Coding standards
for

Arpege/IFS/Aladin

R. El Khatib
METEO-FRANCE - CNRM/GMAP

November 19, 2003

Introduction

NWP software, which is often used for both operations and research, aims to be homogenous,
portable, modifiable and maintained with much flexibility and ease.

This represents a lot of constraints, to be shared by all participants of the ARPEGE/IFS and
ARPEGE/ALADIN projects, and even more when cross-collaborations with other projects are in-

cluded.

While the computing environment of the ARPEGE/IFs software was originally a shared-memory,
multi-processor vector machine, things have changed so that the computing environment is much
wider: ranging from a single workstation to a cluster of high performance servers: scalar or vector
processors, distributed memory or partially shared memory machines.

Last but not least, scientific and technical developments provide a strong justification for a
perpetual evolution of the codes in order for the software to perform optimially, and this should
be achieved using a minimum of time and human resources.

All these requirements need a set of agreed coding standards, that will be used by all participants
of the project.

First of all we have to choose a language. But it is not enough to “just code in the same
language”. There are many ways to write the same program. Though different styles can give
the same numerical result, they would not be equivalent once we consider further criteria telling
that the software should be:

well studied and well analysed

- well written (... but what does it means?!)
- properly documented

- portable

- efficient

- flexible

- possibly exchangeable

For a long time the best solution to achieve this was to use the so-called “DOCTOR norm”
(DOCumentary ORiented norm) by J. K. Gibson from ECMWEF. Time has proven its efficiency.
Then the evolution of machines and languages as well as the increase of European collaborations
has lead us to modify or extend the original norms. A European standard has been developed
in order to facilitate the exchanges of code between meteorological organizations.

We can point out a few aspects of these norms:

e The existence of comments and especially comments at the start of each routine. Those
concerning the modifications appear to be very useful to trace the history of the code. How-
ever, the 3-level structure to enable an automatic extraction of the comments never seems to
have been used. Nevertheless an automatic extractor to document the ARPEGE/1FS /ALADIN
namelist variables now exists.

e The structure in sections and sub-sections with homogenous labels improve the readability
of the code, which is even more important than the norm itself.

e The convention of prefixes in order to rapidly identify the type (integer, real ...) and
the nature (local or shared, dummy or not, ...) of the variables appeared to be the most
popular aspect of the norm.

This document aims to collect all the conventions and customs used in the ARPEGE/IFS/ALADIN
software. Hopefully it could be the starting point to code an automatic verificator of the norm.
Finally only the norms tested in this automatic verificator would be the official norms while
the others would be just recommendations. Developers should be aware that some rules could
cause a lot of merging problems, especially where the same lines have been re-shuffled by more
than one developers. Therefore we would not advocate to have all the standards systematically
enforced by an automatic corrector.

In this document each item is referenced by a label composed of a topic and a number. There
are four defined topics :

PRES for the presentation of the code,
NORM for the respect of the norm,
CTRL for the control of the code,

CCPT for the conception of the code.

This document is supposed to reflect the status of cycle 28 of the ARPEGE/1FS/ALADIN software.

Acknowledgements

Many thanks to Frangois Bouttier, Claude Fischer, Mats Hamrud, Deborah Salmond, Eric Se-
vault, Yannick Tremolet and Karim Yessad for re-reading this document and fixing its “bugs”,
and for their interesting advice all over.

Contents

1 Specifications

1.1 Documentation e
1.2 Code concepltion e e
1.3 Code validation and maintenance Lo o o
1.4 Current code framework L Lo
Design
2.1 Typewriting style o o L e
2.2 Basiclayout e e
2.2.1 Executable statements L Lo oo
222 Comments oL e e
2.2.3 Entry point and exit points oL oo
2.3 Header comments L oL e e e e
2.3.1 Datamodules L
2.3.2 Procedures
2.4 Declaring variables oL
241 Layout e e
242 Kinds ...
2.4.3 Specifications for data moduleso o000
2.4.4 Specifications for procedures Lo 0oL
2.4.5 DOCTOR naming conventions
2.4.6 Further naming conventions
2.5 General coding norms L. Lo
2.5.1 Section comments and supplementary comments
2.5.2 Banned features
2.5.3 Loops
2.5.4 Conditional blocks o o
2.5.5 Linebreaking L
2.5.6 Dynamic memory Usage o it e e e e e
2.5.7 Symbolic comparison operatorso oo e L
2.5.8 Fortran 90 intrinsic functions and procedures
2.5.9 Fortran 90 array syntaxo
2.5.10 Dummy and actual arguments. L
2.6 Specific coding norms L. Lo
2.6.1 Naming modules, procedures, namelists and derived types
2.6.2 Error handling
2.6.3 “Hook” function L
2.6.4 Handling universal constants,
2.6.5 Purpose and usage of the key LECMWF

o © e w

2.6.6 Purpose and usage of the key LELAM 31

2.6.7 Purpose and usage of the key LRPLANE 31

2.6.8 Model settings L 31

2.6.9 Output mesSsages it e e e e e 31

26.10 I/Orawdata 32

2.6.11 Message passing interface o 32

3 Source code management 34
Index 40

List of Figures

2.1 Examples of entry/exit points and errors handling. 14
2.2 Example of datamodules. o o o 15
2.3 Example of header documentation and variables declarations in a procedure. . . . 17
2.4 Conventional kind parameters for integers and reals. 18
2.5 Naming conventions. e 19
2.6 Example of local versus global variables. 20
2.7 Example of computations in a procedure.o 000 23
2.8 Fortran 90 specific comparison operators. oL 24
2.9 Some of the predefined functions or procedures specific to Fortran 90 25
2.10 Example of dummy arguments handling 28
2.11 Conventional prefixes and suffixes. o 0oL 29

Chapter 1

Specifications

A well-thought out program is less difficult to code, produces fewer bugs and is often easier
to maintain. So it is essential to specify the work with care. Three important aspects should
be considered: the documentation, the code conception and its further enhancements, the code
validation and maintenance.

1.1 Documentation

Documentation is essential: modification and maintenance will be much easier if everyone can
understand not only the code, but also the design spirit behind the code. When changing the
code the documentation should be updated immediately to avoid misunderstandings.

For the international cooperation to work, the documentation should be written in English.

There should be two kinds of documentation:

An external documentation which will be provided for a package of subroutines rather than
an individual one. It should be written outside the code and divided into three parts':

1. Scientific documentalion describing the scientific aspects of the problem and the solution
adopted in the current software. This documentation should not refer to the code
itself.

2. Technical documentation describing the implementation of the solution adopted in the sci-
entific documentation. This documentation should include a calling tree and a description
(name, purpose) of all the modules which are used (subroutines, functions, data modules).
This documentation should take over from the scientific one when technical aspects are con-
cerned. Information for testing, modifying and maintaining the code should be included
inside such documentation.

3. A users guitde describing the user interface, switches and tunable variables of the software
(access, default values and range).

Internal documentation which should be provided for individual modules (data modules or
procedures). This documentation can be divided into three categories:

1. Header comments stating briefly the purpose of the module, the author, references to
external documentation, list of modifications (author and purpose) since the creation of
the module. When dummy arguments are used, this header should describe them.

!European standards, 1995

2.

Section comments splitting the code into logical sections (that may be related to the sci-
entific documentation). They indicate, section by section, the purpose of the code.

. Supplementary comments which should help reading the code. There should not be many

of them: source code which is interspersed with many comments is difficult to follow and to
understand. If the code has been well designed and if the related external documentation
has been properly written before coding, then the header and section comments should be
sufficient.

Both kinds of documentation should be updated at the same time in order to avoid misunder-
standings.

1.2

1.3

Code conception

At the design stage, one should consider how the system should be tested, how it could
be modified later and how it will be maintained. Future objectives of the system — not
only the immediate objectives — should be considered: future enhancements should be
anticipated and planned if possible, and should be made possible with a minimum of
disturbance to the whole system.

