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This paper is a working document, which can serve as a starting basis for discussions between ECMWF and Météo-
France about the extension of the current IFS Vertical Finite Elements (VFE) scheme to NH modelling. This paper
is the first version of a paper which by definition should be subject to significant modifications through discussions.

———————————

ABSTRACT

The current VFE discretisation introduced in IFS by ECMWF for the HPE system is examined, in view of its
extension the NH system trying to avoid major changes in the existing dynamical kernel of the model.
The aspects covered by this paper are :

- Detailed scientific description of IFS’s VFE discretisation
- Some limitations and a weakness in the current VFE discretisation
- Possible avenues for the extension of the VFE scheme to NH modelling
- Behaviour of the current VFE scheme and of the proposed avenues (accuracy, normal modes, ...)

It is found that very few possibilities are able to simultaneously satisfy feasability, accuracy and stability. In this
preliminary study, only the most scientifically simple and technically straightforward extensions of the HPE-VFE
scheme to the NH-VFE scheme have been examined. Some alternative options which are scientifically more ambi-
tious have been left unexamined for time being, because the scope of this paper is more to evaluate if the extension
of the HPE-VFE to NH-VFE is a straightforward technical issue or a longer term, scientifically uncertain one.
Among all the straightforward possibilities examined , only one has been found able to be practically useable, and
in spite of its technical feasbility and its stability, it does not offer the perspective of an high accuracy-order as
would be allowed by a full use of the VFE technique in all spatial operators.
Alternative strategies are also reviewed. These alternative strategies require, at variable degrees, some scientific
work to be undertaken. When possible, the degree of chance for their success is discussed.
The present study is restricted to the behaviour of the purely linear system associated to the SI scheme. The study
of the behaviour of VFE schemes in presence of non-linear terms, more demanding in time, is left for a later stage,
when a reasonable consensus on the way to proceed will have been reached.

———————————
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1 Introduction

This paper examines the various possibilities for extending the HPE-VFE scheme of the current IFS
model to a VFE scheme for NH modelling in a general framework close from the one of the current
Aladin-NH dynamical kernel.
The VFE scheme of IFS has been described in Untch and Hortal, 2004 (UH04 hereafter). In the present
memo, first, some relevant details of this discretisation (as implemented in IFS code) are discussed,
namely, when the code implementation departs from the scheme described in UH04. Possible avenues
for extending the VFE scheme to the NH version of the model are then explored and discussed. The
most important properties of the current and proposed VFE schemes are presented, and compared to the
equivalent properties obtained with the classical Finite-Differences (FD) scheme.

Notations :

Following the traditional notation always used in ARPEGE and IFS, the number of discrete nodes or
levels is noted L throughout the present paper. This number was noted N in UH04, but this latter notation
is not adopted here, for consistency with all previous documentations.
Consistently with existing NH documentations and papers, the hydrostatic pressure is noted π , the no-
tation p being dedicated to the true pressure only. For an hydrostatic model, these two concepts are
identical.

2 Description

Some details which are not completely clear from the UH04 paper (or different between the code and
UH04) are described. The appropriate notations are introduced (to stick with both UH04 and Mathema-
tica bed-test).

2.1 Differences with the UH04 paper

After examination of the IFS code (subroutine
����������	�
��
����
����

) we found some differences with the
UH04 paper which are worth being mentioned :

• The normalisation of functions ei in IFS code is not the one described in UH04. The normalisation
of IFS code is that the value of the element at the central node is 2/3. The effect is that for a regular
spacing of levels and a unit function f (η) = 1 , the total columun integral computed with VFE
scheme should be one, i.e.

[∫ 1
0 f(η)dη

]
VFE

= 1. This modification with respect to UH04 paper has
no scientific impact.

• The shape of the ei functions for i ∈ {L−1, L, L + 1, L + 2} is modified for η > η(L) in such a
way that these functions become constant-valued below this limit. This modification is omitted in
UH04, and probably only has a small impact on the behaviour of the scheme. As a direct conse-
quence, the last node function eL+2 becomes identically zero. However, the relevance of having
one of the basis function identically zero may be questionned. The shape of the functions modified
as in the IFS code is depicted in Fig.1, for a 50 regularly spaced level distribution.

• The integral domain for the Galerkin test method is not set to [0,1] as indicated in Eq. (3.7) of
UH04, but is set to [0,η(L+1)]. However, this domain for the mathematical transform must be
clearly distinguished from the domain used for physical integrations as in Eq. (3.5) of UH04,
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FIG. 1 – Shape of the four bottom-most nodes functions, as modified in the IFS code or a 50 level uniform
resolution. First panel : eL−1, eL. Second panel eL+1. The last node function eL+2 is identically zero

which is actually taken as [0,1] when an integral through the whole vertical column is computed.
This modification is not likely to change the results significantly, but it is not totally impact-free.

• For the node i + 2, the function f4 valid in the interval [ηi+1,ηi+2] is defined by f4(η) = a4(η −
ηi+2)3. The formula in Eq. (A.3) UH04 has a typo, but the version in the code is correct ( f4 as
defined in UH04 would result in a discontinuous basis-function).

• The index intervals for j in Eq. (3.10) in UH04 are wrong . The central equation must not be
applied for −1 ≤ j ≤ L + 2, but for 0 ≤ j ≤ L. The last equation must not be applied to L + 2 but
to L + 1. Therefore the last equation must read :

L+2

∑
i=−1

cie′i(ηL+1) = f ′L+1 (1)

• In IFS code all the basic matrices A, B, P, S are dimensioned [1,L + 3]× [1,L + 3]. The basic
matrix ZINTE = P.A−1.B.S−1 is called ZINTE in the code. However, this [1,L + 3]× [1,L + 3]

matrix may not directly applied to a column vector, which by definition is dimensioned [1,L].
A projection is therefore applied (using some of the "physical" rules in the second paragraph of
UH04’s page 1512). A physical matrix that will be noted "RINTE" is thus built from ZINTE by :

- removing the first and last lines of ZINTE (these lines would give the derivatives of the
function at the two edges, which are not used).

- removing the first and last column of ZINTE (these columns are to include the information
about the vertical derivatives of the input vector at the two edges. Since these derivatives are
readily assumed to be zero, these two columns are useless because they have no contribution
for any input vector).

- adding together the second and third columns of ZINTE and set the result as the first
column of RINTE (the second column is the contribution of the input vector at the level η0.
Since the value of the vector there is readily assumed to be equal to the value at the level η1,
the two columns can be added together, and the initial second column of ZINTE can thus be
ignored).
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The physical matrix RINTE is therefore dimensioned [1,L]× [1,L + 1] The last line, with index
L+1 gives the total column integral from the whole vertical domain (η = 0 to η = 1 in the current
code). The matrix RINTE is the basic output of the

����������	�
����
subroutine and is called RINTE in

the code.

2.2 Correction of mass and hydrostatic-height elements

The discrete mass element δπ/δη reflecting UH04’s Eq. (2.8) and its logarithm δ lnπ/δη , are not defi-
ned from the specified A and B vectors through a direct FD differentiation, but they are defined through
a VFE approach in such a way that the constraints (2.9) in UH04 are fulfilled at the computer accuracy.
These quantities δπ/δη and δ lnπ/δη are needed for the integration of the mass-continuity equation (to
compute the vertical pseudo-velocities) and of the hydrostatic equation (to compute the geopotential).
However, this process is not described at all in UH04.
At the setup stage of the model, corrected profiles for quantities related to A and B are prepared. This
involves corrected values for (δA/δη , δB/δη , A, B) at full levels. Then at each time-step, and for each
column of the model, the local mass-elements (δπ/δη , π , δ lnπ/δη) are computed at full levels. The
principle of this correction is now explained in details.

• At the setup stage of the model :

- Define δA/δη and δB/δη in the usual FD way,

- Integrate these quantities through the whole column,

- for correcting (δB/δη), divide the original (δB/δη) vector by the obtained column integral [we
obtain a corrected vector (δ̂B/δη)] :

(δ̂B/δη) = (δB/δη)/�
∫ 1

0
(δB/δη)dη (2)

(the notation of the integral operator in the above equation is adopted throughout all this paper for
the VFE integral, in order to better distinguish from the continuous integral).

- for correcting (δA/δη), use an iterative process to correct the original vector : detect the first
level lref from top where (δA/δη) changes its sign ; compute the vertical (positive) integral I+

ref
of (δA/δη) between the top and lref, and the (negative) integral form I−ref to the bottom ; multiply
(δA/δη) by (−I+

ref/I−ref). Do this rapidly converging iterative process three times [we obtain a

corrected vector (δ̂A/δη)].

- Define B at full levels by the VFE integral of the corrected (δ̂B/δη) vector (we obtain a corrected
vector B̂).

- Define A at full levels by the VFE integral of the corrected (δ̂A/δη) vector (we obtain a corrected
vector Â).

• For each time-step and each column :

- Define the corrected full-level pressure depth (δ̂ π/δη) from (δ̂A/δη), (δ̂B/δη) and πs.

- Define the pressure at full level π̂ from Â, B̂ and πs.

