradient method.

For purely quadratic functions this algorithm is identical to the Fletcher-Reeves conjugate gradient method. This
algorithm is an extension of the Fletcher-Reeves one for non-quadratic functions. When the function to minimize
is not a quadratic one the differences with the Fletcher-Reeves algorithm are:

• The new way of computing the direction diter is:

diter = −H−1
iter∇J(Xiter) +

< H−1
iter∇J(Xiter);∇J(Xiter)−∇J(Xiter−1) >

< H−1
iter−1∇J(Xiter−1);∇J(Xiter−1) >

diter−1

• This algorithm does not converge in a finite number of iterations.

• Two different iterations of ∇J(X) are no longer necessarily “orthogonal” relative to the scalar product
defined with matrix H−1.

2.3.9 Gradient method with optimal step (or steepest descent method).

This algorithm can be used for quadratic functions. One assumes that the function is a positive definite quadratic
one. This algorithm looks like the Fletcher-Reeves conjugate gradient method excepted on the following points:

• Computation of diter:
diter = −H−1

iter∇J(Xiter)

• The descent direction is parallel to the gradient and orthogonal to the iso-J .

• This algorithm does not converge in a finite number of iterations.

• Two different iterations of ∇J(X) are no longer necessary “orthogonal” relative to the scalar product
defined with matrix H−1.

2.3.10 Conjugate gradient method combined with a Lanczos algorithm.

This algorithm is a combination of a Fletcher-Reeves conjugate gradient algorithm with a Lanczos algorithm.
The main difference with the Fletcher-Reeves algorithm is that Xiter+1 is not computed using directly
formula Xiter+1 = Xiter + ρiterditer but using a more tricky algorithm involving a matrix T of dimensions
(iter + 1) ∗ (iter + 1), the eigenvalues of which converge towards the eigenvalues of A when iter increases.
This algorithm can be used for quadratic functions. One assumes that the function is a positive definite quadratic
one. The aim is to minimize:

f(X) = J(X) = 0.5 < AX,X > − < B,X >

and this equivalent to solve the following linear system:

H
−1

AX = H
−1B

• One starts from an arbitrary “guess” X0 of the solution.

• Definition of H0.

• Computation of d0 = −H−1
0 ∇J(X0).

9

• If d0 = 0 the algorithm ends.

• If d0 is not zero:

– Definition of:

ρ0 =
< ∇J(X0);−d0 >

< Ad0; d0 >
=
< H−1

0 ∇J(X0);∇J(X0) >

< Ad0; d0 >

(identical to Fletcher-Reeves conjugate gradient algorithm).

– Definition of:

q0 =
1

< H−1
0 ∇J(X0);∇J(X0) >

∇J(X0)

– Definition of Q1 which is the N -lines and one column matrix containing vector q0.

– Definition of: δ1 = 1
ρ0

.

– Definition of the 1 ∗ 1 matrix T1 = [δ0].

– Definition of the 1 ∗ 1 matrix:
Z1 = −T−1

1 Q
T
1 H
−1
0 ∇J(X0)

which is simply the scalar −ρ0.

– Computation of:
X1 = X0 + H

−1
0 Q1Z1

which is equivalent to:
X1 = X0 + ρ0d0

since Z1 = ρ0 and H−1
0 Q1 = −d0.

• The following iterations write:

– Definition of Hiter and computation of H−1
iter.

– Computation of giter = ∇J(Xiter): that can be done by an analytic formula or by an iterative
formula which writes giter = giter−1+ρiter−1Aditer−1 (identical to Fletcher-Reeves conjugate gradient
algorithm).

– Computation of diter:

diter = −H−1
iter∇J(Xiter) +

< H−1
iter∇J(Xiter);∇J(Xiter) >

< H−1
iter−1∇J(Xiter−1);∇J(Xiter−1) >

diter−1

(identical to Fletcher-Reeves conjugate gradient algorithm).

– Computation of ρiter:

ρiter =
< H−1

iter∇J(Xiter);∇J(Xiter) >

< Aditer; diter >
=
< ∇J(Xiter);−diter >

< Aditer; diter >

(identical to Fletcher-Reeves conjugate gradient algorithm).

– Definition of:

qiter =
1

< H−1
iter∇J(Xiter);∇J(Xiter) >

∇J(Xiter)

– Definition of Qiter+1 which is the N -lines and iter+ 1-columns matrix containing vectors q0 to qiter.