The different parts of the system should be analysed and planned. The parts should be de-
signed in a modular way, with interaction between them based on a hierachical and tree-like
structure. There should not be any duplication of code: neither real duplications (when a
piece of code is copied then pasted) nor virtual duplications (when more than one proce-
dure has the same purpose). Duplication of code increases the problems of maintenance.
Whenever code duplication is found the incriminated part of code should be re-designed.

The relationship between modules should be simple. Individual modules should not be
complex. Whenever a module is becoming complex after enhancements, the system should
be re-examined and the modularity re-designed. The longer subroutines are, the less read-
able they are and the more difficult they are to maintain.

Derived types should be used where appropriate as that they make the code more robust
and easier to maintain. Derived types naturally contribute to a more object-oriented code.

Dataflow is a recurrent problem whenever portability is concerned. Therefore special at-
tention should be given to it. Data inputs, outputs or transfers should be confined to a set
of data handling modules, separated from the application modules.

Non-standard statements of the language should not be used. In case they have to be, they
should be confined into a subset of modules to limit the problems of portability. The same
rule should apply to the invocation of routines coming from an external package.

Code validation and maintenance

While validating and evaluating new code, the following questions should be considered:

Does the source code comply with the coding standards?

Is the code easy to understand?
- Is the code unnecessarily complex?

- Is the interface to the subroutine straightforward?

1.4

- Does the routine produce the expected results?
- Can modifications be made easily if required?
- Are ALL error cases detected and properly acted upon?

- Are ALL aspects of the calculation (ie: direct model, tangent linear, adjoint, lim-
ited area model versus global, ECMWF versus METEO-FRANCE setups) properly
treated?

- Is the routine efficient in terms of memory and CPU consumption?
- Are the final integrated tests (ie: the operational configurations of the software) sucess-

ful?

The primary maintenance documentation is the source code. Only the source code is
guaranteed to be up to date. Thus, it is of vital importance to update source code
comments while modifying the source code.

When code undergoes development for scientific and technical reasons, at some point it is
likely to become unecessarily complex. It is important to recognise this and when it occurs
review and if necessary re-design and re-write the code package concerned.

Current code framework

The ARPEGE/IFS/ALADIN code is written in Fortran 90 and C. The following document
mainly applies to the part of the code written in Fortran, this being the main coding
language in which the bulk of the code is written.

The code is designed to perform well on both vector and cache based processors. This
feature has to be maintained for the foreseable future.

It is parallelised for distributed memory computers using MPI.

It is also parallelised for shared memory computers using OpenMP inside MPI. This implies
that the code inside the OpenMP regions has to be written in a thread-safe way.

10

11

Chapter 2

Design

2.1 Typewriting style

Following the European standards! (1995) which are more restrictive than the ANSI standard
the Fortran keywords may be written in upper case only, or with initial letter in upper case and
the rest in lower case. The names of variables may be written in mixed lower or upper case and
the names of namelists, modules, programs or subroutines may be written in mixed lower or
upper case. No recommendation has been made concerning comments.

However the survey of the existing code shows that the whole executable lines are preferably
written with upper case characters. Comments are preferably written with lower case characters
except the first letter, or the first letter after each full stop. Emphasized words are written in
upper case characters and bracketed with asterisks?.

It is recommended to stick to a conventional typewriting style inside the whole code because
this convention enables the developers to concentrate upon the semantic of the code and makes
easier the use of automatic tools to manipulate the code.?

In view of the apparent lack of rule concerning the typewriting style, the recommendation is to
stick to the apparent habit:

PRES(01) Executable lines should be written using upper case characters.

PRES(02) Comments should be written with lower case characters except the first letter,
or the first letter after each full stop. Emphasized words may be written in upper case
characters.

The minimum recommendation would be to follow a consistent style throughout each module or
subroutine.

2.2 Basic layout

2.2.1 Executable statements

NORM(01) The code should be written in Fortran 90 free format, at least as far as science is
concerned.
The use of Fortran ("FORmula TRANSslator”) is almost obligatory since:

'"European standards for writing and documenting exchangeable Fortran 90 code
2 Apparently the heritage of an automatic documentation extractor.
SHill, 1995

12

- it fits the scientific topics

- it is portable

- it is well-known by most of the developers !

- there exist well optimised Fortran compilers for vector and scalar processors.
C language can advantageously be used for low-level subroutines.

PRES(03) The code should start at the column 1, unless it comes to any of the indentation
norms as they will be described below.

PRES(04) The ending statement of a module or subroutine should repeat its name. For
example: “SUBROUTINE SUCTO ... END SUBROUTINE SUCTO’’

NORM(02) Tabulations must not be used: this ensures the code will look indented as desired
whenever ported (also the use of the tab character is non ANSI).

PRES(05) One should avoid writing more than one statement per line (ie: avoid using the
separator “;”). More than one statement per line might penalize the readability. If several
statements should be grouped together then one may write a tiny subroutine that would

be private and contained in the current subroutine.

CCPT(01) Subroutines should not have more than 300 executable statements? (there are
projects which are even more strict®). Each subroutine should have a maximum score of
400, based on the following measureS:

- each subroutine call has score 5
- other executable lines have score 1
There is no recommendation for a minimum score per subroutine.

CCPT(02) When the code is modified, it is easier to add or remove lines than modify ex-
isting ones. This is of special importance when merging code modifications from several
developers. Therefore one should write the code in such a way that consecutives lines are
as independent as possible. This would make the future merge of source code easier. Un-
fortunately this can make the code unecessarily long. So this rule should be applied with
care. Obviously it fits short codes.

2.2.2 Comments

PRES(06) The comments should be written in English. They should not be written twice (for
example: English and the programmer’s native language), because it makes the code less
readable.

PRES(07) Blank lines should remain empty: they should not start with “!”

2.2.3 Entry point and exit points

CTRL(01) Each procedure should contain one entry point and at most two kinds of exit points:
one normal return and one abnormal termination.

CTRL(02) The entry point should be at the top of the procedure.

4Gibson, 1986
SHill, 1995
5Gibson, 1986

13

CTRL(03) The normal return should be the bottom of the procedure. Consequently the use
of the statement RETURN is discouraged. If there is only one RETURN statement at the end
of a procedure it should be removed.

CTRL(04) Abnormal termination should be invoked with the specific subroutine ABOR1 be-
cause this subroutine enables one to flush the output buffer and to release the processors
which are not affected by the abnormal termination.

There can be more than one abnormal termination in the body of the subroutine.

Figure 2.1 shows examples of entry/exit points.

Figure 2.1: Examples of entry/exit points and errors handling.

SUBROUTINE ERROR_DETECTION
USE MHOOK , ONLY : LHOOK
IF (LHOOK) CALL DRHOOK(’ERROR_DETECTION’,0)

IF (IWORD /= ILEN) THEN
CALL ABOR1 (’ERROR_DETECTION : MESSAGE 1 RECEIVED WITH WRONG LENGTH’)
ENDIF

IF (IERR > 0) THEN
CL="MESSAGE 2 RECEIVED WITH WRONG LENGTH’
WRITE (NULOUT,*) CL
WRITE (NULERR,*) CL
CALL ABOR1 (’FROM ERROR_DETECTION’)
ENDIF

IF (LHOOK) CALL DRHOOK(’ERROR_DETECTION’,1)

END SUBROUTINE ERROR_DETECTION

2.3 Header comments

2.3.1 Data modules

CCPT(03) Each data module should begin with documentation describing the general content
of the module and the purpose of each declared variable.

14

PRES(08) In order to improve the readability, the namelist variables in a data module should
be separated from the internal ones.

PRES(09) Each description line should be independent to enable an automatic extraction of
the documentation.

