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1. Introduction

This report presents the aim, strategy and first results for the implementation of an operational
variational  data  assimilation system in the Aladin/France  model.  Starting  from the  experience
gathered over the last five years with 3D-VAR in Aladin as a research configuration, the goal is to
settle  a continuous,  permanent  assimilation cycle with an initial  update frequency of  6  hours.
Arpège data plus extra data (Meteosat-8/SEVIRI  radiances to start with) are considered. The initial
choices have been made  by performing two test periods of 1 month and 15 days. A  discussion
concerning the choice of the background error covariance matrix will be presented. Emphasis will
furthermore be made on the specific use of SEVIRI data and on their  impact  on precipitation
forecasts at mesoscale.

The goal is to obtain at least as good conventional scores over Western Europe as with Arpège,
plus a beneficial effect on short-range wind, temperature and precipitation forecasts. The retained
solution offers such an improvement, with better precipitation “scores” at least up to 12 hours. In
2005, this assimilation cycle will be improved by more frequent updates and additional algorithmic
facilities.

2. Choice of the background error covariance matrix

2.1 Theoretical aspects

2.1.1 3D-Var formalism

The formalism of the variational analysis follows closely the work in ARPEGE/IFS (Courtier et.
al, 1994).

The analysis xa represents the atmospheric state which is the best fit between the background xb

(usually taken as a 6 hour forecast) and the available observations stored in the y vector. The cost
function is written with an incremental formulation :
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Where  x is the increment defined by the difference between  xa and  xb;  B is the background
covariance error matrix defined in the next section;  R is the observation covariance error matrix
composed of instrumental errors and errors in the observation operator H . It is usually taken as a
block diagonal matrix since observations are supposed to be uncorrelated horizontally (values for
SEVIRI are given in section 3.2); d is the innovation vector which represents the departure between
the observations and the background model state interpolated in observation space :

d = y - H(xb)



H being the observation operator that represents the model state in the observation space. The
latter operator can be strongly non linear and contains for satellite radiances i) the fast radiative
transfer model RTTOV-7 (Saunders and Matricardi, 1999), which allows to retrieve the brightness
temperature Tb from surface pressure and temperature and from vertical profiles of temperature,
humidity and ozone, ii) a horizontal interpolation operator to position the control variable profiles
on observation locations, iii) vertical interpolation and extrapolation operators allowing to position
these profiles on RTTOV vertical levels. H is the tangent linear operator of H in the vicinity of the
background state xb.

The variational problem is solved by calculating iteratively the cost function (1) and its gradient: 

  dxJx
1T1T1 RHHRHB   

Convergence is obtained after || Jx  || reaches a fixed minimum.

2.1.2 The B matrix

As showed in Eq. (1), the  background error covariance matrix  B filters  and propagates  the
information given by the increment. Thus, it plays a key role in data assimilation and needs to be
carefully chosen. Berre (2000) has proposed for ALADIN a new multivariate formalism adapted
from Parrish et. al (1997) and Derber and Bouttier (1999) for global NWP systems. This formalism
uses linear balance relationships between errors of different physical quantities computed from
statistical regression, with an extra balance relation for specific humidity. The use of regressions
allows to obtain balance relationships which are representative of the area of interest. Thus, this
method seems well suited for assimilation purposes at mesoscale in any domain. The statistical
relations read :

 = 
 MHu

(T,Ps) NHPu + (T,Ps)u

q = QHRu + S(T,Ps)u + qu

where (,  ,  (T,  Ps),  q)  are forecast  errors of vorticity,  divergence, temperature and surface
pressure, and specific humidity on model vertical levels ; the subscript  u stands for unbalanced
(total minus balanced) fields.
M, N, P, Q, R and S are vertical balance operators relating spectral vertical profiles of predictors

and those of the predictands. They are deduced from homogeneous and isotropic auto-covariance
and cross-covariance matrices (the detailed formulation and the impact of this assumption on the
spectral covariance formulation can be found in Berre (2000)). H is a horizontal balance operator
obtained by  linear  regression  that  transforms  spectral  coefficients  of  vorticity   into  those  of
balanced geopotential Pb. Balanced geopotential is supposed to be the balanced part of Pt, which is
the linearized mass variable deduced from (T, Ps) by the linearized hydrostatic relationship (Parrish
et al. 1997). These regression coefficients can be related to the percentage of explained variances of
each total field by its predictors and to the strength of the statistical link.

Separating predictors into balanced and unbalanced parts allows to provide an independent set of
variables better suited for the 3DVar analysis. The background error covariance matrix  Bu in the
predictor space  is  indeed taken  as  block diagonal,  each  block consisting  of  the  vertical  error
covariances for each predictor and for each wavenumber :
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The total background error covariance matrix B is then retrieved in the analysis space :

B = KBuKT

With:
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where the subscript T stands for the transpose and I is the identity.