– Definition of:

δiter+1 =
< H−1

iter∇J(Xiter);∇J(Xiter) >
2

< H−1
iter−1∇J(Xiter−1);∇J(Xiter−1) >2

1

ρiter−1
+

1

ρiter

– Definition of:

γiter = − < H−1
iter∇J(Xiter);∇J(Xiter) >

< H−1
iter−1∇J(Xiter−1);∇J(Xiter−1) >

1

ρiter−1

– Definition of the (iter + 1) ∗ (iter + 1) matrix Titer+1:

∗ Titer+1 is a symmetric tri-diagonal matrix.

∗ The main diagonal of Titer+1 contains δ1 to δiter+1.

∗ The first lower and upper diagonal of Titer+1 contains γ1 to γiter.

Computation of its inverse T−1
iter+1.

10

– Definition of the iter + 1-lines and one column matrix:

Ziter+1 = −T−1
iter+1Q

T
iter+1H

−1
iter∇J(X0)

– Computation of:
Xiter+1 = X0 + H

−1
iterQiter+1Ziter+1

• Algorithm stops when the gradient ∇J(Xiter) has a “sufficiently” small norm (for more details see section
(2.3.11)).

• This algorithm converges in a finite number of iterations, the maximum possible number is N .

• Two different iterations of ∇J(X) (and also two different iterations of diter) are “orthogonal” relative to
the scalar product defined with matrix H−1.

• The descent direction is not parallel to the gradient.

• Matrix T has some good properties:

– Eigenvalues of Titer converge towards the eigenvalues of A when iter increases.

– Writing Titer = P−1
iterDiterPiter where Diter is diagonal and Piter contains the eigenvectors of Titer, the

product QiterPiter converges towards the eigenvectors of A.

2.3.11 When to stop the algorithm.

This topic is discussed in chapter 4.2 of (Barrett et al., 1994). The stopping criterion is generally:

< giter,giter >

< g0,g0 >
< ε (3)

An additional criterion can be used:

< Xiter −Xiter−1,Xiter −Xiter−1 >< ε2 (4)

Some additional constraints can be added in some of the minimizers, for example:

• In N1CG1: the cost function must not increase, in the contrary the algorithm stops.

• In CONGRAD: the eigenvalues of the matrix T obtained by the Lanczos algorithm must be all ≥ 0, in
the contrary the algorithm stops at the last iteration where all the eigenvalues are ≥ 0.

• In CONGRAD one checks that matrix A is positive definite, in the contrary the algorithm stops.

• In CONGRAD the algorithm stops when the ratio final gradient / initial gradient is below a predefined
threshold, or when the final gradient is below a predefined threshold.

11

3 Available minimizers in the “arpifs” and “algor” libraries:
description and organigrammes.

Codes are in library “algor” excepted for CONGRAD which is in the main library “arpifs”.

3.1 Minimizer M1QN3 developed at INRIA.

M1QN3 follows a limited memory quasi-Newton method. It can be used for non-quadratic functions.

∗ Organigramme of M1QN3:

M1QN3 ->

* ALLOCATE_CTLVEC

* M1QN3A ->

- ALLOCATE_CTLVEC

- [YSTBL (not described in detail)] [commented]

- [PROSCA]

- DD ->

* [PROSCA]

* [CTONB]

* [CTCAB]

- DDS ->

* [YSTBL (not described in detail)] [commented]

* [PROSCA]

* [CTONB]

* [CTCAB]

- [SIMUL]

- MLIS0 ->

* [PROSCA]

* [SIMUL]

* ECUBE

- DEALLOCATE_CTLVEC

* [PROSCA]

* DEALLOCATE_CTLVEC

∗ Comments about routines involved:

• M1QN3: is the main routine; calls M1QN3A after having structured the available memory.

• M1QN3A: is the body of the minimizer.

• ALLOCATE CTLVEC
(resp. DEALLOCATE CTLVEC) (in module-routine CONTROL VECTORS): allocation (resp.
deallocation) of some “CONTROL VECTOR”-type arrays.

• [PROSCA]: dummy argument generic name of a routine doing a scalar product.

• [CTONB] and [CTCAB]: dummy argument generic name of routines doing a basis change and its
inverse.

• DD: computes the descent direction; manages multiplications by the inverse of the preconditioner.

