WHY DO WE NEED THE NH MODEL ?

Acoustic-gravity waves

P. Bénard*

*Météo-France CNRM/GMAP

21 November 2005 - Poiana Brasov

INTRODUCTION

- The goal of this lecture is to illustrate the differences in wave propagation for the hydrostatic and nonhydrostatic systems.
- This has an impact on the response of models for orographic flows, as shown later by Jan Masek.
- Wave analysis also important as a basis for many numerical developments in models (SI scheme, stability studies...)
- In handbooks, the topic of waves is treated in z coordinates.
- Here, we decribe wave in mass-coordinate, to stick to model formulation

INTRODUCTION

- The goal of this lecture is to illustrate the differences in wave propagation for the hydrostatic and nonhydrostatic systems.
- This has an impact on the response of models for orographic flows, as shown later by Jan Masek.
- Wave analysis also important as a basis for many numerical developments in models (SI scheme, stability studies...)
- In handbooks, the topic of waves is treated in z coordinates.
- Here, we decribe wave in mass-coordinate, to stick to model formulation

Outline

1 What are waves?

- **2** Linearized system in σ coordinate
 - 3 Analysis of waves
- A Short discussion

- wave : oscillating perturbation around a stable equilibrium state in a medium
- linear wave : small oscillating perturbation ...
- The character and shape of linear waves depends on the choice of the stable equilibrium
- Complicated state \rightarrow dispersive propagation, non-uniform geometry etc...
- $\bullet~Simple~state \rightarrow more~regular~propagation~and~geometry$
- Hand-analysis of linear waves tractable only very simple equilibrium states.

We focus on small-scale atmospheric waves (neglect large-scale features as rotation f)

We focus on the simplest waves, i.e. on the simplest equilibrium state :

- resting (and stable \Rightarrow hydrostatic)
- isothermal
- dry, nonrotating, ...

Classically, to further simplify, we will assume an unbounded fluid (boundaries impose further constraints on waves) in 2D medium (x, σ) And of course we assume linear waves

Outline

What are waves?

(2) Linearized system in σ coordinate

3 Analysis of waves

A Short discussion

EE system in σ coordinate and model variables (d, \mathcal{P})

$$\frac{d\mathbf{V}}{dt} = -RT\nabla q - \frac{RT}{(1+\mathcal{P})}\nabla\mathcal{P} - \left(1+\mathcal{P}+\sigma\frac{\partial\mathcal{P}}{\partial\sigma}\right)\nabla\phi$$

$$\frac{d\mathbf{d}}{dt} = -\frac{g^2(1+\mathcal{P})}{RT}\left(\sigma\frac{\partial}{\partial\sigma}\right)\left(1+\sigma\frac{\partial}{\partial\sigma}\right)\mathcal{P}$$

$$+ d(\nabla\cdot\mathbf{V}-D_3) + \frac{g(1+\mathcal{P})}{RT}\left[\nabla w \cdot \left(\sigma\frac{\partial\mathbf{V}}{\partial\sigma}\right)\right]$$

$$\frac{dT}{dt} = -\frac{RT}{C_v} D_3 \frac{dP}{dt} = -(1+P) \left(\frac{C_p}{C_v} D_3 + \frac{\dot{\pi}}{\pi}\right) \frac{\partial q}{\partial t} = -\int_0^1 (\nabla \cdot \mathbf{V} + \mathbf{V} \cdot \nabla q) d\sigma'$$

Unbounded EE system in σ coordinate

Warning : all symbols in red imply vertical integrals with references to the surface.

Facultative part (sleeping allowed) :

Procedure to show that this system may apply to a vertically unbounded fluid :

- notice the surface $\phi = \phi_s$ is not necessarily a material one
- if not material, $\phi = \phi_s$ is just a reference, immaterial surface
- \bullet Then for unbounded medium, $\sigma \in [0,\infty],$ and $\sigma = 1$ at reference surface
- to remove integrals, simply differentiate vertically

Possible discussion tonight for those interested !