2.2 Choice of the B matrix

Three different  methods have been  used  to  estimate  the regression coefficients  defining  the
background error covariances :

 The  standard  NMC  method  (Parrish  and  Derber,  1992) that  computes  the  model  error
covariances from statistics on sets of differences of model forecasts for the same validating
time (36 and 12 hours forecasts in our case). 3 months of daily ALADIN forecasts (used as a
dynamical adaptation of ARPEGE at 10 km horizontal resolution) have been used for that
purpose.

 The “lagged-NMC” method (Široka et al., 2002) which follows the same approach as the
standard NMC method, except that the short term run uses almost the same lateral and initial
conditions as the long term run. This allows to reduce the large scale variance and to get
sharper analysis increments more adapted for mesoscale assimilation
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 The “ensemble Jb” (Stefanescu etal., 2005, Berre etal., 2005) computed from an ensemble of
Aladin forecasts with initial conditions from an ensemble of Arpège analyses. The sample is
composed of two pairs of 6 hour forecasts over 48 days that are extracted from the ensemble.
Their difference is then computed which gives  96 elements in the sample. This approach
allows to represent the effect of the analyses and of the short range forecasts in a more
accurate way. 

The three different B matrices deduced from these methods have been tested by running three
complete assimilation cycles (with 4 assimilations per day) using ALADIN 3DVar during 1 month
(june 2003). Forecast scores for temperature (not shown) display a strong negative bias around the
tropopause for the lagged-NMC and the ensemble method. Studies have demonstrated that this bias
was brought during the model  integration,  not during the  assimilation step.  The mean vertical
background error variances are plotted in Fig. 1 for each of the control variable of the model. With
the appropriate a posteriori calibration, these variances are comparable in shape and in intensity
except  for  the  temperature  in  the  high  troposphere.  This  explains  why  forecast  scores  on
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Fig 1 : Mean vertical standard deviations of the background errors for humidity,
temperature, wind divergence and vorticity (from top left to bottom right) for different

estimation method (see text for details). The REDNMC factor allows to perform a
posteriori callibration. Thin dashed lines represent variances obtained with the

ensemble method using different REDNMC factors (1.2, 1.5, 1.8 and 2.1).



temperature for the run that uses the standard NMC do not present any bias around the tropopause:
its larger background error variances at these levels allow a better correction of the bias with the
successive assimilations of high troposphere observations like radiosondings and/or AMSU-A data.
However, this method does not represent the effects of the analysis and of the short forecast ranges
in an accurate way, and therefore it produces large vertical and horizontal correlation lengths that
are  not  well  suited for  data  assimilation  at  regional  scale.  As  a  consequence,  the  total  error
variances of the two other methods have been corrected for further experiments in order to allow
the data assimilation to correct the model temperature bias. The resulting experiment that uses the
ensemble  B matrix  with  this  a  posteriori  calibration  showed  better  forecast  scores  against
radiosoundings than the others (not shown). The ensemble B also possesses correlation lengthscales
which are in between those of standard and lagged NMC, and therefore the ensemble B appears as
a reasonable compromise, with the “most likely” structure functions. Thus, this formulation has
finally been chosen for ALADIN 3DVar.

Further research will be devoted in future to re-calibrate more thoroughly the error variances,
possibly using a more objective a posteriori technique.
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2.3 The CNTRL experiment

In order to study the relative impact  of SEVIRI data within the ALADIN 3DVar,  a control
experiment (CNTRL hereafter) has been run. This experiment has the following characteristics:

 Following the results displayed in the previous section, it uses the ensemble B matrix.

 The computational domain covers Western Europe with a 10 km horizontal resolution and 41
vertical levels, with layers of 50 m to 2 km depth.

 It assimilates every 6 hours the same complete set of observations as ARPEGE at the time of
the experiment within an assimilation window of +/- 3 hours to ensure a maximum of variety
and coverage  of  observations.  These  observations  are  among  others  ground based  data,

a) b)

 
c) d)

 

Fig.2 : Assimilation statistics over the ALADIN domain for the july 2004 test period : rms errors of
(obs-guess) (plain lines) and (obs-analysis) (dashed lines) for a) ARPEGE and b) ALADIN against

temperature radiosounding and c) ARPEGE and d) ALADIN against AMSU-A onboard NOAA-16 data
(the vertical axis denotes channel number). For ALADIN (right panels), black lines correspond to

CNTRL and the red lines the experiment that uses a lagged-NMC B matrix.
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aircraft measurements, radiosoundings and polar-orbiting satellite radiances from AMSU-A
and HIRS.

A test period of 15 days with 4 daily assimilations has been performed from the 6th to the 22nd of
July, 2004. 36 h forecasts have been run from each analysis time. 

