Plane acoustic-gravity waves Acoustic-gravity waves

P. Bénard*
*Météo-France
CNRM/GMAP

21 November 2005 - Poiana Brasov

Outline

(1) Propagation of plane waves

propagation of plane waves

Warning about phase velocity concept in 2D

- In a 1D space, the phase velocity of a wave is a clear concept : velocity of iso-phase points (e.g. crests). in 1D, the phase velocity is a scalar.
- In a multidimensional space (2D hereafter), the phase velocity of a plane wave is a more ambiguous concept. Two different concepts are useful (see explanations below) :
- "absolute phase velocity"
- "phase velocity along a direction d".

Propagation of plane waves (in 2D)

$$
\psi=\psi_{0} \exp i(k x+m z+\omega t)=\psi_{0} \exp i(\mathbf{K} \cdot \mathbf{r}-\omega t)
$$

Absolute phase velocity in 2D

- velocity of phase lines (i.e. along the direction of propagation) : $c=\frac{\omega}{|\mathbf{K}|}$
- this is a scalar (a vector $\mathbf{c}=\frac{\omega}{|\mathbf{K}|^{2}} \mathbf{K}$ can be constructed, but it does not offer any useful practical use).

Phase velocity along a direction d

- velocity of iso-phase points along the straight lines of direction d.
- this is a scalar $c_{\mathbf{d}}=\frac{\omega}{K \cdot d}$.
- this is NOT the projection of \mathbf{c} along \mathbf{d}.

Propagation of plane waves (in 2D)

A more efficient concept : phase slowness vector

- scalar slowness $=$ inverse of scalar speed
- vector slowness $=$ slowness of phase lines along the direction of propagation: $\mathbf{s}=\mathbf{K} / \omega$.
- The phase slowness along a direction \mathbf{d} is now the projection of the phase slowness vector along d
- The phase speed along a direction \mathbf{d} is the inverse of the phase slowness along d.

Frequency for plane waves:

general dispersion equation :

$$
\gamma \omega^{4}-c^{2}\left[\gamma k^{2}+\nu^{2}+1 / 4 H^{2}\right]+k^{2} N^{2} c^{2}=0
$$

Hydrostatic:

$$
\omega^{2}=\frac{k^{2} N^{2}}{\nu^{2}+1 / 4 H^{2}}
$$

nonhydrostatic:

$$
\omega^{2}=\frac{1}{2}\left[c^{2}\left(k^{2}+\nu^{2}+1 / 4 H^{2}\right) \pm \sqrt{c^{2}\left(k^{2}+\nu^{2}+1 / 4 H^{2}\right)^{2}-4 k^{2} N^{2} c^{2}}\right]
$$

Frequency for gravity plane waves :

Hydrostatic :

$$
\omega^{2}=\frac{k^{2} N^{2}}{\nu^{2}+1 / 4 H^{2}}
$$

nonhydrostatic :

$$
\omega^{2}=\frac{1}{2}\left[c^{2}\left(k^{2}+\nu^{2}+1 / 4 H^{2}\right)-\sqrt{c^{2}\left(k^{2}+\nu^{2}+1 / 4 H^{2}\right)^{2}-4 k^{2} N^{2} c^{2}}\right]
$$

since usually $4 N^{2} \ll 1$, for nonhydrostatic gravity waves we have :

$$
\omega^{2} \approx \frac{k^{2} N^{2}}{k^{2}+\nu^{2}+1 / 4 H^{2}}
$$

Propagation of gravity waves in NH

phase velocities along x, σ

$$
\begin{aligned}
& c_{X}=\frac{\omega}{k} \approx \frac{N}{\sqrt{k^{2}+\nu^{2}+1 / 4 H^{2}}} \\
& c_{\sigma}=\frac{\omega}{\nu} \approx \frac{N}{\sqrt{k^{2}+\nu^{2}+1 / 4 H^{2}}}\left(\frac{k}{\nu}\right)
\end{aligned}
$$

group velocity vector

$$
\begin{aligned}
\left.\mathbf{V}_{\mathbf{g}}\right|_{x} & =\frac{\partial \omega}{\partial k} \approx \frac{N}{{\sqrt{k^{2}+\nu^{2}+1 / 4 H^{2}}}^{3}}\left(\nu^{2}+1 / 4 H^{2}\right) \\
\left.\mathbf{V}_{\mathbf{g}}\right|_{\sigma} & =\frac{\partial \omega}{\partial \nu} \approx \frac{N}{{\sqrt{k^{2}+\nu^{2}+1 / 4 H^{2}}}^{3}}(-k \nu)
\end{aligned}
$$

Propagation of gravity waves in NH Boussinesq case

phase velocities along x, σ

$$
c_{x} \approx \frac{N}{\sqrt{k^{2}+\nu^{2}}} \quad c_{\sigma} \approx \frac{N}{\sqrt{k^{2}+\nu^{2}}}\left(\frac{k}{\nu}\right)
$$

group velocity

$$
\left.\left.\mathbf{V}_{\mathbf{g}}\right|_{x} \approx \frac{N}{\sqrt{k^{2}+\nu^{2}}}\left(\nu^{2}\right) \quad \mathbf{V}_{\mathbf{g}}\right|_{\sigma} \approx \frac{N}{\sqrt{k^{2}+\nu^{2}}}(-k \nu)
$$

wave geometry

- $\mathbf{V}_{\mathbf{g}}$ always perpendicular to the wave vector \mathbf{K}
- vertical component of group velocity always opposite sign to the one of phase velocity

Propagation of gravity waves in Hydrostatic Boussinesq case

phase velocities along x, σ

$$
c_{x} \approx \frac{N}{\nu} \quad c_{\sigma} \approx \frac{N k}{\nu^{2}}
$$

group velocity

$$
\left.\left.\mathbf{V}_{\mathbf{g}}\right|_{x} \approx \frac{N}{\nu} \quad \mathbf{V}_{\mathbf{g}}\right|_{\sigma} \approx-\frac{N k}{\nu^{2}}
$$

wave geometry

- $\mathbf{V}_{\mathbf{g}}$ always perpendicular to the wave vector \mathbf{K}
- vertical component of group velocity always opposite sign to the one of phase velocity

Comparisonof orographic gravity waves in Boussinesq case

orographic waves :

- basic wind U
- stationary waves $\Rightarrow c_{x}=-U$

Hydrostatic Boussinesq :

$$
c_{x}+U=\left.0 \quad \Rightarrow \quad \mathbf{V}_{\mathbf{g}}\right|_{x}+U=0
$$

The propagation of energy is vertical

nonhydrostatic Boussinesq :

$$
c_{x}+U=\left.0 \quad \Rightarrow \quad \mathbf{V}_{\mathbf{g}}\right|_{x}+U=\frac{U k^{2}}{k^{2}+\nu^{2}}
$$

The propagation of energy is slantwise (leeward)