PRES(10) The documentation should be separated from the starting statement with a blank
line and it should finish with a comment line filled with minus signs.

Figure 2.2 shows an example of a data module.

Figure 2.2: Example of data modules.

MODULE YOMDATA
! Module showing the coding standards in Arpege/Ifs/Aladin.

! NUMBER : Key telling what to do :

! NUMBER = 0 => don’t do anything
! NUMBER = 1 => do this
! NUMBER = 2 => do that

! VALUE : Tunable variable to do what you wish
! ARRAY : Mysterious data array

USE PARKIND1 , ONLY : JPIM ,JPRB

IMPLICIT NONE

SAVE
INTEGER (KIND=JPIM) :: NUMBER
REAL (KIND=JPRB) :: VALUE

REAL(KIND=JPRB), ALLOCATABLE :: ARRAY(:,:)

END MODULE YOMDATA

2.3.2 Procedures

PRES(11) Each procedure should begin” with a documentation header as a set of comments
containing:

- the purpose of the procedure

"Furopean standards, 1995.

15

- the interface details, describing the dummy arguments in the same order as they are
in the interface

- the externals or other subroutines called

- the method used in the application, where there is no further documentation to refer
to.

- a reference to further documentation
- the author and date of creation of the procedure

- the modifications applied since the creation of the procedure, with the author and
date of modifications

PRES(12) The header documentation should be separated from the entry point statement
with an empty line and it should finish with a comment line filled with minus signs.

PRES(13) The modifications comments should start with the template: “! Modifications”
and should end withe the template: “! End Modifications”.
In between all the modifications description should be written in the same style:
day(2 digits), month(3 characters), year(four digits) separated with a minus sign, then the
author, then a description.

Figure 2.3 shows a header documentation for a procedure.

2.4 Declaring variables

2.4.1 Layout

NORM(03) The use of IMPLICIT NONE statement is mandatory. It improves the portability
of the code and helps in the detection of errors.

NORM(04) Hard-coded variables increase the problem of maintenance and can even be the
cause of bugs, especially when they are used in a subroutine interface.
Hence it is much better to write: CALL POSNAM(NULNAM,CLNAME) than
CALL POSNAM(4,’NAMCTO’)

PRES(14) The declaration of variables should be separated from the header documentation
with an empty line. It should finish with a comment line filled with minus signs.

PRES(15) The declarations of variables should be grouped according to their type and at-
tributes.

NORM(05) The statement DIMENSION should not be used (but the attribute DIMENSION can
be). The shape and size of arrays should be declared inside brackets after the variable
name on the declaration statement.

NORM(06) The notation “::” should be systematically used after the type and attribute
declaration, and before the name of the variable.

PRES(16) All the attributes of a given variable should be grouped within the same instruction.
This makes it possible to visualize in a glance the characteristics of a variable or of a family
of variables.

16

Figure 2.3: Example of header documentation and variables declarations in a procedure.

SUBROUTINE CODESTY(KERR)

! Purpose

! *CODESTY#* : CODE STYle : To show coding standards in Arpege/Ifs/Aladin.
! Interface

! KERR : OQutput error code of the subroutine

! Externals

! Author

b

! 19-Jul-2002 Ryad El1 Khatib *METEO-FRANCE*

! Modifications

b

! 30-0ct-2003 M. Hamrud Cleaning for Cycle 28

! 30-Feb-0000 R. Randriamampianina Imaginary modification ;-)
! End Modifications

USE PARKIND1 , ONLY : JPIM

USE YOMDATA , ONLY : NUMBER , VALUE

IMPLICIT NONE

INTEGER(KIND=JPIM), INTENT(QUT) :: KERR

INTEGER(KIND=JPIM), PARAMETER :: JPLEN=16 ! Length of the local message
CHARACTER (LEN=JPLEN) :: CLMESS ! A local message

END SUBROUTINE CODESTY

17

PRES(17) Templates like “Dummy scalar arguments :”, or “Local integer arrays :7, etc.

on top of any group of variables declarations are not necessary: the Fortran attributes
declarations, if used as recommended in this document, are self-documenting. Also the
complete list of such templates is so wide that using them can make the code less readable.

CCPT(04) Actually unused variables (local in a used module) should be removed from the
current procedure : this makes the code clearer and can reduce the dependencies complex-

ity.
2.4.2 Kinds

NORM(07) Variables or constants are preferably declared with explicit kind.
In practice conventional parameters have been defined for various kinds (see modules
PARKIND1 and PARKIND2): refer to figure 2.4.

Figure 2.4: Conventional kind parameters for integers and reals.

KIND value KIND parameter
SELECTED_INT_KIND(2) JPIT
SELECTED_INT_KIND(4) JPIS
SELECTED_INT_KIND(9) JPIM
SELECTED_INT_KIND(12) JPIB
SELECTED_INT_KIND(18) JPIH
SELECTED_REAL_KIND(2,1) JPRT
SELECTED_REAL_KIND(4,2) JPRS
SELECTED_REAL_KIND(6,37) JPRM
SELECTED_REAL_KIND(13,300) JPRB
SELECTED_REAL_KIND (28,2400) JPRH

Refer to figure 2.7 for an example of constants usage.

2.4.3 Specifications for data modules

CTRL(05) In data modules all variables should be saved in order to preserve their values.
This is achieved by the use of the statement SAVE.

PRES(18) Each variable should be declared separately.
Refer to Figure 2.2 for an example of declarations in a data module.

2.4.4 Specifications for procedures

NORM(08) The variables should be used or declared in the following order:

1. The variables used from modules (this is enforced by Fortran standard)
2. the dummy arguments

3. the local variables

18

NORM(09) When using a data module, the resources should be restricted to the actually
used variables in order to avoid latent conflicts. This is achieved by the use of the keyword
ONLY.

PRES(19) While enumerating the used variables, the items should be regularly spaced in order
to respect a general alignement: this improves the readability. The space used is currently
9 characters per variable, but it could be a multiple of 9 to preserve the general alignment
when long names are used. If lines should be broken the separating commas should be at
the end of the lines, not the beginning of them.

PRES(20) The declaration of dummy arguments and the presentation of the dummy arguments
in the subroutine interface should be the same, in order to improve the readability.

PRES(21) If lines should be broken in the SUBROUTINE variable lists then the separating
commas should be at the end of the lines, not the beginning of them.

PRES(22) New lines in the CALL variable lists should be the same as “line breaks” in the
subroutine arguments list.

Refer to Figure 2.3 for examples of variables declarations in a procedure.

2.4.5 DOCTOR naming conventions

The purpose of the following naming conventions is to convey, through the use of prefix letters,
the type, status and scope of all variables within the program. Since the original definition of
the DOCTOR system, a few minor changes have been made to reflect:

e the increase use of facilities of Fortran, especially CHARACTER type
e the rationalization in the light of experience
e the wish to restrict prefixes to a single letter as far as possible.

The use of a prefix convention to indicate the status or scope of the variable enables differentiation
at a glance.

NORM(10) The type of a variable is indicated by the first — or first two — letter(s) which
compose(s) its name, according to figure 2.5.

Figure 2.5: Naming conventions.

Status Variable Dummy Local Loop Any
or scope in data module argument | variable control Parameter
Type
INTEGER M, N K I J but not JP JP
REAL A B EtoHO0, QtoX|P but not PP Z - PP
LOGICAL L but not (LD,LL,LP) LD LL - LP
CHARACTER C but not (CD,CL,CP) CD CL - CP
Derived type Y but not (YD,YL,YP) YD YL - YP
Note:

19

NORM(11) Double precision variables, which are prefixed with D according to the DOCTOR
norm, are no more used in the current software: instead of that, the type and kind of the
variables are declared explicitly.

NORM(12) Elementary variables composing a derived type should follow the naming conven-
tions for local or global variables.

2.4.6 Further naming conventions

Names of variables should be as meaningful as possible.