• DDS: does the same as DD but is used in the case when the pairs (Y;S) are not completely stored in
memory but read on a buffer via the routine YSTBL.

• MLIS0, ECUBE: subroutines realizing the line-search.

• [SIMUL]: dummy argument generic name of the simulator.

• YSTBL: is used for very large problems (currently commented).

∗ Additional remarks: A more detailed documentation of M1QN3 can be found in (IDQN3).
Preconditioning is a left one and can be done by a quasi-Newton preconditioner.

12

3.2 Minimizer M1QN3R.

M1QN3R follows a limited memory quasi-Newton method. It can be used for non-quadratic functions. This is
a version of M1QN3 without the “CONTROL VECTOR” structure.

∗ Organigramme of M1QN3R:

M1QN3R ->

* MUPDTSR

* M1QN3AR ->

- [PROSCAR]

- DDR ->

* [PROSCAR]

* [CTONBR]

* [CTCABR]

- DDSR ->

* YSTBLR (not described in detail)

* [PROSCAR]

* [CTONBR]

* [CTCABR]

- [SIMULR]

- MLIS0R ->

* [PROSCAR]

* [SIMULR]

* ECUBER

- YSTBLR (not described in detail)

* [PROSCAR]

∗ Comments about routines involved:

• M1QN3R: is the main routine; calls M1QN3AR after having structured the available memory.

• M1QN3AR: is the body of the minimizer.

• MUPDTSR: returns the number of updates to form the approximate Hessian.

• [PROSCAR]: dummy argument generic name of a routine doing a scalar product.

• [CTONBR] and [CTCABR]: dummy argument generic name of routines doing a basis change and
its inverse.

• DDR: computes the descent direction; manages multiplications by the inverse of the preconditioner.

• DDSR: does the same as DDR but is used in the case when the pairs (Y;S) are not completely stored in
memory but read on a buffer via the routine YSTBLR.

• MLIS0R, ECUBER: subroutines realizing the line-search.

• [SIMULR]: dummy argument generic name of the simulator.

• YSTBLR: is used for very large problems.

∗ Additional remarks: A more detailed documentation of M1QN3R can be found in (IDQN3).
Preconditioning is a left one and can be done by a quasi-Newton preconditioner.

13

3.3 Minimizer N1CG1.

N1CG1 follows a Fletcher-Reeves conjugate gradient method. It can be used to solve positive definite quadratic
functions or to solve linear systems involving a symmetric positive definite matrix.

∗ Organigramme of N1CG1:

N1CG1 ->

* ALLOCATE_CTLVEC

* [SIMUL]

* N1CGA

- DPSEUCLID -> DOT_PRODUCT

- DBFGSL -> DPSEUCLID -> DOT_PRODUCT

- [SIMUL]

- DYSAVE -> DPSEUCLID -> DOT_PRODUCT

* DEALLOCATE_CTLVEC

∗ Comments about routines involved:

• N1CG1: is the main routine; calls N1CG1A.

• N1CG1A: is the body of the minimizer.

• ALLOCATE CTLVEC
(resp. DEALLOCATE CTLVEC) (in module-routine CONTROL VECTORS): allocation (resp.
deallocation) of some “CONTROL VECTOR”-type arrays.

• DPSEUCLID does the “basic” scalar product and calls DOT PRODUCT.

• DBFGSL: computes the descent direction; manages multiplications by the inverse of the preconditioner.
This routine is nearly identical to the routine DD called under M1QN3.

• DYSAVE is called when asking for preconditioning does the selection and saving of pairs (Y;S).

• [SIMUL]: dummy argument generic name of the simulator.

∗ Additional remarks: This routine can be used with a left quasi-Newton preconditioner; see for example
(Morales and Nocedal, 1999) for the description of such a preconditioner.

14

3.4 Minimizer CONGRAD.

CONGRAD follows a conjugate gradient method combined with a Lanczos algorithm. It can be used to solve
positive definite quadratic functions or to solve linear systems involving a symmetric positive definite matrix.
Preconditioning is a right one.

∗ Organigramme of CONGRAD:

CONGRAD ->
* ALLOCATE_CTLVEC
* SIM4D -> (call tree not described)
* OPK -> (call tree not described)
* PRECOND
* PTSV -> [LAPACK]/SPTSV ou [LAPACK]/DPTSV
* STEQR -> [LAPACK]/SSTEQR ou [LAPACK]/DSTEQR
* WREVECS ->
- ALLOCATE_CTLVEC
- DEALLOCATE_CTLVEC

* DEALLOCATE_CTLVEC

The call to XFORMEV has been moved in the routines which call CONGRAD.