- Define the corrected logarithmic depth ( ̂δ lnπ/δη) as (δ̂ π/δη)/π̂ .
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This procedure garantees that, to the computer accuracy :

π̂l = �
∫ ηl

0
(δ̂ π/δη)dη (3)

πs = �
∫ 1

0
(δ̂ π/δη)dη (4)

Note : A similar computation must also be performed for the SI reference surface pressure π ∗s . The
corresponding vectors π̂∗, ̂δπ∗/δη and ̂δ lnπ∗/δη are needed in the SI linear system, to define the linear
operators for the integration of the continuity and the hydrostatic equation, namely, the adimensional G∗,
S∗ and N∗ operators in the notation of the NH model (see also definition below). However, since π ∗s is not
space- or time-dependent, the computation of these three vectors can be performed once, in the set-up
stage of the model.

3 A weakness in the current VFE discretisation

For a given valid set of (A,B) values, the current VFE discretisation sometimes result in eigenmodes of
the ΓΓΓ matrix [i.e. the Γ operator in UH04’s (4.7)] with complex or negative eigenvalues, which means that
the normal modes of the model are unstable. The FD discretisation does not suffer from this weakness,
and seems to provides positive eigenvalues in any case, when the set (A,B) defines a valid coordinate
(i.e. monotonic with respect to z).
The instability is not linked to the hybrid character of the coordinate and appears even in the case of a pure
terrain-following σ coordinate (i.e. A≡ 0). Some investigations showed that the appearance of unstable
modes is somehow linked to the existence of significant jumps in the pressure or height resolution from
one level to the next.
More specifically, in the case of a NWP type discretisation (high-resolution in geopotential near the
ground, and high-resolution in pressure near the top), the scheme was found highly sensitive to the ratio
between the number of levels L250 in the "stratosphere" (i.e. above 250 hPa) and the pressure of the first
full level. For instance, with L250 = 18, the scheme is easily made stable with p1 = 30 Pa, while for
p1 = 20 Pa or less, it was found difficult (not to say impossible) to make it stable. This behaviour is
found to be quite independent of the positioning of the levels underneath. Similarly, in order to reach a
first full-level pressure of p1 = 10 Pa, a minimum of 26 levels above 250 Pa seems more or less necessary.
As an other illustration, the simple 8-levels terrain-following σ coordinate defined by A = 0 and B =

{0, 0.007, 0.03, 0.07, 0.15, 0.30, 0.50, 0.75, 1}, leads to an operator ΓΓΓ which has complex eigenvalues,
and therefore to an unstable model. Moreover, the imaginary part of these complex eigenvalues is not
negligible. Here also, in contratst, the FD discretisation provides only real positive eigenvalues for ΓΓΓ.
It would be interesting to investigate more deeply why the VFE discretisation sometimes behaves unsta-
bly while the FD discretisation does not exhibit this pathological behaviour. The modifications brought
near the two edges throughout the whole depth of the domain may be in cause. A more fundamental cause
could be in the very indirect way in which the integration operator is obtained, with matrix inversions
involved in the process.

4 Some limitations in the current VFE discretisation

The current VFE discretisation, as it appears in the code, is mostly operation-oriented. However, for
the theoretical understanding of the behaviour of the scheme, and for academic studies, more general

5



extensions could be needed.

4.1 Extension to pure terrain-following coordinates

The current VFE discretisation is not able to support pure terrain-following coordinates (i.e. A ≡ 0). In
this case, the correction of the (dA/dη) function implies a division by 0 in the current code, and this
problem should be avoided by simply skipping this correction when A≡ 0. This represents a very small
code modification.

4.2 Extension to bounded domains

The current VFE discretisation is restricted to unbounded domains, i.e. the domain top pressure πT is
assumed to be zero. Due to UH04’s (2.6), this means that AT = BT = 0, and UH04’s (3.1) implies
ηT = 0. However, for academic modelling, intercomparison studies, and for theoretical studies, it may
be important to allow vertically bounded domains for which πT and ηT are allowed to be non-zero. This
can be achieved by allowing AT and/or BT to be non-zero. The particular case of a bounded domain in
terrain-following coordinate is obtained by A≡ 0 and BT 6= 0.

In all this paper (except in the space-continuous derivations), we assume that ηT is allowed to be non-
zero, and therefore we introduce the proper formalism for it. The surface value of η is kept as one [as
imposed by UH04’s (2.6)].

5 Main vertical operators involved in the model

5.1 Basic integral operators

The basic integral operators, defined as output of the VFE scheme, are the total column integral K and
the integral though the top to the current level J :

(K X)η =
∫ 1

ηT

X(η ′)dη ′ (5)

(J X)η =
∫ η

ηT

X(η ′)dη ′ (6)

We also define, for convenience, the identity operator :

(I X)η = X(η) (7)

Note that K X , as defined here, returns a function (not a value) in the whole vertical domain (this function
is however vertically uniform).
The discrete VFE counterparts of these operators are noted K, J and I respectively :

(KX)ηl = �
∫ 1

ηT

X(η ′l )dη ′ (8)

(JX)ηl = �
∫ ηl

ηT

X(η ′l )dη ′ (9)

(IX)ηl = X(ηl) (10)
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Therefore, K is obtained by vertically stacking L times the row vector formed by the last line of RINTE,
and J is obtained by taking the first L lines of RINTE. The operator J thus provides for any given vector
[1,L], the integral of the vector on each of the [1,L] full levels, and the operator K provides for any given
vector [1,L], the total column integral of the vector, and puts the result identically on each of the [1,L]

full levels.

For convenience, let’s define other various discrete square [1,L]× [1,L] operators needed for later deri-
vations :

• ΠΠΠ : square diagonal operator with the non-zero element π̂ at each full level (and ΠΠΠ−1 its inverse).

• dΠΠΠ : square diagonal operator with the element (δ̂ π/δη) at each full level.

• dLΠΠΠ : square diagonal operator with the element ( ̂δ lnπ/δη) at each full level (therefore dLΠΠΠ =

dΠΠΠ .ΠΠΠ−1).

5.2 Mass-weighted operators

For a given η coordinate, the continuous basic linear mass-weighted operators write :

(G ∗X)η =
∫ 1

η

d lnπ∗

dη ′
X(η ′)dη ′ (11)

(S ∗X)η =
1

π∗
∫ η

ηT

dπ∗

dη ′
X(η ′)dη ′ (12)

(N ∗X)η =
1

π∗s

∫ 1

ηT

dπ∗

dη ′
X(η ′)dη ′ (13)

These continuous operators represent the operators needed in Eqs. (4.4)–(4.6) of UH04 (note that for
continuous operators, the corrected height- and mass-elements do not need to be introduced).
The non-linear counterpart of these continuous operators are :

(G X)η =
∫ 1

η

d lnπ
dη ′

X(η ′)dη ′ (14)

(S X)η =
1
π

∫ η

ηT

dπ
dη ′

X(η ′)dη ′ (15)

(N X)η =
1
πs

∫ 1

ηT

dπ
dη ′

X(η ′)dη ′ (16)

These continuous operators represent the operators needed in Eqs. (2.5) and (2.10)–(2.13) of UH04.

The discrete version of these operators is derived in a natural way from the basic integral operators J and
K defined in the previous sub-section.
In the current VFE scheme, the mass-weighted operators G∗, S∗ and N∗ are defined as follows :

G∗ = (K−J).dLΠΠΠ∗ (17)

S∗ = (ΠΠΠ∗)−1.J.dΠΠΠ∗ (18)

N∗ = (1/π∗s )K.dΠΠΠ∗ (19)

The non-dimensional SI linear operator ΓΓΓ∗ is defined by :
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ΓΓΓ∗ = (R/Cp)G∗.S∗+ N∗ (20)

The non-linear counterpart of these operators, G, S and N are defined as follows :

G = (K−J).dLΠΠΠ (21)

S = ΠΠΠ−1.J.dΠΠΠ (22)

N = (1/πs)K.dΠΠΠ (23)

6 Principle of theoretical verifications for prescribed profiles f (η)

In order to check the accuracy of the discretisation, it may be convenient to compare the result of VFE in-
tegral operators applied to a prescribed profile with their continuous counterpart. This is always possible
for the basic J operator, but not for the mass-weighted operators. This is generally not possible when
the coordinate is only defined through a discrete set of values A,B and that the continuous laws used to
defined these discrete A,B values are not known.
For general coordinates, when the analytical laws which defines A and B are known, it becomes in
principle possible to compute the continuous mass-weighted integrals by replacing the mass-elements
integrands by their analytic form and then integrate analytically.
The analytic computation of mass-weighted integrals is also possible in two other cases, even if the
analytic laws used to define A and B are not known. The three cases where the evaluation is possible are
discussed below.
It should be noted that for the verification against analytical results, we only consider functions f formu-
lated in the physical coordinate η (hence more or less directly related to the hydrostatic pressure π) rather
that functions formulated in terms of an unphysical continuous coordinate based on the level index, as
e.g. defined by the coordinate xl in (24) hereafter.

6.1 Case where A and B are analytically known

When A et B are analytically known, UH04’s (3.2) can be extended to the continuous context as :

η(xl) = A(xl)/π00 + B(xl) (24)

where xl is an independant continuous variable describing the interval [0,L], in replacement of l̃. Then
the height- and mass-elements π , (dπ/dη) and (d lnπ/dη) can be directly deduced from the continuous
equation :

π(η) = A(η)+ B(η)πs (25)

where πs is the surface pressure at the considered point. The knowledge of the profile η(xl) is required
in order to define the values of the continuous height and mass elements knowing the value of πs.