At the time the DOCTOR norm was first specified, the distributed memory machines were not
in operations. While programming on a distributed memory machine, the developers have to
consider a new scope of variables:

e those which are local in the sense of the distribution: such variables can be shared by
several subroutines and so they can be declared in a data module. But their values may
differ between processors.

e those which are global in the sense of the distribution: such variables can be local to a
subroutine. But they have a physical meaning so that their values will be the same on all
processors.

Concerning this scope the naming convention is the following:

CCPT(05) Variables which are suffixed with the letter L are local in the sense of the distribu-
tion.

CCPT(06) Variables which are suffixed with the letter G are global in the sense of the distri-
bution.

Note: the reverse assumption is not true, that is: variables which are local in the sense of the
distribution are not always suffixed with L (actually all variables are local in the sense of the
distribution). In the same way variables which are global in the sense of the distribution are
not always suffixed with G. This is justified since the distribution concerns the data and not all
the applications: the mentioned rule applies only to those variables related to the dimensions
concerned by the distribution. For instance the model time step is not governed by this rule.
Also a loop index would not be governed by this rule, while the loop bounds could be.

Figure 2.6 gives an example of such variables.

Figure 2.6: Example of local versus global variables.

Variable local to a subroutine | Variable in data module
Local variable The number of
in the sense of A loop index gridpoints treated
the distribution by a processor
Global variable A value The total number
in the sense of gathered among of gridpoints
the distribution all processors in the model

20

2.5 General coding norms

2.5.1 Section comments and supplementary comments

PRES(23) The body of the code should be split into numbered sections and subsections. The
numbering should be so that the M subsection of the N** section would be labelled N.M

PRES(24) Each section should be clearly separated from the previous one and should begin
with its section number and an underlined title

PRES(25) Each subsection should be clearly separated from the previous one and should begin
with its subsection number and title

PRES(26) Supplementary comments should be placed either immediately before or on the
same line as the code they are commenting.

2.5.2 Banned features

Several Fortran features should not — or no more — be used, as their past usage showed their
detrimental effect in programming, or because they are becoming obsolescent and thus can
disappear in future versions of the compilers.

NORM(13) GO TO should not be used because it is detrimental to the readability and is ob-
solescent. Fortran 90 provides instructions like DO WHILE, EXIT, CYCLE and the conditional
block SELECT CASE which can replace GO TO.

NORM(14) FORMAT statement should not be used any more as it is becoming obsolescent.
Format descriptors should be used instead. For example, one can replace:
WRITE(*,99) ’Hello !’
99 FORMAT (A7)
by
CLFMT=" (A7)’
WRITE(*,CLFMT) ’Hello !’

NORM(15) COMMON should not be used. MODULE should be used instead, because it is a more
robust, flexible statement.

NORM(16) EQUIVALENCE should not be used because it may cause problems of readability or
sometimes portability. POINTER or TYPE data can replace it.

NORM(17) COMPLEX type should not be used since the resulting code is not efficient®.

CTRL(06) One should not implicitly change the shape of an array while passing it into a
subroutine, because this works only after assumptions about how the data is stored. In
such situation the code should be properly re-written. If this is not possible RESHAPE should
be used instead, but this statement involves extra cost.

CTRL(07) One should not implicitly change the type of a variable while passing it into a
subroutine, because this works only after assumptions about how the data is stored. In
such situation one should use TRANSFER instead.

NORM(18) To declare a character string, the syntax CHARACTER*n should no more be used
because it is becoming obsolescent. Hence the syntax should be: CHARACTER(LEN=n).

8Clochard, 1988

21

NORM(19) Arrays should not be declared with implicit size:
like “REAL(KIND=JPRB) :: A(x)”
but they may be declared with implicit shape:
like “REAL(KIND=JPRB) :: A(:)”
Note that such declaration requires an interface block.

2.5.3 Loops

NORM(20) One should use only the “block loop” construct, ie starting with DO and ending
with ENDDO. Loop boundaries should stand out, finishing with ENDDO statement, in order
to make future modifications inside the loop easier.

PRES(27) DO and DO WHILE loops should be indented with 2 blank spaces to improve the
readability.

PRES(28) In case of complex loops nesting, it is recommended to use a character label for
each loop.

CCPT(07) Loops should be as plain as possible: complexity may destroy the vectorization of
the loop.

Figure 2.7 shows indentations for loops.

2.5.4 Conditional blocks

CTRL(08) Use the SELECT CASE statement when possible, rather than IF/ELSEIF/ELSE/ENDIF
statements because the condition relies on the value of only one expression which is com-
pared to constant values, and thus overlapping values can be detected at compilation time.

PRES(29) Conditional blocks should be indented with 2 blank spaces to improve the read-
ability.

PRES(30) Nesting of conditional blocks should not be more than 3 levels deep: deeper nesting
destroys the understandability of the code®. In case of complex nesting, it is recommended
to use a character label for each elementary blocks.

PRES(31) Conditional block boundaries should stand out, in order to make future modifi-
cations below a condition easier. However, if the conditional instruction is nothing but a
plain branch like EXIT or CYCLE then this recommendation may be ignored.

Refer to Figure 2.7 for examples of usage of conditional blocks.

2.5.5 Linebreaking

PRES(32) Though Fortran 90 allows up to 132 characters on a line, the length should be
limited to 80 characters per line in order for the code to be viewed easily on any terminal,
or to be easily read, when printed on A4 paper.

NORM(21) The continuation character & should appear both at the end of each line to be
continued and at the beginning of each continuation line. In this way we have a systematic
rule which allows the inclusion of blank space.

9Gibson, 1986

22

Figure 2.7: Example of computations in a procedure.

SUBROUTINE COMPUTE

! 1. Initialization

IST = LBOUND(ZA)
IEND = UBOUND(ZA)
ZSCAL = 5._JPRB
ZB(:) = 2._JPRB
ZC(:) = 4._JPRB

! 2. Computation and selection

DO JI=IST,IEND
IF (LDONE(JI)) CYCLE

ZA(JI) = ZB(JI) + ZC(JI)
ZD(JI) = 1.0_JPRB-LOG(ZA(JI))
ZE(JI) = ZSCAL*ZB(JI) &
& + (ZA(JI)-Z2D(JI))
ENDDO

SELECT CASE (NOPTION)
CASE(1:)
SELECT CASE (ALL(LDONE))
CASE(.FALSE.)
CALL ROUTINE(&
& NOPTION,IST,IEND, &
& ZA,ZB,ZC,ZD,ZE)
END SELECT
CASE DEFAULT
CALL ABOR1(’COMPUTE : ILLEGAL VALUE NOPTION’)
END SELECT

CALL MPL_BARRIER(CDSTRING=’COMPUTE:’)

END SUBROUTINE COMPUTE

23

PRES(33) The continuation lines should be indented with one supplementary blank space to
improve the readability.

PRES(34) Lines should be broken in a readable manner (ie: do not break a variable name).
It is better to start a continuation line with an operator rather than to end one with an
operator.

PRES(35) The continuation characters should be aligned on the same columns to improve the
readability.

Refer to Figure 2.7 for examples of linebreakings.

2.5.6 Dynamic memory usage

CCPT(08) The use of dynamic memory (automatic or explicit allocation) is preferred to static
one (arrays dimensioned with PARAMETER statement) because:

- it enables the re-use (and thus the saving) of memory

- it enables the same executable file to be run for different resolutions (which is basically
the configuration of a multi-incremental 4D-var assimilation)

However, to avoid potential memory inefficiency, further recommendations should be considered
while using dynamic memory allocation:

NORM(22) Automatic arrays should be preferred to explicitly allocated arrays/pointers (ex-
cept for very large arrays!®) because they are automatically released at the end of the
subroutine they are declared in.