∗ Organigramme of the setup part computing the preconditioner:

CVA1 ->
* PREPPCM
- ALLOCATE_CTLVEC
- DEALLOCATE_CTLVEC
- ALLGATHER_CVSECTION
- SET_CVSECTION

∗ Comments about routines involved:

• CONGRAD: is the main routine and the body of the minimizer.

• ALLGATHER CVSECTION (in module-routine CONTROL VECTORS COMM MOD): gather
part of the control variable on all processors.

• ALLOCATE CTLVEC
(resp. DEALLOCATE CTLVEC) (in module-routine CONTROL VECTORS): allocation (resp.
deallocation) of some “CONTROL VECTOR”-type arrays.

• SIM4D: is the simulator used in the 4D-VAR (no other simulator is currently allowed here).

• OPK: is the simulator used in the calculation of singular vectors.

• PRECOND: applies the preconditioner.

• PREPPCM: pre-computes the preconditioner.

• PTSV: resolution of a real linear system of equations, the matrix of which being symmetric positive definite
and tridiagonal.

• SET CVSECTION (in module-routine CONTROL VECTORS COMM MOD): set part of the
control variable on all processors.

• STEQR: computes the eigenvalues and, optionally, eigenvectors of a symmetric tridiagonal matrix.

• CVA1: controls variational assimilation job at level 1.

• WREVECS: computes and saves eigenvectors.

• XFORMEV: transforms eigenvectors towards model variable space.

• The “basic” scalar product is directly done by calls of DOT PRODUCT.

∗ Additional remarks: A more detailed description of the algorithm used by CONGRAD can be found
in (Fisher, 1998) and in the part 6 of ECMWF documentation (TDECDAS). The preconditioning is done by
a change of variable inside routine PRECOND (solve AH−1[HX] = B instead of AX = B); calculation of the
preconditioner is described in the part 6.5 of ECMWF documentation (TDECDAS). The preconditioning matrix
is computed in routine PREPPCM; the change of variable is done inside routine PRECOND.

15

4 Configurations of use of minimizations, and simulators.

4.1 Minimization for orography in climatological files (configuration 923).

It uses a non-quadratic function, and a minimization by the quasi-Newton algorithm:

• Minimizer: M1QN3R.

• Simulator: SIMREL.

• Size of the problem: a local variable IRZ computed in RELSPE, which is a function of NSEFRE.

• Caller: APLM1G.

4.2 Minimization in the 4DVAR assimilation.

It uses a quadratic function.

• Minimizer: the minimizers which can be used are M1QN3, N1CG1 or CONGRAD.

• Simulator: SIM4D. A more detailed description of SIM4D can be found in part 4.2.3 of (IDVAR) and
in the IFS technical documentation part II (section 2.3).

• Size of the problem: NSEFRE.

• Callers: CFCSENS2OBS, CVA2, FORECAST ERROR.

4.3 Other applications using minimizers.

• NALAN1 calls CONGRAD (simulator SIM4D or OPK).

16

5 Modules and namelists.
These modules are auto-documented so description of each variable is provided in the code source. We can recall
here the most important variables to know for each module:

• PTRSPOR: used only in the minimization of orography done in the part 1 of configuration 923.

• YOMCVA (control variable).

• YOMDIM (dimensioning), in particular NSEFRE.

• YOMGETMINI: contains variables which are at least used when getting the pre-conditioner for
CONGRAD.

• YOMIOMI (warm restart I/O mechanism for minimization). Some of these variables are in namelist
NAMIOMI.

• YOMSENS (variables for sensitivity). Some of these variables are in namelist NAMSENS.

• YOMVAR: a subset of variables are used in minimizers or in applications calling minimizers.

– NITER, NITER MIN, NSIMU, NINFRA.

– NMIMP, RXMIN (used for M1QN3).

– LN1CG1, ZEPSNEG, N1IMP, NSELECT, NPRECO, NBFGSB (used for N1CG1).

– LCONGRAD, NPCVECS, LWRIEVEC, NWRIEVEC,
N DIAGS CONVERGENCE, N DIAGS EIGENVECS,
LEVECCNTL, LEVECGRIB, RTOL CHECK GRADIENT,
LMPCGL, EVBCGL, MCGLVEC, LTWCGL (used for CONGRAD).