6.2 Case πs = π00

The computation of analytic integrals is possible for a general coordinate η when the effective surface
pressure πs is equal to the pressure π00 used in UH04’s (3.1) to define the discrete values of η from the
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discrete values of A and B. In this particular case UH04’s (2.6) and (3.1) show that, in the continuous
context :

π = ηπ00 (26)

As a consequence, (dπ/dη) = π00 and (d lnπ/dη) = (1/η). The expression of the continuous mass-
weighted operators then simplifies into :

(G X)η =
∫ 1

η

X
η ′

dη ′ (27)

(S X)η =
1
η

∫ η

ηT

Xdη ′ (28)

(N X)η =
∫ 1

ηT

Xdη ′ (29)

which can be analytically computed for a prescribed function X(η). It should be noted that it is possible
to use these formulae even when AT 6= 0 and/or BT 6= 0.
This particular case πs = π00 allows to use any arbitrary coordinate, but is not very typical of the what
occurs generally in the model, in which the surface pressure usually has significant variations. Using
only this case for diagnostics could lead to an over-optimistic opinion since assuming πs = π00 acts in
favour of the accuracy.

6.3 Case A≡ 0

In this case, we have a pure σ coordinate. Insertion of A = 0 in UH04’s (2.6) and (3.1) show that :

π = Bπs = ηπs (30)

As a consequence, in the continuous context, (dπ/dη) = πs and (d lnπ/dη) = (1/η). The expression
of the mass-weighted operators then simplifies into the same form as in the previous case. It should be
noted that it remains possible to use these formulae even when BT 6= 0.
This particular case A≡ 0 allows to examine the behaviour of the mass-weighted operators for any value
of the surface pressure, but it is restricted to particular coordinates. Using only this case for diagnostics
could lead to an over-optimistic opinion since assuming A ≡ 0 eliminates the problems linked to the
hybridicity of the coordinate.

*
* *

In this paper, evaluation of the response of operators on analytical profiles is performed for two coordi-
nates : regular terrain-following coordinates (which satisfies the three above cases), and current ECMWF
coordinate (hence only for the case πs = π00).

7 Possible avenues for the extension of the VFE to the NH model : hydro-
static operators

7.1 Constraint (C1)

In the current architecture of the NH model, the semi-implicit scheme is based on the algebraic elimina-
tion of all variables but one in the discrete context, in order to reach a single "discrete structure equation"
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which is an Helmholtz equation solved in the spectral space. For this algebraic elimination to be possible,
a mathematical constraint (C1) must be satisfied in the discrete context. This constraint (C1) writes :

−G∗.S∗+ G∗+ S∗−N∗ = 0 (31)

The matrix A1 =−G∗.S∗+ G∗+ S∗−N∗ involved in the LHS of this equation must be identically zero.
This constraint, which had be carefully taken into account for the FD discretisation of the NH model, has
to be re-examined for the extension to the VFE discretisation.

Unfortunately, with the current version of the VFE discretisation, the matrix A1 is not found to be exactly
zero. For the current L = 60 coordinate of the ECMWF, the maximum eigenvalue modulus of A1 is 0.107,
to be compared to the maximum eigenvalues modules of G∗ and S∗, which are respectively 0.728 and
1. Therefore, it seems not very appropriate to use the set of integral operators directly derived from the
hydrostatic VFE scheme for its extension to the NH model, because the constraint (C1) is not fulfilled.
Using the operators as they are defined in the HPE model would result in imaginary eigenvalues of the
discrete structure equation, and therefore, in an intrinsic instability of the linear model itself. Several
solutions for fulfilling the constraint (C1) may be proposed. They are discussed and compared in the next
subsections.

7.2 Modifying the architecture of the SI scheme

It can be seen from the documentation of the NH model (B. , 2004b) that the constraint (C1) arises
because of the special architecture of ARPEGE’s semi-implicit scheme : the constraint (C1) is necessary
only because we want to be able to perform algebraically the elimination of all implicit variables but one.
Yet, such a strategy is not absolutely necessary : in discrete form the implicit problem is just a linear
inversion, and could be performed with two (or more) variables in the vector for which the SI operator
is inverted. If we adopt a solution of the implicit problem for the couple (D,d), then the constraint (C1)
does no longer need to be fulfilled, and the original operators G∗, S∗ and N∗ can be used directly.
Technically, building the SI scheme on this strategy is probably not more difficult than with the current
strategy. However, the design of such a scheme is a scientific issue, and we will try to avoid this avenue
if possible because although changes would essentially be limited to the spectral part of the model, it
breaks the continuity with the previous existing SI schemes in ARPEGE/IFS. If a more direct solution is
possible and brings satisfaction, it should be preferred.

7.3 Modifying the operator N∗

The simplest and the most natural idea to achieve the fulfilment of (C1) without modifying the structure
of the SI scheme, would be to redefine the operator N∗ specifically in this way. We would then define a
new N′∗ as :

N′∗ = G∗.S∗−G∗−S∗ (32)

However, this strategy has several disadvantages :

- With this definition, the N′∗ operator has no special reason to remain constant-valued in the ver-
tical, and indeed, it does not. Concretely, this means that the VFE total colum integral becomes
level dependent ! This may look strange at first glance, but in fact this can be acceptable because
the variations are quite weak : the VFE integral computed by N∗ and N′∗ are much closer mu-
tually than they are to the analytic value. Fig. 2 shows an illustration of this fact : for the function
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FIG. 2 – Response of N∗ (straight line) and N′∗ operators for the function f (η) = sin(6πη), for the 60 levels
discretisation of the ECMWF model. The analytical value is zero.

f (η) = sin(6πη) and for the 60 current ECMWF level, the column integral by N ∗ is exactely
zero, and the VFE values obtained with N∗ and N′∗ are very different from zero, but quite close to-
gether. From this point of view, the difference between the N′∗ and N∗ may be viewed as "inside"
the noise-level, and although vertically non-constant, the error in N′∗ is not significantly worse
than the error of N∗. Therefore, the level variability of N′∗ is not a redhibitory argument against
choosing it for fulfilling (C1).

- However, having a level-dependant result for N′∗ means more or less than πs becomes a 3D variable
at least to some extent, and consequently needs some changes code to adapt to this new situation.
In order to reduce this unpleasant consequence to a minimum, we could choose to restrict the
3D character of the πs variable only to the linear SI system, which means that the RHS of the
SI problem for the πs equation would be 3D while the explicit equation for πs would remain 2D.
However the benefit of this restriction is quite small, because the spectral transform for πs RHS
still would have to remain 3D, and this means a deep reorganisation of the code, since spectral
transforms is the most critical part of the relevant code to be changed.

This latter argument seems, in turn, quite a redhibitory one for a further examination of this strategy for
fulfilling (C1), and this approach is thus abandoned here.

7.4 Modifying the operator S∗

The equation :

∫ 1

η

X(η ′)
η ′

dη ′ = X(η) (33)

only admits the trivial solution X(η) = 0. As a consequence, the operator (G ∗−I ) is "inversible" in the
sense that solving the integral equation :

(G ∗−I ).X(η) = f (η) (34)

(where the unknown function is X and f is a prescribed function) leads to a single solution. For a given
function f , the solution of (34) is :

X(η) =
1
η

∫ 1

η

[
η ′

d f
dη

(η ′)
]

dη ′ − f (1)

η
(35)
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This property of the continuous operator G ∗ is well reflected by its VFE discrete counterpart : for L = 60
and a regular σ coordinate, the minimum eigenvalue modulus of (G∗ − I) is 0.401 and the discrete
operator (G∗− I) is therefore found to be inversible as in the continuous context.

Since the (G∗− I) operator is inversible, an solution for satisfying (C1) would be to redefine the S∗

operator through the inversion of (C1). The resulting S′∗ operator would thus write :

S′∗ = (G∗− I)−1.(G∗−N∗) (36)

Using this approach allows πs to remain a 2D variable, and thus it can be anticipated that only small
changes in the code are required. Although the ΓΓΓ∗ operator is not used in the NH model, we define its
modified version by using S′∗ for subsequent verifications :

ΓΓΓS′
∗ = (R/Cp)G∗.S′∗+ N∗ (37)

7.5 Modifying the operator G∗

In the continuous context, the equation :

1
η

∫ η

0
X(η ′)dη ′ = X(η) (38)

admits the non-trivial solution X(η) = Const. As a consequence, the operator (S ∗−I ) is "singular"
in the sense that solving the integral equation (S ∗−I ).X(η) = f (η) (with same conventions as in the
previous subsection) leads to an infinity of solutions, mutually departing through a constant.
This property of the continuous operator S ∗ is well reflected by its VFE discrete counterpart : still for
L = 60 and a regular σ coordinate, the minimum eigenvalue modulus of (S∗−I) is only 2.7 10−16, a value
probably depending on the rounding errors in the computations. Although the discrete operator (S∗− I)
is found inversible strictly speaking, (since the determinant is not exactly zero), the corresponding matrix
is very badly conditioned and its extremely unaccurate inverse can not be used in practice. Therefore, a
method for defining an operator G′∗ by directly inverting (C1) as in (36) is not possible.
However, it should be noticed that (S∗− I) singular does not mean that there is no solution for G′∗, but
that the set of solutions G′∗ satisfying (C1) is not reduced to one element. We can therefore determine
G′∗ as the operator which satisfies (C1) together with another arbitrary constraint (a "gauge" condition)
to be determined, and which makes it physically meaningful.
A demonstration of the relevance of this approach in the continuous context is provided in the Appen-
dix 1. This serves as a justification for applying the proposed strategy for determining an operator G′∗

which satisfies (C1) and a gauge condition.