NORM(23) Local arrays allocated explicitly in a subroutine must be explicitly deallocated
before leaving the subroutine

CCPT(09) One should not repeat sequences like:
ALLOCATE, DEALLOCATE, ALLOCATE again ...
many times: it is better to compute the maximum size of the array and allocate it once.

2.5.7 Symbolic comparison operators

NORM(24) The Fortran 90 specific comparison operators should be used because since this
syntax is closer to the mathematical notation the resulting code should be more readable.
Figure 2.8 lists them.

Figure 2.8: Fortran 90 specific comparison operators.

Equal | Not equal | Less than | Greater than | Less equal | Greater equal
== /: < > <= >=

NORM(25) The operators == and /= should not be used to compare real variables because
the result depends of the precision of the machine. This kind of comparison should be used
only when absolutely necessary.

Instead of: (Z1 == Z2) one should write: (ABS(Z1-Z2) < ZSCAL*SPACING(Z1))
where ZSCAL is a scaling factor greater than 1.

""Huge automatic arrays can break the stack limit

24

2.5.8 Fortran 90 intrinsic functions and procedures

The Fortran 90 language provides a large number of predefined functions or procedures. These
can make the code shorter, more readable, more portable and sometimes more efficient. Figure
2.9 recalls several of these functions and their behaviors for zero-element arrays.

Figure 2.9: Some of the predefined functions or procedures specific to Fortran 90

Function Purpose Behavior for
zero-element arrays

ADJUSTL To adjust a string on the left side without normal
leading blank (not leading “space”) characters

ADJUSTR To adjust a string on the right side without normal
trailing blank (not trailing “space”) characters

ALL To find out if all the values of an array are .TRUE. .TRUE.

ANY To find out if any value of an array is .TRUE. .FALSE.

COUNT To count the number of true elements in an array 0

DOT_PRODUCT | Scalar product of two vectors 0

EPSILON Precision of the machine normal

HUGE largest number of the machine normal

MAXLOC To localize the maximum value in an array 0

MAXVAL To find out the maximum value in an array less equal (- HUGE)

MINLOC To localize the minimum value in an array 0

MINVAL To find out the minimum value in an array HUGE

RESHAPE To reshape an array Possible error

SHAPE Shape of an array 0

SIZE Size of an array 0

SUM To sum the content of an array 0

SYSTEM_CLOCK | To get information from the system clock -

TINY Smallest number of the machine normal

TRANSFER To tranfer a variable into another type ?

TRIM To remove the trailing blank Error
(not the trailing “space”) characters of a string

NORM(26) generic names should be used for intrinsic procedures, not specific names.

2.5.9 Fortran 90 array syntax

Fortran 90 array syntax makes the code more compact and sometimes more readable, but in
most cases the result is slower, or at least not faster than the Fortran 77 style do loops.

The reason is the compiler’s inability to fuse several array statements and re-use common sub-
expressions, registers, etc. With the current level of maturity of Fortran 90 compilers there is no
reason to believe that the situation will improve dramatically in the future.

Therefore :

CCPT(10) The use of array syntax is not recommended, except for simple operations, like
initializing or copying whole arrays.

25

Refer to Figure 2.7 for examples of recommended computations for arrays. Note that in the F90
style, ZA(:) has a precise meaning: it means that we consider the whole array. The lower and
upper bound are then respectively LBOUND(ZA) and UBOUND(ZA).

2.5.10 Dummy and actual arguments

In Fortran 90 there are two ways of of associating arguments when a subroutine is called, the
Fortran 90 way and for compatibility the Fortran 77 way !!. The main difference lies in the way
arrays are passed, in the Fortran 90 way it is by strict type, kind, rank and extent matching
whereas in the Fortran 77 way it is done by Array Element Sequence association. It is important
to know that the Fortran 90 way is only used when you have an explicit interface block and the
arrays are declared with assumed shape.

The Fortran 90 way of passing arguments is much more secure, the compiler will detect any
mismatch between actual and dummy arguments thanks to the explicit interface block. Un-
fortunately the use of explicit interface blocks/module procedures is still very limited within
the ARPEGE/IFS/ALADIN code, one reason being that it introduces more dependencies between
separately compiled units and thus increases the complexity and possibly cost of the compiling
system.

CTRL(09) When an explicit interface block is being used for a routine, the interface body
should be in an independent separate file (ie: starting with "INTERFACE" and ending with
"END INTERFACE" and introduced in the calling routine with an #include statement. The
interface body should be extracted from the routine itself by an automatic procedure to
ensure that they conform.

NORM(27) The INTENT attribute should be used for all dummy arguments: this improves the
auto-documentation and the security of the code.

CTRL(10) The number of dummy arguments should be kept as small as possible. As excessive
number of arguments degrades the readability and increases the problems of maintenance
whenever arguments are added or removed.

To retain the modularity of subroutines there are alternatives:

- to re-design a set of elementary arguments as a new derived type.

- to identify the arguments which are internal to a set of subroutines and to use them
via a data module. Care has to be taken that this does not cause problems with the
thread safeness of the code.

The standard should be: the number of dummy arguments should not exceed 9.

CTRL(11) The arguments of a subroutine should be presented following a conventional order
because this improves the readability, the maintainability and sometimes also the portabil-
ity (the dimensioning of dummy arguments should appear ahead in order to improve the
portability). For the time being such a rule has been applied only for the physical package
of Météo-France, with the convention: input, then input/output, then output arguments.
Other orders can be considered, for instance: to order the arguments according to their
types and attributes, including the INTENT attribute. Concerning the tangent linear and
adjoint subroutines the initial recommendation was to follow the order of arguments as
in the direct code, then to add the trajectory variables in the same order. Such rule can
conflict with other general norms.

1 Adams et.al.,pp 509-529

26

Finally the achievable norm in this context seems to be: the arguments of a subroutine
should be ordered at least with integer scalar first.

NORM(28) The preferred method for passing array subsections is to use an explicit interface

block. This method allows array sections to be passed safely with no extra cost. If instead
an array section is passed when using the “Fortran 77” way of passing arguments extra
copying will take place before and after the subroutine call (the compiler will generate the
code) incurring extra cost. If the bounds of the array section is specified wrongly this
copying may also cause memory overwriting. Thus when using the “Fortran 77” way of
passing arguments, when the section of the array you want to pass is contigous in memory
and there is no explicit interface block declared, one should pass the start adress of the
section e.g. ZARG(1,2) rather than the array section - ZARG(:,2). Passing array sections,
not contigous in memory, should be completely avoided when using the “Fortran 777 way
of passing arguments.

However the use of an explicit interface block with assumed shape arrays can cause memory
overwriting too, because the compilers become unable to check bounds. Thus when using
assumed shape arrays one should take care that the array subscript never goes out of the
interval given by the function LBOUND and UBQUND.

NORM(29) Use of array sections (using F90 array syntax) is encouraged when calling intrinsic

routines, as all intrinsic F90 subroutines have explicit interfaces. This makes the code more
readable and enables the compiler to check bounds properly.

Figure 2.10 illustrates the handling of dummy arguments.

2.6

2.6.1

Specific coding norms

Naming modules, procedures, namelists and derived types

Names of modules, procedures, namelists or types should be as meaningful as possible.

CTRL(12) Conventional prefixes or suffixes are recommended for names. Refer to figure 2.11.

Note:

additive standards concern the radical of names:

CTRL(13) The radical of a type definition module should be the name of the type it defines'?.

For instance the type TYPE_GFLD is defined in the module TYPE_GFLDS

CTRL(14) The radical of a procedure module should be the name of the procedure it encap-

sulates. For instance the module SUPOL_MOD encapsulates the procedure SUPOL.

CTRL(15) For a subroutine in the spherical geometry of ARPEGE/IFS, its counterpart sub-

routine in the toroidal geometry of ALADIN should have the same name prefixed with an
E.