Unbounded EE system in σ coordinate

We use the short-hand notation $\partial_{\!\!\sigma}=\sigma \frac{\partial}{\partial\sigma}$

$$\phi = R \int_{\sigma}^{1} \frac{T}{1 + \mathcal{P}} \frac{d\sigma}{\sigma} \quad \Rightarrow \quad \partial_{\sigma} \phi = -\frac{RT}{1 + \mathcal{P}}$$

$$\begin{split} \frac{\dot{\pi}}{\pi} &= \mathbf{V} \cdot \boldsymbol{\nabla} q - \frac{1}{\sigma} \int_{0}^{\sigma} \left(\boldsymbol{\nabla} \cdot \mathbf{V} + \mathbf{V} \cdot \boldsymbol{\nabla} q \right) d\sigma \\ \Rightarrow & (1 + \partial_{\sigma}) \frac{\dot{\pi}}{\pi} = \partial_{\sigma} \mathbf{V} \cdot \boldsymbol{\nabla} q - \boldsymbol{\nabla} \cdot \mathbf{V} \end{split}$$

Unbounded EE system in σ coordinate

Equations for \boldsymbol{V} and $\boldsymbol{\mathcal{P}}$ become :

$$\partial_{\sigma} \frac{d\mathbf{V}}{dt} = -\partial_{\sigma} \left[RT \nabla q + \frac{RT}{(1+\mathcal{P})} \nabla \mathcal{P} \right] \\ + \left[1 + (1+\partial_{\sigma})\mathcal{P} \right] \nabla \frac{RT}{(1+\mathcal{P})} - \left[\partial_{\sigma} (1+\partial_{\sigma})\mathcal{P} \right] \nabla \phi \\ + \partial_{\sigma} \right) \frac{d\mathcal{P}}{dt} = -\frac{C_{\rho}}{C_{\nu}} (1+\partial_{\sigma}) \left[(1+\mathcal{P})D_{3} \right] \\ + \left[\nabla \mathbf{V} - \partial_{\sigma} \mathbf{V} \cdot \nabla q \right] - (1+\partial_{\sigma}) \left(\mathcal{P} \frac{\dot{\pi}}{\pi} \right)$$

Now we linearize...

(1

P. Bénard (CNRM/GMAP)

Nov 2005 - Brasov 10 / 22

Linearization of the system

Basic state (resting, isothermal, homegeneous...)

$$\partial_{\sigma} \frac{d\mathbf{V}}{dt} = -\partial_{\sigma} \left[RT \nabla q + \frac{RT}{(1+\mathcal{P})} \nabla \mathcal{P} \right] \\ + \left[1 + (1+\partial_{\sigma})\mathcal{P} \right] \nabla \frac{RT}{(1+\mathcal{P})} - \left[\partial_{\sigma} (1+\partial_{\sigma})\mathcal{P} \right] \nabla \phi \\ + \partial_{\sigma} \right) \frac{d\mathcal{P}}{dt} = -\frac{C_{P}}{C_{V}} (1+\partial_{\sigma}) \left[(1+\mathcal{P})D_{3} \right] \\ + \left[\nabla \mathbf{V} - \partial_{\sigma} \mathbf{V} \cdot \nabla q \right] - (1+\partial_{\sigma}) \left(\mathcal{P} \frac{\dot{\pi}}{\pi} \right)$$

Terms in red are non-linear (neglected).

(1)

Linearization

$$D_3 = \nabla \cdot \mathbf{V} + \mathsf{d} + \frac{(1+\mathcal{P})}{RT} \nabla \phi \cdot \partial_{\sigma} \mathbf{V} \implies D_3 \to D + \mathsf{d}$$

$$(d/dt) = (\partial/\partial t) + Advection \implies (d/dt) \rightarrow (\partial/\partial t)$$

$$\partial_{\sigma} \frac{\partial D}{\partial t} = -RT^* \partial_{\sigma} \nabla^2 \mathcal{P} + R\nabla^2 T - RT^* \nabla^2 \mathcal{P}$$
$$= R\nabla^2 T - RT^* (1 + \partial_{\sigma}) \nabla^2 \mathcal{P}$$
$$1 + \partial_{\sigma}) \frac{\partial \mathcal{P}}{\partial t} = -\frac{C_p}{C_v} (1 + \partial_{\sigma}) [D + d] + D$$

Linearization (cont'd)

Finally the linearized unbounded system writes :

$$\partial_{\sigma} \frac{\partial D}{\partial t} = R\nabla^{2}T - RT^{*}(1+\partial_{\sigma})\nabla^{2}\mathcal{P}$$

$$\gamma \frac{\partial d}{\partial t} = -\frac{g^{2}}{RT^{*}}\partial_{\sigma}(1+\partial_{\sigma})\mathcal{P}$$

$$\frac{\partial T}{\partial t} = -\frac{RT^{*}}{C_{v}}(D+d)$$

$$1+\partial_{\sigma})\frac{\partial \mathcal{P}}{\partial t} = -\frac{C_{p}}{C_{v}}(1+\partial_{\sigma})[D+d]+D$$

where γ is the marker of hydrostatic approximation

Outline

What are waves?