In the discrete context, we define the vector 1 = (1, . . . ,1). and we use as a gauge condition :

G′∗.1 = G∗.1 (39)

Therefore, when increasing the resolution, the G′∗ will effectively converge toward its continuous coun-
terpart, because it will converge toward the operator G∗ which does. The operator G′∗ that we seek can
then be obtained by the simple following iterative process :

G∗(0) = G∗ (40)

G∗(i+1) = G∗(i).S∗−S∗+ N∗ for i≥ 0 (41)
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and the iteration is stopped for a given imax index, that is, G′∗ = G∗(imax). Due to the correction of the
mass elements [see (3) and (4)] we have, to the computer accuracy :

S∗.1 = N∗.1 = 1 (42)

Therefore :

G∗(i+1).1 = G∗(i).1 (43)

consequently, any iterated G∗(i) satisfies the gauge condition, and so does also G′∗.

Similarly to the previous subsection, a version of the operator ΓΓΓ∗ modified by using G′∗ is defined for
verifications :

ΓΓΓG′
∗ = (R/Cp)G′∗.S∗+ N∗ (44)

7.6 Modified non-linear of operators G′, S′

The fulfilment of the constraint (C1) is, strictly speaking, required only for the SI linear integral operators.
The non-linear operators could be left unmodified as they are defined in (21)–(23), or could be modified
in the same way as the linear ones, in order to fulfil (C1) also in the explicit non-linear model. The benefit
of choosing one or the other of these two approaches, or even another one, is not totally obvious, and
these options should be examined as a future work.
First, it should be noticed that modifying G into G′, or S into S′ in the non-linear model to fulfill (C1) even
for non-linear operators, induces a significant overcost in CPU and storage, and would need significant
code reorganisations : for any value of the surface pressure (i.e. any column), a separate modified matrix
would have to be computed through a complicated linear algebra process involving matrix inversions
and matrix products, and possibly iterative. This contrasts with the current VFE scheme in which only a
simple multiplication by a constant pre-calculated matrix is performed (via the subroutine

����������	
). For

this reason, it seems that computing a modified operator which fulfills (C1) in the non-linear model, even
if technically possible and possibly beneficial, is not very realistic in terms of efficiency.
On the other hand, keeping the non-modified versions of non-linear operators is optimal for efficiency,
but the discrepancy between the linear and non-linear operators may have detrimental consequences. For
instance, if we use a terrain-following coordinate σ , we will loose the very nice property that for any
value of the surface pressure, the non-linear operators are exactly identical to their linear counterpart,
(see section 8.4). On contrary, for any value of the surface pressure, the non-linear operators will be
different from their linear counterpart.
We propose a third intermediate method to define the non-linear operators : since the dependency on the
surface pressure is achieved only through diagonal operators, we can define non-linear operators which
converge to their linear counterpart for σ coordinates.

Modified G′ operator :

Returning to (17), the linear modified operator G′∗ can be expressed as the product of the mass element
dLΠΠΠ∗ by a modified upward basic vertical operator (K−J)′ defined by :

(K−J)′ = G′∗.[dLΠΠΠ∗]−1 (45)

(dLΠΠΠ∗ is always inversible by nature). Then the non-linear modified operator G′ can be expressed as :
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G′ = (K−J)′.dLΠΠΠ (46)

Modified S′ operator :

Similarly, the linear modified operator S′∗ can be expressed as the product of the mass elements ΠΠΠ∗ and
dΠΠΠ∗ by a modified downward basic vertical operator J′ defined by :

J′ = ΠΠΠ∗.S′∗.[dΠΠΠ∗]−1 (47)

(dΠΠΠ∗ is also inversible by nature). Then the non-linear modified operator S′ can be expressed as :

S′ = ΠΠΠ−1.J′.dΠΠΠ (48)

*
* *

It can be seen that these modified non-linear operators G′ and S′ have no special reason to satisfy (C1) for
a general value of πs. In this respect, they are like the non-modified versions of these operators G and S.
However, they have the advantage on G and S that when πs tends toward π∗s , they converge toward their
modified linear counterparts G′∗ and S′∗. Moreover, for σ coordinates G′ and S′ are exactly equal to their
linear counterpart and therefore identically satisfy (C1). As a consequence, it can be seen that with this
definition, G′ and S′ depart from their (C1)-fulfilling linear counterpart only to the extent that the actual
coordinates depart from a terrain-following one, and then, only to the extent that the surface-pressure πs

departs from its reference counterpart π∗s . Finally, one of the main advantages of this proposed approach,
is that the operators J′ or (K− J)′ can be pre-computed and stored at the setup level, which makes the
computation of G′ or S′ straightforward and efficient.

8 Behaviour of current and proposed VFE schemes for regularly spaced
σ coordinates

In this section we examine the behaviour of the VFE scheme implemented in the IFS code and of the
proposed avenues for NH, in the context of a regularly spaced terrain-following coordinate. This exami-
nation mainly involves the aspects linked to the accuracy and normal modes of the scheme. A general
terrain-following σ coordinate is defined by A ≡ 0. Hence for a σ coordinate, all aspects linked to A
become trivial and will not be discussed further in this section.
In the case where the formal description η = A/π00 + B is used (as in UH04), a regularly spaced σ
coordinate means that in addition to A≡ 0 , we have B(xl)≡ η(xl)≡ (xl/L), where xl is the continuous
coordinate defined by (24). As a consequence, for a regularly spaced σ coordinate with the UH04 formal
description, we have :

Al̃ = 0 (49)

Bl̃ = (l̃/L) (50)

for 0≤ l̃ ≤ L.
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8.1 Accuracy of the K operator on the function f (η) = 1

For a continuous σ coordinate, the factor (∂B/∂η) appearing in UH04’s (2.9) simply writes :

∂B
∂η

= 1 (51)

The normalisation in (2) therefore simply involves the VFE total column integral of the uniform function
f (η) = 1. The analytical and the FD values for this integral are obviously 1 for a σ coordinate.
The Fig. 3 depicts the variations of the departure of the integral with respect to 1 for various values of
L. The departure from the analytical value is found small in the case of a regular σ coordinate, the error
being of the order of 10−8 in any cases.

25 50 75 100 125 150 175 200

1·10-8

2·10-8

3·10-8

4·10-8

5·10-8

6·10-8

7·10-8

FIG. 3 – Values of the error of the total column VFE integral of the function f (η) = 1 for a regularly spaced σ
coordinate with various values of L in [10, 200]

8.2 Accuracy of the derivative of the J operator on the analytic function f (η) = sin(6πη)

The response of the FD derivative of the integral operator J for a prescribed analytic function f (η) =

sin(6πη) is examined in UH04 for a 60 levels regular σ discretisation. The results are given in the Table
1 of UH04, but we did not succeed to reproduce them exactly. The results are given here in a more
suggestive graphical form.
The "FD-fashion" vertical derivative of the analytic integral and of the VFE integral are plotted in Fig. 4 ,
as well as the absolute error which is the difference between the two latter curves. The analytic and VFE
curves (thin solid lines) are almost undistiguishable. For clarity, the absolute error (thick dashed line) is
enlarged by a factor of 100.

10 20 30 40 50 60

-0.04
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0.04

FIG. 4 – Analytic and VFE values of the "FD-fashion" derivative of the integral of the function f (η) = sin(6πη)

(solid lines) for a regular σ coordinate with L = 60. Absolute error multiplied by 100 (thick dashed line).
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The same figure is plotted in the same format for the FD discretisation of the integral operator in Fig.
5. The FD counterpart of the J integral operator is not defined in the model but it can be defined in a
standard way by :

(J.X)l = (ηl−ηl̃−1)Xl +
l−1

∑
k=1

(ηk̃−ηk̃−1)Xk (52)

The magnitude of the error is uniformly larger for the FD operator, except near the two edges, where the
VFE discretisation results in bigger errors. The two thin solid lines are very slightly distinguishable near
the extrema of the curves of the FD response.
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0.04

FIG. 5 – Analytic and FD values of the "FD-fashion" derivative of the integral of the function f (η) = sin(6πη)

(solid lines) for a regular σ coordinate with L = 60. Absolute error multiplied by 100 (thick dashed line).

As outlined in Table 1 of UH04, the error is very small in the central part of the domain for the VFE
scheme. Similar results are found here : the mean magnitude of the absolute error in the interval [20,40] is
2.76 10−10 for the VFE scheme, while for the FD scheme it is 8.43 10−5, that is, five order of magnitude
bigger.