CTRL(16) Considering a namelist, its content should be saved in a specific data module and

initialized in a specific subroutine. All three should be named with the same radical. For
example: the content of the namelist NAMCTO is saved in the module YOMCTO and initialized
in a subroutine SUCTO.

1

Zambiguous if there are more than one type defined in the module

27

Figure 2.10: Example of dummy arguments handling

SUBROUTINE PROCEDURE (KLEN,PIN1,PIN2,PIN3,PIN4,PIN5,PIN6,PIN7,POUT1,POUT2)

USE PARKIND1 , ONLY : JPIM ,JPRB

IMPLICIT NONE

INTEGER(KIND=JPIM), INTENT(IN) :: KLEN

REAL (KIND=JPRB), INTENT(IN) :: PIN1(KLEN), PIN2(KLEN), PIN3(KLEN)
REAL (KIND=JPRB), INTENT(IN) :: PIN4(KLEN), PIN5(KLEN), PING6(KLEN)
REAL (KIND=JPRB), INTENT(IN) :: PIN7(KLEN)

REAL (KIND=JPRB), INTENT(OUT) :: POUT1(KLEN), POUT2(KLEN)

INTEGER(KIND=JPIM), PARAMETER :: JPNAME=9

INTEGER(KIND=JPIM), PARAMETER :: JPMESS=30
CHARACTER(LEN=JPNAME), PARAMETER :: CLNAME=’PROCEDURE’
CHARACTER(LEN=JPMESS) :: CLMESS=’ : INVALID NUMBER OF ARGUMENTS’

! 1. Computation

END SUBROUTINE PROCEDURE

28

Figure 2.11: Conventional prefixes and suffixes.

Prefix Entities Suffix
TYPE_ Types names
TYPE_ Types definitions modules S
PAR Parameters modules
YOE Data modules specific to ECMWF physics
QA Data modules specific to CANARI
YEM Data modules specific to ALADIN
TPM_ Data modules specific to spectral transforms packages
MPL_ Data modules specific to MPL (message passing) package
YOM Data modules not specific to ECMWF physics, CANARI,
ALADIN, spectral transforms or MPL package
Procedure modules _MOD
NAE Namelists specific to ECMWF physics
NEM Namelists specific to ALADIN
NAC Namelists specific to CANARI
NAM Namelists not specific to ECMWF physics, ALADIN or CANARI
SUEC Setup procedures specific to ECMWF physics
SUE, not SUEC | Setup procedures specific to ALADIN
SU, not SUE | Setup procedures not specific to ECMWF physics or ALADIN
SL Calculation procedures for any horizontal interpolations system
LA Calculation procedures specific to the semi-lagrangian scheme
AC Calculation procedures specific to ARPEGE/ALADIN physics
(“Arpege Calcul”)
PP Calculation operators for the post-processing or the analysis
FP Procedures specific to FULLPOS
CA Procedures specific to CANARI
Fi Procedures specific to the Files Arpege package (FA)
LFI Procedures specific to the Indexed Files Library (LFI)
MPL_ Procedures specific to the Message Passing Library (MPL)
SI Procedures specific to the semi-implicit scheme
GNH Procedures specific to non-hydrostatic gridpoint calculations
CP or GP Non-specific gridpoint calculation procedures
SP Spectral calculation procedures
COMM, GATH, | Procedures dealing with inter-nodes communications
ISND, IRCY, | (“COMMunicate”, “GATHer”, “Input SeND?,
OSND, ORCY, | “Input ReCeiVe”, “Output SeND”, “Output ReCeiVe”,
BR, DI or TR | “BRoadcast”, “Dlstribute”, “TRanspose”)
RE or RD Procedures to read data
WR Procedures to write data
E Procedures specific to ALADIN (“Elliptic”)
Tangent linear of a procedure TL
Adjoint of a procedure AD
Inverse of a procedure IN

29

2.6.2 Error handling

Proper management of the errors during the execution of the program help finding them more
quickly.

CTRL(17) On error detection, a brief message describing the error should be written out to
the conventional error file and output file with logical unit numbers are respectively NULERR
and NULOUT.

On one hand it is important to write out the error message on NULERR otherwise if only
processors other than 1 abort we have no information about the abort, unless we ask for
all the output files (one per task). But in this case the number of files can be so large that
the debugging would not be easier.

On the other hand, writing twice the error message (on NULERR and NULOUT) can confuse
the user, and there can even be a huge number of identical error messages in the listing if
all processors abort for the same reason.

CTRL(18) Then, if abnormal termination is required, the subroutine ABOR1 should be called
with a message (a character string) as argument, indicating the error location. The use of
the subroutine ABOR1 gives time to flush the output buffer and to release the processors not
causing ABOR1. It writes out a message on NULERR, and possibly on NULOUT if an argument
is provided.

CTRL(19) Sometimes it can be advantageous to postpone the abnormal termination until the
end of the subroutine in order to output all the errors detected to the output file before
actually aborting.

NORM(30) The statement STOP should not be used in case of an error because it reports a
normal termination code.

Refer to Figure 2.1 for examples of error handling.

2.6.3 “Hook” function

CTRL(20) Each subroutine should start and end with a conditional call to a “hook” subroutine.
One main usage for it may be finding really awful bugs where we do not get any traceback
because the stack has been trashed, but there are also many other potential uses, for
statistics gathering, doing ‘checksumming’ for early catching of problems, etc.

Figure 2.1 shows an example of “hook” function.

2.6.4 Handling universal constants

CTRL(21) Universal constants are stored in a data module named YOMCST. To access them
one should use this module.

CTRL(22) Universal constants should not be redefined at any other place in the code, to avoid
any potential inconsistency after a redefinition.

CTRL(23) Universal constants should not be accessed via dummy arguments because there
would be a risk to overwrite them through the subroutine interface.

CTRL(24) To make it more robust all universal constants should be declared and initialized
in a unique module (fusion of the module YOMCST and the subroutine SUCST of today).

30

2.6.5 Purpose and usage of the key LECMWF

In order to simplify user namelist files a different default setup is performed according to the
value of the logical key LECMWF. If LECMWF is .TRUE. then the selected default setup corresponds
to the framework of ECMWF'; else it corresponds to the framework of METEO-FRANCE.

CCPT(11) The key LECMWF should appear only in the setup routines and should be used only
to initialize namelists variables in order to preserve the scientific flexibility of the code.

2.6.6 Purpose and usage of the key LELAM

The logical key LELAM enables the selection of the limited area model (ALADIN) instead of the
global model (ARPEGE/1FS). Thus this key controls branches of the code related to the limited-
area versus global aspects of the model.

CCPT(12) The key LELAM should be used only in the setup and control subroutines (ie: not
below SCAN2MDM) in order to minimise the scientific generality of the code.

CCPT(13) The code below the key LELAM should be modular as far as possible in order to
preserve the visibility of the ALADIN specific code from those who are not ALADIN partners.

CCPT(14) Use of LELAM should be as rare as possible. If a routine uses lots of LELAM keys then
it should have its own ALADIN counterpart subroutine called under a single LELAM key.

2.6.7 Purpose and usage of the key LRPLANE

The logical key LRPLANE selects the plane geometry instead of the spherical one. Therefore this
key has a strong relationship with the key LELAM.

CCPT(15) Contrary to the key LELAM, the key LRPLANE can be used at any place in the code,
but to preserve the scientific generality of the code it should not replace the key LELAM. It
can be used outside a LELAM section to treat in a general way low-level parts of the code
(for example: in the semi-lagrangian scheme).

Note that LELAM=.TRUE. together with LRPLANE=.FALSE. would indicate that ALADIN is run in
spherical latitudes-longitudes geometry instead of the usual projected plane. This facility has
been abandoned in practice for quite a few years but should remain possible in principle.