2 Linearized system in σ coordinate

3 Analysis of waves

Short discussion

Analysis of waves

The linear system admit solutions of the form : $\psi(x, \sigma, t) = \hat{\psi}(\sigma) \exp i(kx + \omega t)$ Hence, with "hats" dropped :

$$i\omega\partial_{\sigma}D = -k^{2}RT + k^{2}RT^{*}(1+\partial_{\sigma})\mathcal{P}$$
$$i\gamma\omega d = -\frac{g^{2}}{RT^{*}}\partial_{\sigma}(1+\partial_{\sigma})\mathcal{P}$$
$$i\omega T = -\frac{RT^{*}}{C_{v}}(D+d)$$
$$\omega(1+\partial_{\sigma})\mathcal{P} = D - \frac{C_{p}}{C_{v}}(1+\partial_{\sigma})(D+d)$$

ia

Analysis of waves

Eliminating for D and d :

$$-\omega^{2}\partial_{\sigma}D = -k^{2}R\left[-\frac{RT^{*}}{C_{v}}(D+d)\right] + k^{2}RT^{*}\left[D - \frac{C_{p}}{C_{v}}(1+\partial_{\sigma})(D+d)\right]$$
$$-\gamma\omega^{2}d = -\frac{g^{2}}{RT^{*}}\partial_{\sigma}\left[D - \frac{C_{p}}{C_{v}}(1+\partial_{\sigma})(D+d)\right]$$

i.e.
$$-\partial_{\sigma} \left[\omega^{2} - k^{2}c^{2}\right] D = k^{2}RT^{*} \left[\frac{R}{C_{\nu}} - \frac{C_{\rho}}{C_{\nu}}(1 + \partial_{\sigma})\right] d$$
$$\left[\gamma\omega^{2} + \frac{g^{2}}{RT^{*}}\frac{C_{\rho}}{C_{\nu}}(1 + \partial_{\sigma})\partial_{\sigma}\right] d = \frac{g^{2}}{RT^{*}} \left[1 - \frac{C_{\rho}}{C_{\nu}}(1 + \partial_{\sigma})\right] \partial_{\sigma} D$$

where
$$c^2 = (C_p/C_v)RT^3$$

P. Bénard (CNRM/GMAP)

Combining the two latter equations (after some eliminations) :

$$\left\{\gamma\omega^4 - \omega^2 c^2 \left[\gamma k^2 - \frac{(1+\partial_\sigma)\partial_\sigma}{H^2}\right] + k^2 N^2 c^2\right\} d = 0$$

where $N^2 = (g^2/C_p T^*)$, and $H = RT^*/g$

Solutions have the form : $d(\sigma) = d_0 \sigma^{(i\nu H - 1/2)}$ with :

$$\gamma \omega^4 - c^2 \left[\gamma k^2 + \nu^2 + 1/4H^2 \right] + k^2 N^2 c^2 = 0$$

Case $\gamma = 0$ (Hydrostatic equations) :

The 2 frequencies of solutions for a given (k, ν) geometry are :

$$\omega^2 = \frac{k^2 N^2}{\nu^2 + 1/4H^2}$$

These represent gravity waves

Case $\gamma = 1$ (Euler equations) :

The 4 frequencies of solutions for a given (k, ν) geometry are :

$$\omega^{2} = \frac{1}{2} \left[c^{2} \left(k^{2} + \nu^{2} + 1/4H^{2} \right) \pm \sqrt{c^{4} \left(k^{2} + \nu^{2} + 1/4H^{2} \right)^{2} - 4k^{2}N^{2}c^{2}} \right]$$

These represent "gravity-acoustic" and "acoustic-gravity" waves

Special case "gravity" for
$$(k \ll \nu c/N)$$
, e.g. $(k \approx \nu)$

$$\omega^2 = \frac{k^2 N^2}{k^2 + \nu^2 + 1/4H^2}$$

Outline

What are waves?

2 Linearized system in σ coordinate

3 Analysis of waves

Compare H and NH "gravity" waves for $k \ll \nu c/N$

For hydrostatic systems :

- Gravity waves with aspect ratio pprox 1 will be considerably distorted
- Orographic (stationary) gravity waves will not radiate energy in the right direction (\longrightarrow Jan's talk)