8.3 Accuracy of the J operator on the analytic function f (η) = sin(6πη)

The behaviour of the operator J is now diagnosed directly, and not through its FD derivative as in the
previous subsection. The VFE and analytic values are superimposed in the left panel of Fig. 6, while
the error of the VFE values multiplied by a factor of 100 is displayed in the right panel. The error level
is found significant, although almost uniform, which justifies the good results see in the previous sub-
section.
The results are shown in the same format in Fig. 7, for the standard FD vertical integral operator. The
level of the error is found of comparable magnitude than for the VFE scheme. It seems that the benefit
of the VFE scheme is rather to produce an error that is constant with height rather than a small error in
an absolute sense. The practical meaning of this latter remark is however not very clear for the author.
In particular, it is not very clear if the presentation of the results in the shape of the previous subsection
only is susceptible or not to give an over-optimistic picture of the quality of the VFE scheme compared
to the FD scheme.

8.4 Mass-weighted operators in σ coordinates

For a (regular or stretched) σ coordinate, the linear operators mass-weighted operators and their non-
linear counterpart are identical :
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FIG. 6 – Analytic and VFE values of the J operator for the function f (η) = sin(6πη) (left) for a regular σ
coordinate with L = 60. Absolute error multiplied by 100 (right).
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FIG. 7 – Analytic and FD values of the J operator for the function f (η) = sin(6πη) (left) for a regular σ coordi-
nate with L = 60. Absolute error multiplied by 100 (right).

G = G ∗ (53)

S = S ∗ (54)

N = N ∗ (55)

and these operators write :

(G X)σ =
∫ 1

σ

X
σ ′

dσ ′ (56)

(S X)σ =
1
σ

∫ σ

0
Xdσ ′ (57)

(N X)σ =
∫ 1

0
Xdσ ′ (58)

Similar formulae apply for discrete operators G, S and N for the non-modified operators :

G = G∗ (59)
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S = S∗ (60)

N = N∗ (61)

Similar properties hold for modified operators (G′ = G′∗ or S′ = S′∗) only if the non-linear operators are
also modified, as proposed above. Since we assume that non-linear operators are modified, the examina-
tion of both nonlinear and linear operators is not necessary, and it is sufficient to present the results only
for the linear operators in this section devoted to the pure regular σ coordinate.
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FIG. 8 – Analytic and VFE values of the G∗ operator for the function f (η) = 1 (left) for a regular σ coordinate
with L = 60. Absolute error multiplied by 30 (right).
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FIG. 9 – Analytic and VFE values of the G′∗ operator for the function f (η) = 1 (left) for a regular σ coordinate
with L = 60. Absolute error multiplied by 30 (right).

8.5 Accuracy of operators G∗, G′∗ on the function f (η) = 1

Still for a regular σ coordinate with L = 60, the behaviour of the G∗ operator applied to the function
f (η) = 1 is depicted in Fig. 8. The left panel shows the analytic and VFE integrals, and the right panel
shows the error multiplied by a factor of 30. The results for the operator G′∗ are depicted in Fig. 9 in the
same format.
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As expected, the responses of G∗ and G′∗ operators are identical for the function f (η) = 1, since this is
precisely the gauge condition that we have employed in order to uniquely specify G′∗. The level of the
error is quite large for this vector, with a maximum magnitude of about 0.2 at the top.
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FIG. 10 – Analytic and VFE values of the G∗ operator for the function f (η) = sin(6πη) (left) for a regular σ
coordinate with L = 60. Absolute error multiplied by 100 (right).
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FIG. 11 – Analytic and VFE values of the G′∗ operator for the function f (η) = sin(6πη) (left) for a regular σ
coordinate with L = 60. Absolute error multiplied by 100 (right).

8.6 Accuracy of operators G∗, G′∗ on the function f (η) = sin(6πη)

The comparison of operators G∗ and G′∗ is now shown for the function f (η) = sin(6πη) in Figs. 10 and
11, in the same format as previously (the errors are multplied by a factor of 100). For the operator G∗,
it is seen that the magnitude of the error is much smaller than in the previous test (maximum magnitude
about 0.0005). For G′∗, there are still large values of the error near the very top of the domain, but their
magnitude (about 0.01) is less than for the "external" mode f (η) = 1 examined previously. Inside the
domain, the error of the two operators is similar (about 0.0002).
For comparison, the response of the operator G∗ in the FD discretisation is plotted in Fig. 12. The VFE
discretisation of G∗ and G′∗ appears to be more accurate than the FD discretisation, particularly inside
the domain.
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FIG. 12 – Analytic and FD values of the G∗ operator for the function f (η) = sin(6πη) (left) for a regular σ
coordinate with L = 60. Absolute error multiplied by 100 (right).

8.7 Accuracy of S∗, S′∗ on the function f (η) = 1

Due to (42), we have S∗.1 = 1 and the error is zero to the computer accuracy for this test (figure not
shown). Eq. (42) also implies :

S′∗.1 = (G∗− I)−1.(G∗−N∗).1 = (G∗− I)−1.(G∗− I).1 = 1 (62)

and therefore, both S∗ and S′∗ have no error when applied to this vector.
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FIG. 13 – Analytic and VFE values of the S∗ operator for the function f (η) = sin(6πη) (left) for a regular σ
coordinate with L = 60. Absolute error multiplied by 10 (right).

8.8 Accuracy of S∗, S′∗ on the function f (η) = sin(6πη)

The analytical value of (S∗) and its VFE counterpart are depicted in Fig. 13 (left panel) for the function
f (η) = sin(6πη). The error is depicted on the right panel, multiplied by a factor of 10. The maximum
error is located near the top of the domain, where the analytical and discrete curves slightly depart
visually in the left panel.
The same fields are depicted in Fig. 14, but for the operator S′∗. The error appears to be of similar
magnitude, except near the top, where the magnitude is twice bigger.
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FIG. 14 – Analytic and VFE values of the S′∗ operator for the function f (η) = sin(6πη) (left) for a regular σ
coordinate with L = 60. Absolute error multiplied by 10 (right).
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FIG. 15 – Analytic and FD values of the S∗ operator for the function f (η) = sin(6πη) (left) for a regular σ
coordinate with L = 60. Absolute error multiplied by 10 (right).

For comparisons, the same fields are depicted in Fig. 15, but for the FD version of the operator S∗. Here,
in opposition to the previous results for the G∗ operator, the error appears here to be of similar magnitude
than for the VFE operators.

8.9 Eigenvalues and eigenmodes of mass-weighted operators

The examination of the eigenmodes of S∗ or G∗ seems to be not very interesting because the eigenspaces
of the continuous counterparts of these operators are very vast. These individual operators are not directly
involved in modes propagation and thus their eigenmodes have no immediate physical meaning.
On the other hand, the eigenmodes of the ΓΓΓ∗ operator have a physical meaning, at least for the HPE
model. However, the study of the eigenmodes of these operators is not very interesting in view of the NH
model, because the normal modes of the NH model are given by those of the vertical Laplacian operator
and not by those of ΓΓΓ∗. Nevertheless, for the completeness of the information, the eigenmodes of ΓΓΓ∗, ΓΓΓ∗S′
and ΓΓΓ∗G′ are presented here.
The eigenmodes of the continuous counterpart of ΓΓΓ∗, can be computed directly. They write :
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FIG. 16 – Eigenvectors of ΓΓΓ∗, ΓΓΓ∗S′ and ΓΓΓ∗G′ operators for the mode number 50, for a regular σ coordinate with
L = 60.

X(σ) = X0σ−1/2
[

ν cos(iν lnσ)− Cv−R
Cp

sin(iν lnσ)

]
with X0 ∈ IR and ν ∈ IR+ (63)

The eigenvalue associated to the eigenmode with ν in the above formula is :

λ =
R

Cp

1
ν2 + 1/4

(64)

The continuous and the discrete eigenvectors of ΓΓΓ∗, ΓΓΓ∗S′ and ΓΓΓ∗G′ are shown in Fig. 16 for the discrete
mode number 50. The continuous mode has been chosen so to have roughly the same wavelength at the
bottom of the domain, where it is well resolved. The vertical wavelength of the continuous normal mode
in σ coordinate decreases toward zero with height, while its magnitude increases due to the decrease of
density with height.
It is seen that when the vertical resolution becomes insufficient, the amplitude of discrete modes vanishes,
which means that the mode is no longer described in this area. This behaviour is characteristic of variable-
resolution systems : it means that when a component penetrates in an area with a mesh poorer than its
wavelength, this component is subjected to a complete internal reflection toward the well-resolved area.
Compared to the continuous behaviour, such a normal-mode structure therefore means that a false reflec-
tion occurs at this location. It must be outlined that other discretisations may have another "reaction" with
respect to the problem of impinging component into a non-resolved area : it is sometimes observed that
the modes are not vanishing in the non-resolved area. This, in turn, means that an impinging component
will be transmitted in the non-resolved area, but with the smallest resolved wavelength, that is, it will
be transmitted in a distorted fashion. We see that variable resolution models are doomed to suffer from
either false internal reflection, or erroneously distorted transmission when waves are impinging into a
non-resolved area. The author does not want to express his support for one of these two drawbacks or for
the other. An example of erroneous distorted transmission can be seen for the vertical modes of the finite
difference discretisation, in UH04’ Figs. 6 and 7.
Nevertheles, for the depicted mode index, there are no dramatic differences in the vertical structure of
the eigenvectors between the operators ΓΓΓ∗, ΓΓΓ∗S′ and ΓΓΓ∗G′ . The same result holds for other mode indexes
(not shown).
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An noticeable feature is that whilst ΓΓΓ∗G′ and ΓΓΓ∗ have real positive spectra, the operator ΓΓΓ∗S′ exhibits com-
plex eigenvalues. This means that S′∗ could not be used for the HPE model because of the instability
of the linear system. The instability is found be weak : the maximum imaginary part is 10−7 and the
maximum eigenvalue is 1.38. However, the ΓΓΓ∗ operator is not used in the NH model, and the complexity
of the spectrum of ΓΓΓ∗S′ is not redhibitory in itself.