2.6.8 Model settings

CTRL(25) User variables for setting up the model should be accessed via a conventional for-
matted sequential file containing namelists. Its logical unit number is: NULNAM (NULNAM=4).

CCPT(16) Namelist variables should be read from the namelist file and initialized only at one
place in the software, in order to prevent redefinition of variables.

CCPT(17) To enable an easy control of the variables used in the program, all the namelist
variables should be printed out to the listing file and not be redefined later in the code.

2.6.9 Output messages

CTRL(26) Messages should be written to the conventional formatted sequential file with logical
unit number: NULOUT. The standard output (“*” or unit 6) should not be used as it would
mix the messages coming from different processors.

31

CCPT(18) Important messages may be written out to the standard error file which logical
number in the software is NULERR. In that case messages coming from the different proces-
sors will be mixed.

CCPT(19) Verbosity should be controlled by the specific namelist variable NPRINTLEV, running
between 0 (minimum prints and default value) to 2 (maximum prints).
2.6.10 1I/0 raw data
CCPT(20) Observation files are binary files to be handled with the oDB software.

CCPT(21) Restart files are binary files to be handled with the PB10 software, which uses C
I/O and gives pure binary files without any Fortran record structure.

CCPT(22) Movies (Meteo France only) are Fortran sequential binary files.

CCPT(23) In the ECMWF framework other user’s [/O raw data should be accessed via GRIB
files, using the PBIO software.

CCPT(24) In the ARPEGE/ALADIN framework other user’s /O raw data should be accessed
either via FA files if the horizontal format of the data corresponds to the model settings;
else via LFI files. These are unformatted indexed sequential files.

CCPT(25) It is recommended to use the logical key LARPEGEF rather than the key LECMWF to
select the files format FA/LFI versus GRIB.

More generally, the recommendation is to use C [/O to improve the portability (today almost
all computers adhere to the IEEE standard).
2.6.11 Message passing interface

CCPT(26) One should use the MPL package as interface for any message passing.

CTRL(27) For an easier control of the code, each MPL subroutine call should have its argu-
ment CDSTRING explicitely documented as the name of caller routine. Figure 2.7 shows an
example of this.

32

33

Chapter 3

Source code management

The source code is stored in a database managed by the ClearCase! software package.

Among other advantages, the use of this software makes it possible to maintain an accurate view
of the history of the code, and to simplify and make code merging operations safer. Thus, it is
of vital importance to use ClearCase to modify the code.

A few standards should be considered while handling the source code files:

CTRL(28) The whole source code is partioned into projects. Below each project the source
code is partioned into directories. Each directory contains elementary files which are either
compilable source files or pieces of source files (“include files”) to be included in other source

files.

CTRL(29) Each elementary file should contain only one module or only one procedure: this
makes the maintenance easier (but a procedure may include more than one subroutine via
the instruction CONTAINS).

CTRL(30) All procedures which are internal to a package should be encapsulated inside a
module: through the recompilation of the dependencies this enables the compiler to check
automatically the interfaces for all the depending procedures. This has already been done
for the spectral transform package.

CCPT(27) Each elementary file should be put in the proper project and below the directory
which best fits its topic. For example: dynamics routines should be put in the ARPEGE/1FS
project directory adiab.

CCPT(28) NAMELIST statements should be declared in a module containing the namelist vari-
ables (data part) as well as the subroutine initializing these variables (via the CONTAINS
statement): this would make the maintenance and developments easier.

CTRL(31) The basename of each compilable source file should be the name (in small letters)
of the module or procedure it contains. For example: the file suct0.F90 contains the
subroutine SUCTO.

CCPT(29) Derived types should be declared in a module because this manner is more robust
than using the attribute SEQUENCE and it makes the maintenance easier (no duplication
of code). There should be one module dedicated to the declaration of each derived type
(or group of derived types if they are closely related), and vice-versa. These modules
could also contain “primitive” operations on the type(s) like allocation or deallocation of

Yhttp://www.rational.com /products/clearcase/index.jsp

34

its components, etc. The structures defined by this or these type(s) should not be in this
module, only type(s) definitions and basic operations on the type(s) should be.

CTRL(32) Each namelist should be contained in a specific include file, which basename should
be the name of the namelist (in small letters). For example: the file namct0.h contains the
namelist NAMCTO.

CTRL(33) Each explicit interface should be contained in a specific include file, with basename
the name of the subroutine it contains. For example: the file suspec.h contains the
interface block of the subroutine SUSPEC. Note: an explicit interface is necessary whenever
a pointer variable is used as a dummy argument. Interfaces should be computer-generated.

CTRL(34) Useless files should be deleted.

35

Index of standards
for the presentation of the code

PRES(01) Executable lines should be written using upper case characters.
PRES(02) Comments should be written with lower case characters ...

PRES(03) Indentation rules.

PRES(04) The ending statement of a module or subroutine should repeat its name.
PRES(05) One should avoid writing more than one statement per line.

PRES(06) The comments should be written in English only.

PRES(07) Blank lines should remain empty

PRES(08) Namelist and internal variables in data module to be separated.
PRES(09) Each description line should be independent.

PRES(10) The documentation should be separated from the starting statement.
PRES(11) Each procedure should begin with a documentation header

PRES(12) Header documentation to be separated from the entry point statement.
PRES(13) Template for modifications comments

PRES(14) Declaration of variables to be separated from the header documentation.
PRES(15) Declarations of variables to be grouped according to type & attributes.
PRES(16) All attributes of a variable to be grouped in the same instruction.
PRES(17) Templates like “! Dummy scalar arguments :” etc. are not necessary.
PRES(18) Each variable should be declared separately.

PRES(19) Items to be regularly spaced in used variables lists.

PRES(20) The declaration and the presentation of dummy arguments to be the same.
PRES(21) Separating commas at the end of lines in the SUBROUTINE variable lists.
PRES(22) New lines in the CALL variable lists as new lines in the subroutine.
PRES(23) Code body to be split into numbered sections and subsections.
PRES(24) Each section should be clearly separated from the previous one
PRES(25) Each subsection should be clearly separated from the previous one
PRES(26) Comments to be placed just before or on the same line as the code.
PRES(27) DO and DO WHILE loops should be indented with 2 blank spaces.
PRES(28) Use a character label for each loop in case of complex loops nesting.
PRES(29) Conditional blocks should be indented with 2 blank spaces.

PRES(30) Nesting of conditional blocks should not be more than 3 levels deep.
PRES(31) Conditional block boundaries should stand out.

PRES(32) The length should be limited to 80 characters per line.

PRES(33) Continuation lines to be indented with one supplementary blank space.
PRES(34) Lines should be broken in a readable manner.

PRES(35) The continuation characters should be aligned on the same columns.

36

Index of standards
for the respect of the norm

NORM(01) Usage of Fortran 90 free format and C

NORM(02) No use of tabulations.

NORM(03) Mandatory use of IMPLICIT NONE.

NORM(04) No hard-coded variables.

NORM(05) No use of the statement DIMENSION

NORM(06) Mandatory use of the notation “::”

NORM(07) Variables or constants are preferably declared with explicit kind
NORM(08) Variables to be used or declared in a conventional order
NORM(09) Use ONLY.

NORM(10) Prefix convention for variables

NORM(11) No DOUBLE PRECISION variables.

NORM(12) Prefix convention for elementary variables of a derived type.
NORM(13) No use of GO TO.

NORM(14) No use of FORMAT.

NORM(15) No use of COMMON.

NORM(16) No use of EQUIVALENCE.

NORM(17) No use of COMPLEX.

NORM(18) Character strings to be declared with the syntax CHARACTER (LEN=n)
NORM(29) Arrays should not be declared with implicit size.

NORM(20) Mandatory use of DO ... ENDDO block loop.