– RCVGE, R NORM REDUCTION ABORT LEVEL,
L CHECK CONVERGENCE, L ABS CONVERGENCE, L INFO CONVERGENCE.

– L INFO CONTENT, N INFO CONTENT METHOD, N INFO CONTENT SEED.

– and maybe also LSKIPMIN, NUPTRA, NHEVECS.

Some of them are in namelist NAMVAR.

• YOMVCGL: global arrays for intermediate results of the forecast error calculation or used in the
CONGRAD minimization (preconditioner).

• CONTROL VECTORS COMM MOD: contains routines which do operations on “derivated type”
variables used in the minimizations (routines in this module seem linked with distributed memory).

• CONTROL VECTORS and CONTROL VECTORS ... (in library “algor”): contains routines
which do operations on “derivated type” variables used in the minimizations.

17

6 Bibliography.

6.1 Publications.

• Barrett R., M. Berry, T. F. Chan, J. Demmel, J. Donato, J. Dongarra, V. Eijkhout, R. Pozo, C. Romine and
H. Van der Vorst, 1994: Templates for the solution of linear systems: building blocks for iterative methods,
2nd edition, Pub. SIAM, Philadelphia. Available on http://www.netlib.org/templates/Templates.html

• Bonnans, J.F., J.C. Gilbert, C. Lemaréchal and C. Sagastizabal, 1997: Optimisation numérique, aspect
théorique et pratique. (Collection Mathématiques et Applications, édité chez Springer).

• Ciarlet, P.G., 1982: Introduction à l’analyse numérique matricielle et à l’optimisation. (Collection
Mathématiques appliquées pour la mâıtrise, édité chez Masson, 279pp).

• Courtier, Ph., C. Freydier, J.F. Geleyn, F. Rabier and M. Rochas, 1991: The ARPEGE project at METEO-
FRANCE. ECMWF Seminar Proceedings 9-13 September 1991, Volume II, 193-231.

• Fisher M., 1998: Minimization algorithms for variational data assimilation. Proceedings of ECMWF
seminar on recent developments in numerical methods for atmospheric modelling, 7-11 Sept 1998, pp
364-385.

• Fletcher, R., 1993: An overview of unconstrained optimization. Pre-print, 31pp. Postscript file available
as http://www.cerfacs.fr/˜ wlay/LAY/Publications/Opti/fletcher.ps.gz

• Morales, J.L., and J. Nocedal, 1999: Automatic preconditioning by limited memory quasi-Newton updating.
Pre-print, 22pp.

• Shewchuk, J.R., 1994: An introduction to the conjugate gradient method without the agonizing pain.
Edition 1 1

4
. Note, 64pp, available on http://www.cs.cmu.edu/˜ jrs/

6.2 Some internal notes and other ARPEGE notes.

• (TDECDAS) 2016: IFS technical documentation (CY41R2). Part II: data assimilation. Available at
“https://software.ecmwf.int/wiki/display/IFS/Official+IFS+Documentation”.

• (TDECTEC) 2016: IFS technical documentation (CY41R2). Part VI: technical and computational
procedures. Available at “https://software.ecmwf.int/wiki/display/IFS/Official+IFS+Documentation”.

• (IDVAR) Fischer, C., and L. Berre, 2007: The variational computations inside ARPEGE/ALADIN: cycle
CY32. Internal note, 77pp. Available on the intranet server “http://www.umr-cnrm.fr/gmapdoc/”.

• (IDQN3) Gilbert, J.C., and C. Lemaréchal, 1993: The modules M1QN3 and N1QN3. Version 2.0b. Internal
note, 12pp.

• (IDNEWT) Veersé, F., 1996. Quelques algorithmes de minimisation pour l’assimilation variationnelle de
données météorologiques. Internal note (slides-sized), 26pp.

• (IDBAS) Yessad, K., 2017: Basics about ARPEGE/IFS, ALADIN and AROME in the cycle 44 of
ARPEGE/IFS (internal note).

• (IDEUL) Yessad, K., 2017: Integration of the model equations, and Eulerian dynamics, in the cycle 44 of
ARPEGE/IFS (internal note).

• (IDDM) Yessad, K., 2017: Distributed memory features in the cycle 44 of ARPEGE/IFS (internal note).

18