9 Behaviour of current and proposed VFE schemes with NWP-type coor-
dinates

The study of the behaviour of the VFE for regular σ coordinates is relevant in order to understand the
theoretical properties of the scheme, but is also restrictive in the sense that these coordinates do not reflect
well the kind of coordinates used in NWP models. Hence, we focus in this section on the behaviour of
the scheme for the current disposition of the 60 hybrid-coordinate levels of the ECMWF discretisation.
As mentionned above, since the analytical description of the coordinate is not known, the comparison of
vertical operators to their analytical counterpart is possible only in the case where πs = π00. This latter
condition is therefore assumed in the remaining of this section.
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FIG. 17 – Analytic and VFE values of the G∗ operator for the function f (η) = sin(6πη) (left) for the ECMWF
coordinate with L = 60. Absolute error multiplied by 100 (right).

9.1 Accuracy of G∗, G′∗ on the function f (η) = sin(6πη)

The response of the operators G∗, G′∗ for the function f (η) = sin(6πη) are depicted in Figs. 17 and 18
respectively. The errors are multiplied by a factor of 100. The error exhibits a very similar structure and
magnitude. For comparison, the response of the FD version of the G∗ operator is depicted in Fig. 19. The
error is much bigger than for the VFE operators.

9.2 Accuracy of S∗, S′∗ on the function f (η) = sin(6πη)

The response of the operators S∗, S′∗ for the function f (η) = sin(6πη) are depicted in Figs. 20 and 21
respectively. The errors are multiplied by a factor of 10. The error for S′∗ has a larger magnitude than for
S∗ near the top. For comparison, the response of the FD version of the S∗ operator is depicted in Fig. 22.
The error is much bigger than for both of the previous VFE operators in the inner domain, however, it
should be noted that the magnitude of the error near the top is much smaller than for VFE operators.
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FIG. 18 – Analytic and VFE values of the G′∗ operator for the function f (η) = sin(6πη) (left) for the ECMWF
coordinate with L = 60. Absolute error multiplied by 100 (right).
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FIG. 19 – Analytic and FD values of the G∗ operator for the function f (η) = sin(6πη) (left) for the ECMWF
coordinate with L = 60. Absolute error multiplied by 100 (right).

9.3 Eigenmodes of mass-weighted operators

The structure of the eigenvector with the mode index 50 is depicted in Fig. 23 for the analytic operator and
for the VFE operators ΓΓΓ∗, ΓΓΓ∗S′ and ΓΓΓ∗G′ . In opposition to the results obtained with a regular σ coordinate,
the modes for the operator ΓΓΓ∗G′ appear to be significantly different from the modes of ΓΓΓ∗ and ΓΓΓ∗S′ . The
amplitude of the mode does no longer vanish in the not-resolved part of the domain, but on contrary
increases dramatically. This behaviour is similar to the one observed with the FD Lorenz discretisation,
and its "physical" meaning has been discussed above.

As for the regular σ coordinate, it is noticeable that the spectrum of the ΓΓΓ∗S′ operator is found to be
complex. The resulting instability for a use in a HPE model is probably still weak, since the maximum
eigenvalue imaginary part is 0.0001 while the maximum eigenvalue of the operator is 1.40. Once again
this feature is not redhibitory in itself for the use in the NH model.
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FIG. 20 – Analytic and VFE values of the S∗ operator for the function f (η) = sin(6πη) (left) for the ECMWF
coordinate with L = 60. Absolute error multiplied by 10 (right).
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FIG. 21 – Analytic and VFE values of the S′∗ operator for the function f (η) = sin(6πη) (left) for the ECMWF
coordinate with L = 60. Absolute error multiplied by 10 (right).

9.4 Synthesis of sections 8 and 9

The design of the NH SI version in its current general design imposes the fulfilment of the constraint
(C1). Since a general redefinition of the solution of the implicit problem and the use of a modified N′∗

operators have been eliminated, a choice between the use of the modified G′∗ and S′∗ must be made.
For NWP-type coordinates, the accuracy of the modified G′∗ operator seems to be very close from the
one of the original operator G∗. The relative accuracy of G′∗ compared to G∗ is slightly worse for regular
coordinates, but in any case G′∗ is much closer from G∗ than from its FD counterpart. The spectrum of
the HPE SI operator ΓΓΓ∗G′ obtained using G′∗ is very similar to its original counterpart ΓΓΓ∗. The vertical
structure of the eigenmodes of the ΓΓΓ∗G′ operator is not vanishing in non-resolved areas, however, this
feature should not be detrimental in practice for the NH model since the normal modes of the NH model
are not related to those of the ΓΓΓ∗G′ operator but to those of the vertical Laplacian operator L∗ (defined
below).
For regular and for NWP-type coordinates, the relative accuracy of the S′∗ operator compared to the
one of S∗ seems to be roughly the same as for the G operators examined above. The structure of the
eigenmodes of ΓΓΓ∗ and ΓΓΓ∗S′ is very similar, but the spectrum of ΓΓΓ∗S′ contains complex eigenvalues. However,
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FIG. 22 – Analytic and FD values of the S∗ operator for the function f (η) = sin(6πη) (left) for the ECMWF
coordinate with L = 60. Absolute error multiplied by 10 (right).
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FIG. 23 – Eigenvectors of ΓΓΓ∗, ΓΓΓ∗S′ and ΓΓΓ∗G′ operators for the mode number 50, for the current ECMWF coordinate
with L = 60.

this latter feature should not be detrimental in practice for similar reasons as above.

Finally, at this stage the relative advantage of choosing G′∗ or S′∗ as modified operator to fulfill the
constraint (C1) is not very clear and they will be kept as potential candidates in the following. However,
it is clear that these modified operators are not convenient for HPE modelling because they lead to either
unstable eigenmodes (for S′∗), or to noisy eigenmodes near the top (for G′∗).

10 Possible avenues for the extension of the VFE to the NH model : non-
hydrostatic operators

10.1 Constraint (C2)

In the NH model, in addition to the classical vertical integral operators already present in the HPE mo-
del, a so-called vertical "Laplacian" appears in the equation of the vertical momentum. This operator is
applied to the nonhydrostatic pressure departure.

26



When forming the Helmholtz structure equation in the semi-implicit scheme of the NH model, a constraint
appears in addition to the constraint (C1) encountered previously. The new constraint (C2) links this ver-
tical "Laplacian" operator to the mass-weighted vertical operators. In the continuous case, this constraint
(C2) is an identity which writes :

L .

[
S .G −Cp

Cv
(S +G )

]
=

(
R
Cv

)
I (65)

where L is the vertical so-called "Laplacian" operator defined by :

L .X =

(
1 + π

∂
∂π

)(
π

∂X
∂π

)
(66)

In the discrete context, this constraint (C2) writes :

L∗.
[

S∗.G∗− Cp

Cv
(S∗+ G∗)

]
≡ L∗.A∗2 =

(
R
Cv

)
I (67)

However, it is important to note that in opposition to (C1), the constraint (C2) does not need to be
fulfilled exactly. The reason is that this constraint is not directly involved in the algebraic feasability
of the SI scheme. The SI scheme of the NH model can perfectly be built even if (C2) is not fulfilled, or
"partly" fulfilled. In this sense, the constraint (C2) is weaker than the constraint (C1). Since the constraint
(C2) is not absolutely necessary, it can be "degenerated" into weaker properties that are interesting to be
fulfilled even if the full constraint is not exactly fulfilled. The minimal sub-property of (C2) that should
be fulfilled in any case is :

(C’2) : L∗.A∗2 has only real positive eigenvalues

If this property was not fullfilled, the space-discretised structure equation would have complex or ne-
gative coefficients for some eigenmodes, and hence, these eigenmodes would be exponentially growing
with time.

In a practical way, once the mass-weighted hydrostatic integral operators are chosen, the constraint (C2)
acts on the choice of the discrete "Laplacian" operator L∗. However, the main difficulty is that L∗ must
be defined in such a way that both −L∗ and L∗.A∗2 have purely real and positive spectra. Otherwise the
linear model itself will become unstable, because it will have normal modes with complex frequencies.
Several types of strategies can then be examined with respect to (C2) :

(i) Define the L∗ operator in a pure VFE fashion, virtually ignoring the constraint (C2). The main
risk is then that the minimal sub-constraint (C’2) is not fulfilled.

(ii) Define the discrete "Laplacian" operator directly from operators G∗, S∗ in order that (C2) is
exactly fulfilled. In this case L∗ is simply defined by inverting (C2).

(iii) Define the L∗ operator in a pure FD fashion, virtually ignoring the constraint (C2). The risk is
then that the minimal sub-constraint (C’2) is not fulfilled.