NORM(21) Continuation character &

NORM(22) Automatic arrays preferred to explicitly allocated arrays.
NORM(23) Local arrays to be deallocated at the end of the subroutine
NORM(24) Mandatory use of the Fortran 90 specific comparison operators
NORM(25) No use of the operators == and /= to compare real variables
NORM(26) Generic names to be used for intrinsic procedures

NORM(27) Mandatory use of INTENT attribute

NORM(28) Passing array subsections to a subroutine

NORM(29) Use array sections when calling intrinsic routines

NORM(30) No use of STOP in case of error.

37

Index of standards
for the control of the code

CTRL(01) Only one entry point and at most two kinds of exit points

CTRL(02) The entry point should be at the top of the procedure.

CTRL(03) Usage of RETURN statement is discouraged.

CTRL(04) Abnormal termination to be invoked ABOR1.

CTRL(05) All variables in data modules to be saved SAVE statement.

CTRL(06) Shape of arrays should not be changed when passed to a subroutine.
CTRL(07) Type of variables should not be changed when passed to a subroutine.
CTRL(08) Usage of SELECT CASE.

CTRL(09) Position of explicit interface blocks.

CTRL(10) The number of dummy arguments should not exceed 9.

CTRL(11) Actual/dummy arguments to be presented following a conventional order.
CTRL(12) Conventional prefixes or suffixes are recommended for names.

CTRL(13) Radical of a type definition module name.

CTRL(14) Radical of a procedure module name.

CTRL(15) Prefix of ALADIN subroutines which are counterparts of ARPEGE/IFS ones.
CTRL(16) Namelists handling.

CTRL(17) Error detection handling: messages and output units.

CTRL(18) Error detection handling: usage of ABOR1.

CTRL(19) Postponing of abnormal termination.

CTRL(20) “Hook” function

CTRL(21) Universal constants to be stored in data module YOMCST.

CTRL(22) Universal constants not be redefined at any other place than YOMCST.
CTRL(23) Universal constants not to be accessed via dummy arguments.

CTRL(24) Universal constants to be saved and initialized in a unique module YOMCST.
CTRL(25) User access to variables va namelists.

CTRL(26) Conventional output unit for messages.

CTRL(27) MPL subroutines to have their argument CDSTRING explicitely documented.
CTRL(28) Partionment of the source code.

CTRL(29) FEach elementary file should contain only one module or only one procedure.
CTRL(30) All internal procedures to be encapsulated inside a module.

CTRL(31) File basename to be the name of the module/procedure it contains.
CTRL(32) FEach namelist to be contained in a specific include file.

CTRL(33) Position of explicit interface blocks.

CTRL(34) Useless files should be deleted.

38

Index of standards
for the conception of the code

CCPT(01) Subroutines should not have more than 300 executable statements. 13
CCPT(02) It is easier to add or remove lines than to modify existing ones. 13
CCPT(03) Each data module should begin with a documentation header. 14
CCPT(04) Actually unused variables (local in a used module) should be removed. 18
CCPT(05) Variables suffixed with L are local in the sense of the distribution. 20
CCPT(06) Variables suffixed with G are global in the sense of the distribution. 20
CCPT(07) Loops should be as plain as possible. 22
CCPT(08) Usage of dynamic memory. 24
CCPT(09) Do not repeat sequences like: ALLOCATE/DEALLOCATE/ALLOCATE 24
CCPT(10) The use of array syntax is not recommended. 25
CCPT(11) Usage of the key LECMWF. 31
CCPT(12) Usage of the key LELAM. 31
CCPT(13) The code below the key LELAM should be modular as far as possible. 31
CCPT(14) Use of LELAM should be as rare as possible. 31
CCPT(15) Usage of the key LRPLANE. 31
CCPT(16) Namelist variables to be read and initialized only once. 31
CCPT(17) Namelist variables to be printed out to the listing. 31
CCPT(18) Important messages may be written out to the standard error file. 32
CCPT(19) Verbosity to be controlled by a specific namelist variable. 32
CCPT(20) Observation files to be handled with opB. 32
CCPT(21) Restart files be handled with pBIO. 32
CCPT(22) Movies files are Fortran sequential binary files. 32
CCPT(23) For 1rs other user’s I/O raw data are GRIB files 32
CCPT(24) For ARPEGE/ALADIN other user”s I/O raw data are FA or LFI files. 32
CCPT(25) Usage of the key LARPEGEF. 32
CCPT(26) MPL package to be used as interface for any message passing. 32
CCPT(27) Files to be put in the proper project and below the proper directory. 34
CCPT(28) NAMELIST statement to be declared in a data/procedure module. 34
CCPT(29) Derived types to be declared in a module. 34

39

Index

A L
ABORI, 14, 30 LARPEGEF, 32
ADJUSTL, 25 LECMWF, 31, 32
ADJUSTR, 25 LELAM, 31
ALL, 25 LOGICAL, 19
ALLOCATE, 24, 34
ANY, 25 M
MAXLOC, 25
C MAXVAL, 25
CHARACTER, 19, 21 MINLOC, 25
coMman, 21 MINVAL, 25
COMPLEX, 21 MODULE, 14, 18, 19, 21, 29, 34
CONTAINS, 34
COUNT, 25 N
CYCLE, 21, 22 NAMELIST, 27, 34, 35
NULERR, 30, 32
D NULNAM, 31
DEALLOCATE, 24, 34 NULOUT, 30, 31
DIMENSION, 16
DO, 21, 22 o
DOT_PRODUCT, 25 ONLY, 19
- P
EPSTLON, 25 PARAMETER, 18, 19, 24, 29
FQUIVALENCE, 21 POINTER, 21, 24, 35
EXIT, 21, 22 R
- REAL, 19
FORNAT, 21 RESHAPE, 21, 25
RETURN, 14
G
G0 TO, 21 S
: SAVE, 18
H SELECT CASE, 21, 22
HUGE, 25 SELECTED_INT_KIND, 18
SELECTED_REAL_KIND, 18
I SHAPE, 25
IMPLICIT NONE, 16 SIZE, 25
INTEGER, 19, 27 SPACING, 24
INTENT, 26 SUM, 25
SYSTEM_CLOCK, 25
K
KIND, 18 T

TINY, 25

40

TRANSFER, 21, 25
TRIM, 25
TYPE, 9, 19-21, 26, 27, 29, 34

41

Bibliography

[1] Gibson J.K.: Standards for software development and maintenance, ECMWEF Operations
department technical memorandom nr 120, 1986

[2] Clochard J.: Norme de codage “DOCTOR” pour le projet ARPEGE, Note de travail
“ARPEGE” nr 4, 1988

[3] Kalnay et al: Rules for Interchange of Physical Parametrizations, Bull. A.M.S., 70 No. 6,
1989

[4] Adams, J.C. et al. : Fortran 90 Handbook, McGraw-Hill, 1992.

[5] Andrews P. (UKMO), G. Cats (KNMI/HIRLAM), D. Dent (ECMWF), M. Gertz (DWD), J -
L. Ricard (METEO-FRANCE): Furopean standards for writing and documenting exchange-
able Fortran 90 code, version 1.1, 1995.
http://www.met-office.gov.uk /research /nwp /numerical /fortran90,/f90 _standards.html

[6] Hill L.: Reégles essentielles pour lutilisation du langage Fortran 90, CNES, 1995.

[7] Ajjaji R. (Maroc-Météo), J. Boutahar (Maroc-Météo) and J.-F. Geleyn (Météo-France): Al-
adin phaser’s guide, 1998.
http://www.cnrm.meteo.fr /aladin/concept /phasersguide.html

[8] Zagar M. (Hydrometeorological Institude of Slovenia) and C. Fischer (Météo-France): The
ARPEGE/ALADIN Tech’Book: Implications of LAM aspects on the global model code,
CY25T1/AL25T1, 2002.
http://intra.cnrm.meteo.fr/gmod /modeles/Tech/Aladin _implement /al2ec/al2ec.html

42