(iv) Define the discrete "Laplacian" operator independently of operators G∗, S∗, but in such a way
that (C’2) is fulfilled.

(v) other unexplored options...
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10.2 Defining the L∗ operator in a pure VFE fashion

In this option, a VFE approach as in UH04 would be chosen to define the operator L∗ from a pure
mathematically-based VFE fashion. This is expected to result in an optimal accuracy for the discrete mo-
del. However, there is no guarantee that the sub-constraint (C’2) will be fulfilled. The problems already
encountered with the operator ΓΓΓ (see section 3) obviously imply that this approach must to be considered
with some circumspection. It is also possible that the problem may have a solution if some deeper care
is taken about the boundary conditions of the VFE scheme. The assumption of a vanishing derivative
imposed at the two edges of the domain is maybe not optimal for defining a Laplacian operator since this
latter will have a discontinuous response for functions with non-vanishing derivatives at the edges.
In a lesser extent, there is also a risk that that the spectrum of L∗ is not real negative, but this is the
problem of the definition of L∗ itself.
Nevertheless, this option implies a significant amount of scientific work without a clear estimation of
its relevance for practical modelling. Consequently, this option is not examined further in the following
of this paper, which is devoted to preliminary examinations only. However, an happy result cannot be
excluded a priori , and Météo-France is ready to examine the behaviour of the discretisation obtained
with this option if a sketch for the design of L∗ defined through a VFE technique is provided by ECMWF.

10.3 Defining the L∗ from G∗, S∗ to fulfill (C2)

This option basically consists into inverting (C2) to define the discrete Laplacian operator. Two ap-
proaches may be distinguished. The operator L∗ could be defined by (i) just inverting the discrete
constraint (C2) or (ii) by discretising a readily inverted version of the continuous (C2) constraint. These
two approaches are examined here.

(i) Inverting the discrete constraint (C2)

The discrete operator A2 is found to be inversible, therefore, in principle the discrete constraint (C2) can
be directly inverted. Following this approach, the L∗ operator would be defined by :

L∗G′∗ =

(
Cv

R

)[
S∗.G′∗− Cp

Cv
(S∗+ G′∗)

]−1

(68)

or :

L∗S′∗ =

(
Cv

R

)[
S′∗.G∗− Cp

Cv
(S′∗+ G∗)

]−1

(69)

The main advantage of this approach is that the full constraint (C2) itself is fullfilled, and the eigenvalues
of L∗.A∗2 are all real positive [they are in fact all equal to (R/Cv)], hence the eigenmodes of the model
are not likely to be intrinsically unstable.
However, there is no formal guarantee that the operator L∗ obtained in this way will have a real negative
spectrum. Indeed the L∗S′∗ seems to always have a complex spectrum and is not useable. On the other hand,
L∗G′∗ seems to have a negative real spectrum and hence remains a candidate for further examination.
Unfortunately, it seems that this definition of L∗G′∗ results in a very unaccurate operator. As an illustration,
the response of L∗G′∗ applied to the function f (η) = sin(6πη) is depicted in Fig. 24. The result obtained
with the FD version of the L∗ operator, although maybe not optimally accurate, is also depicted for
reference.
The signal is clear : the Laplacian operator defined by inverting the discrete (C2) produces a very noisy
result. This seems to be incompatible with a practical use in a model. It should be noted that this noise
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FIG. 24 – Response of the L∗G′∗ operator applied to the function f (η) = sin(6πη), for the ECMWF coordinate
L = 60. The response of the FD version of the L∗ operator (smooth curve) is superimposed for reference.

is not present for functions which have a vanishing Laplacian at the bottom of the domain. This noise
problem is maybe linked to the fact that (C2) is inversible in its discrete version but not directly in its
continuous version.

We propose to abandon this option.

(ii) Inverting a readily inverted version of the continuous constraint (C2)

In the continuous context, the vertical "Laplacian" operator L can be defined in a unique and unambi-
guous way by inverting integral operators such as G or S (see Appendix 2). This property could be used
to define the L∗ operator in the discrete context by using the discrete version of this inverse operator. We
then can define new Laplacian operators by :

L∗G′∗ =

(
Cv

R

)[
S∗.G′∗−Cp

Cv
(S∗+ G′∗)

]−1

.C (70)

or :

L∗S′∗ =

(
Cv

R

)[
S′∗.G∗−Cp

Cv
(S′∗+ G∗)

]−1

.C (71)

The response of the operators defined in such a way becomes accurate, as can be seen in Fig. 25. Mo-
reover, the constraint (C2) is fulfiled because the eigenvalues of the C operator are all one or zero.
Unfortunately, the spectrum of both operators L∗G′∗ and L∗S′∗ is found to be clearly non-real : for L∗G′∗ ,
the maximum imaginary part is about 113000, while for L∗S′∗ it is about 63000, to be compared with
maximum eigenvalue modules of 198000 and 146000 respectively. Such large imaginary parts are not
compatible with a practical useage.

*
* *

We see that we have lost with the second approach (ii) what we have won with the first (i) : the simul-
taneous fulfilment of accurate response and real spectrum does not seem to be reachable using these
approaches. They are consequently abandoned here as a dead-end for time being, unless new ideas are
proposed.
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FIG. 25 – Response of the L∗G′∗ and L∗S′∗ operator applied to the function f (η) = sin(6πη), for the ECMWF
coordinate L = 60. The response of the FD version of the L∗ operator is superimposed for reference.

10.4 Defining the L∗ operator in a pure FD fashion

This possibility was suggested initially because of its extreme simplicity (the amount of code changes
for running the NH model would be minimal). The advantage of this option is that the behaviour of the
L∗ operator is well known and well controlled : in particular it is known that the resulting normal modes
have a very simple and robust vertical structure, with clear vanishing amplitude in non-resolved areas.
The disadvantage of this option is that the discrete operator L∗ remains in its FD form, thus leading to a
less accurate model than with a full VFE discretisation for the term involved with this operator.
Another disadvantage is that with this option, there is no guarantee that the eigenvalues of L∗.A∗2 are
real : in effect, when using S′∗, the constraint (C’2) is always found to be violated, and the option is thus
not relevant. When using G′∗ however , the option seems to be applicable, but not always. From this
point of view, the situation is not very clear : for regular distributions of levels, this option seems to be
always relevant, and the failures are observed only for stretched coordinates. For some sets of stretched
A, B values, the eigenvalues are found real and positive, while for other choices, some eigenvalues have
a small imaginary part, thus preventing the use of this technique for this particular set. These failures
are reminiscent of what already occured for the HPE system, in which the SI operator sometimes had a
complex spectrum, but here the failure is observed for a wider set of A, B values : for instance the 60
current levels distribution of the ECMWF model leads to a violation of (C’2). It seems that a violation of
the (C’2) constraint arises when the logarithmic depth δη/η exhibits some "jumps" near the uppermost
levels of the domain altogether with a high pressure resolution. However, it seems that it is always
possible to modify a set of A, B values slightly in order that (C’2) becomes fulfilled, as it was in the
hydrostatic case.
We don’t know what to conclude about this option, since, as in the HPE case but more severely, it seems
viable for some sets A, B, but not for some other ones. Maybe this option should be retained for a fast
testing, facing the apparent impasse of all the other proposed options.
However, we would not recommand to retain this technique in view of long-term future NH-VFE mo-
delling, unless the causes of the failure are better understood and possibly remedied.

10.5 Defining the L∗ in order to fulfill (C’2), and other options

The author does not see clearly how to proceed in these two last alternative options, and leave these
possibilities opened in case of any welcome suggestion.
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10.6 Non-linear version of the "Laplacian" operator

The non-linear counterpart L of the linear operator L∗ is present in the set of equations of the NH model,
for the vertical momentum equation, where it is applied to the nonhydrostatic pressure field.
Similarly to what occured for the (C1) constraint, the (C2) constraint and more specifically the minimal
sub-constraint (C’2) does not formally need to be fulfilled for the non-linear model. However a too big
discrepancy between the linear operators and their non-linear version is risky, in presence of non-linear
explicit residuals.
For the only option valid so far, the non-linear version of the Laplacian operator is defined naturally by
simply replacing the reference-state surface-pressure by the actual surface pressure.

11 Synthesis of previous sections

At this stage, only one set of operators fulfilling all the constraints of the exercise has been found. All the
other possible avenues examined has been eliminated either because they violate one of the constraints,
or because they are difficult to evaluate without some further scientific work. It must be strongly outlined
that the possible avenues which have been eliminated so far should not be viewed as definitely eliminated.
In effect, further discussions may demonstrate that one or the other of these eliminated approaches is in
fact a good approach, but which can be implemented in a better way. Initiating this kind of discussions
is also one of the aims of this paper.
The results found in this study can be sumarized as follows :

• The current VFE scheme of the HPE IFS model is not optimally robust, and sometimes leads to
an unstable linear system, when a robust model would be expected.

——–

Strategies for (C1)

——–

•A strategy with two coupled variables (instead of one) in the implicit problem has not been inves-
tigated here, because it was judged as too far from the current architecture of IFS/ARPEGE/Aladin
codes. However, this avenue could be an interesting one for our problem.

• Options implying a redefinition of the operator N∗ in order to fulfil (C1) have been abandoned
because they lead to a 3D variable for πs, which means deep code changes.

• For the fulfillment of (C1), the only strategies that were examined were through a redefinition of
either the G∗ or the S∗ operator. It was found that both possibilities were relevant for the fulfillment
of (C1).

• For fulfilling (C1), other strategies might be possible (as defining a VFE scheme taking into
account this constraint ab initio), but, as fully scientific issues, they were not examined here.

——–

Strategies for (C2)

——–

• For (C2), all strategies based on the inversion of the operator A∗2 to define the operator L∗ led to
a failure : either the resulting operator L∗ is inaccurate, or one of the two operators (L∗, L∗.A∗2)

has a complex spectrum.
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• The only possibility found so far to fulfil (C2) while having real spectra for (L∗, L∗.A∗2), was
to keep the L∗ operator under its current FD form, thus sacrificing a bit the accuracy. It must be
admitted in addition that for this strategy, the robustness has also a further degradation compared
to the starting point of the HPE VFE scheme.

• As for (C1), alternative strategies consisting in a definition of a VFE scheme taking into ac-
count this constraint (C2) ab initio have not been examined. However, we totally miss a practical
guideline for such strategies.

12 Conclusions

The aim of the present paper was to examine some of the most obvious possibilities for extending the
SI-VFE discretisation from the current HPE system to the NH system in ARPEGE/IFS. It is found that
most of the obvious options examined are unlikely to work in practice. The reason is that it is quite
difficult to simultaneously satisfy the constraints of feasability of the algebraic elimination, accuracy,
and stability of the linear system (through its eigenmodes). These constraints are much more stringent
for a NH model in Euler Equation than for an HPE model, because more spatial operators are involved
and especially because these operators interact in a much more intricated way.
Among the possibilities examined in this paper, only one has been found to be potentially operative,
although in a not totally optimal way : it slightly sacrifices the accuracy for achieving the feasability of
the SI scheme and the stability of the linear system. This possibility combines the use of VFE integral
operators and a potentially less accurate FD "Laplacian" operator. This possibility also has the disadvan-
tage to be even more subject to the "complex spectrum problem" than the current HPE version of the
VFE scheme.
Moreover, it must be outlined that the present study allow to conclude only for the stability of the linear
reference system used in the SI scheme, but the stability of the scheme in presence of non-linear terms is
far from being automatic for the Euler Equations system (B., 2003, B. et al., 2004, B., 2004a, B. et al.,
2005).
The further step in the evaluation of the potential candidate for the VFE scheme, is the study of the
stability of the SI scheme in presence of non-linear terms. The technics for this study is well-controlled,
but represents a significant amount of work and computations. Since the proposed candidate is not fully
optimal regarding every aspects, it would be preferable to reach a consensus between ECMWF and
Météo-France about the relevance of pursuing the evaluation task for this candidate, prior to undertake it
effectively.
If a further evaluation of the not fully optimal proposal is not retained, possible alternatives are :

- try to produce better proposals still keeping the same strategy (algebraic elimination for the
Helmholtz equation, VFE scheme designed as a NH extension of the existing HPE one). In this
avenue, the most direct idea would be to define the Laplacian operator directly in a VFE fashion,
independently of the constraint (C2). Of course, the minimal requirement for such an approach
is that the discretised operator L∗ has all its eigenvalues real and negative. The main risk of this
approach is that the eigenvalues of L∗.A∗2 may not be all real and positive. Since it seems difficult
to predict the spectrum of an operator defined in a VFE way, we cannot estimate, at this stage, the
chances of success of this approach.

- relax the current SI strategy (Helmholtz equation for a single variable) and explore SI strategies
with two coupled implicit equations. The constraint (C1) then formally disappears. This approach
is quite new from the point of view of both ECMWF and Météo-France practice, and also for the
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circle of NWP centers, but is maybe interesting. It is difficult to estimate to which extent it can be
pursued as far as a viable practical application.

- try to think the NH-VFE scheme as a totally new one, which takes into account from the beginning
the fact that numerous constraints have to be fulfilled. This approach would be the most logical
one, but the author does not see how to apply it from the practical point of view.

All these alternative strategies imply deeper scientific and fully original work. Therefore it is difficult to
predict the effort in time and human power needed to acomplish them, and it is also difficult to evaluate
the chances of success of such endeavours. It must be outlined here that, to the knowledge of the author,
the task of building a SI-NH-VFE atmospheric model has not been undertaken anywhere previously. It
is noticeable that the "Canadian school" which since a long time is a leader of first class in the field of SI
schemes, NH models and VFE schemes has never tried to push the combination of these three elements
toward a practical application.
Therefore we prefer let ECMWF examine the content of this paper, and let them make their opinion
about the best strategy to follow, instead of engaging ourselves in a way which would not be consensual.
Of course, any request for additional diagnosis or information from ECMWF will be kindly answered, if
possible.
From the point of view of Météo-France, things are maybe easier, since a use of the combination FD-
NH-SI for the global stretched application would not come up against any significant obstacle.
A possible plan for short term work could be implement first a FD-SI-NH version of the global model,
for testing. Then implement the proposed solution for the extension of VFE to the NH kernel (of course
only if the stability in presence of non-linear terms is confirmed by analyses). Then the scientific work
for seraching better VFE operators could be pursued in parallel.
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Appendix 1 : Defining G ′ from (C1) in the continuous context

We will now show that in the continuous context, the set of solutions G ′ satisfying (C1) is a one dimen-
sion space. Since this space obviously contains the original G operator, we can say that G is the element
of the solutions of (C1) which satisfies an additional property insuring its physical meaning, to be deter-
mined. Then this approach can be translated in the discrete context to determine a priviledged operator
G′ satisfying (C1) together with an additional property insuring its physical meaning.
In the continuous context, we first show that there is one and only one operator M such as

M .S = M (72)

All operators are assumed to act on the set of regular (indefinitely differentiable) functions in [0,1], that
is noted Ω. For convenience, we define for any r in IR+, the function νr pertaining to Ω by :

νr : x −→ xr (73)

[0,1] −→ [0,1] (74)

and the function [0] is the null function in Ω. We define an operator M by :

M : f −→ M . f = f (0)ν0

Ω −→ Ω (75)

in other words, ∀ f ∈Ω, and ∀x ∈ [0,1] :

[M . f ](x) = f (0) (76)

M satisfies (72) because ∀ f ∈Ω, and ∀x ∈ [0,1] :

[M .S . f ](x) = [S . f ](0) = limx→0+(1/x)
∫ x

0
f (x′)dx′ = f (0) = [M . f ](x) (77)

Hence we have found an operator M satisfying (72). We now want to demonstrate its unicity. We notice
that :

S .νr = 1/(r + 1)νr for r > 0 (78)

S .ν0 = ν0 (79)

therefore if M satisfies (72),

M .S .νr = [0] for r > 0 (80)

M .S .ν0 = ν0 (81)

Now, any function f in Ω, can be written as a Taylor expansion :

f = ∑
i

1
i!

di f
dxi (0)νi (82)
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and therefore, if M satisfies (72) :

M . f = M .S . f = ∑
i

1
i!

di f
dxi (0)M .S .νi = f (0)ν0 (83)

This demonstrate the existence and unicity of M satisfying (72 ) and defined by (75). Then if we have
two operators G and G ′ statisfying (C1), we have :

(G ′−G ) = (G ′−G ).S (84)

and therefore :

G ′ = G + αM (85)

Among all the solution obtained by inverting (C1), we can then choose G ′ as the operator which is
physically meaningfull, that is, the one which satisfies an additional physical constraint such as e.g. :

G ′.ν0 = G .ν0 (86)

which is referred to as the "gauge" condition in the text.
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Appendix 2 : Defining L from (C2) in the continuous context

In this section we show that for a given function f (η), we can define L . f uniquely by mean of the
operator A2, defined by :

A2 =

[
S .G − Cp

Cv
(S +G )

]
(87)

First, we notice that for a given function f (η), the equation :

A2.F(η) = f (η)−C0 (88)

where F(η) is an unknown function and C0 is an unknown number, admits one and only one solution,
which is given by :

F(η) =
CV

R

[
η2 f ′′(η)+ 2η f ′(η)

]
(89)

C0 =
CV

R

(
f (1)+ f ′(1)

]
(90)

As a consequence, the operator A2 is inversible in the space of functions f̃ defined in [0,1] such as
f̃ (1)+ f̃ ′(1) = 0, because in this space, there is one and only one function F such as A2.F(η) = f (η).
Considering this fact, we can define a linear operator C which transforms any function f defined in [0,1]

to the function f̃ defined in [0,1] by

[C . f ](η) = f̃ (η) = f (η)− [ f (1)+ f ′(1)] (91)

Then we can uniquely define the L operator by :

L =
R
Cv

A −1
2 .C (92)

In effect, for any given function f (η) :

L . f = L . f̃ = L .A2.A
−1

2 . f̃ =

(
R
Cv

)
A −1

2 . f̃ ≡
(

R
Cv

)
A −1

2 .C . f (93)

The first equality is due to the fact that ( f − f̃ ) is a constant function, the second one is due to the fact
that A2 is inversible in the considered sub-space, and the third is due to (C2). This property can be used
in the discrete context.
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