To validate this experiment, statistics on the assimilation have been performed for the whole
period of evaluation and compared to statistics obtained with ARPEGE  on the same domain.
Results  for  temperature  measured  by  radiosoundings  and  AMSU-A  onboard  NOAA-16  are
displayed in Fig. 2. The curves of rms errors present the same pattern for the two cases. The (obs-
guess) rms error against temperature observed by radiosoundings is slightly larger for ALADIN,
indicating that the model errors are propagating more quickly during a 6 hour forecast with a higher
horizontal  resolution  and  a  smaller  timestep.  However,  more  information  coming  from  the
radiosoundings are taken into account during the 3DVar assimilation process for ALADIN, the
difference  between the  (obs-guess)  and  (obs-analysis)  rms error  curves  being  larger  than  for
ARPEGE. For ALADIN, these figures confirm also that the choice of a proper  B matrix is very
important: statistics plotted for the experiment that uses the “lagged-NMC” B matrix show indeed
much larger (obs-analysis) errors. The fact that the two curves of (obs-guess) rms errors are closer
for the 2 formulations seems to indicate that a lot of information brought by the 3DVar vanishes
after 6 hours of forecast.

This point is confirmed by the forecast scores against radiosoundings plotted in Fig.  3. The
scores of CNTRL have been computed relatively to ALADIN used as the dynamical adaptation of
ARPEGE (called DA hereafter) (i.e without data assimilation scheme). CNTRL presents a weak
bias reduction (1 m) in the stratosphere for geopotential height after 12 h of forecast. The positive
impact for the temperature in the analysis, all over the troposphere, is however lost after 12 hours.
A weak degradation of the bias of approximately – 0.1 K can be seen below the tropopause and
seems  to  propagates  downward  with  time.  Scores  on humidity  show approximately  the  same
behaviour than for temperature but shifted downward. Finally, the use of cycled 3DVar analyses
allows also to reduce the standard deviation of the wind vector up to 0.8 ms-1 in the analysis, with a
maximum in mid troposphere. For all the parameters, the additional information which is brought
by the Aladin analyses (compared with the Arpège analyses information) is lost after 12 hours of
integration : the model produces from these initial states forecasts that are not better statistically
than ALADIN runs based on the Arpège analyses. Emphasis on precipitation forecasts will be made
in the next section.
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DA.r12/TP – CNTRL.r12/TP
(15 cases, 06/07/2004 12UTC -> 22/07/2004 12UTC)

Std Dev RMS BIAS

Fig. 3 : Forecast scores of DA vs. radiosoundings minus CNTRL vs. radiosoundings over the ALADIN
domain for the july 2004 test period. Left column is the standard deviation, middle the rms errors and right the

bias. Green isocontours denote positive impact of CNTRL.
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3. Impact of Météosat-8 SEVIRI raw radiances

In Montmerle (2004), 4 successive hourly assimilations of SEVIRI raw radiances in ALADIN
3DVar have been performed to study the contribution of its high temporal resolution on cloud cover
prediction. It has been shown that it allows to take into account the response of the environment to
explosive meteorological systems such as storms. In the present report, we focus on the impact that
SEVIRI data could have in the ALADIN 3DVar  with an operational configuration, i.e for cycled
assimilations every 6 hours.

3.1 Presentation of the product

Since May 2004, the CMS (Météo-France/ Centre de Météorologie Spatiale, Lannion, France) is
sending to Toulouse a SEVIRI/MSG product devoted to ALADIN studies. This product is sent in
GRIB format every hour and is composed of different fields at full-resolution covering all European
ALADIN domains :

 The 8 IR SEVIRI channels, from 3.9 to 13.4 
 The associated date, lat/lon position, angles of sight
 A cloud type (CT hereafter) and the cloud top pressure with the associated quality flags.

As  described in the  next section,  the  latter  fields permit  to keep in the assimilation process
channels whose weighting functions peak above the cloud top. These cloud products have been
developed  by  CMS in  the  SAF/NWC MSG framework.  Complete documentations  about  this
SAF/NWC can be found at  http://www.meteorologie.eu.org/safnwc/ .  The CT product contains
information on the major cloud classes : fractional clouds, semitransparent clouds, high, medium
and low clouds  (including  fog) for  all  the pixels  identified as cloudy  in  a  scene.  The set  of
thresholds to be applied depends mainly on the illumination conditions, whereas the values of the
thresholds themselves may depend on the illumination, the viewing geometry, the geographical
location and NWP data describing the water vapour content and a coarse vertical structure of the
atmosphere. 

Briefly, The CT classification algorithm is based on the following approach : 
 Main cloud types are separable within 2 sets: the fractional and high semitransparent clouds

from the low/medium/high opaque clouds. Spectral and textural features are used to separate
these 2 classes: (T10.8 – T12 ) and (T3.9 – T10.8) brightness temperature difference (in night
time conditions only),  R0.6 visible  reflectance (in day time),  variance of T10.8 coupled to
variance R0.6 in daytime conditions.

 Within the first set, the fractional and high semitransparent clouds are split using (T8.7 – T10.8 )
and in R0.6 daytime conditions.

 The opaque clouds are distinguished through the comparison of the window channel T10.8 to
ARPEGE forecast  brightness temperature at  several  pressure levels using RTTOV radiative
transfer model (Saunders and Matricardi, 1999).

Fig. 4 gives an example of this product and its associated cloud top pressure for the 18th of July
2004. It has to be noticed that no separation between cumuliform and stratiform clouds is currently
done in the CT product.
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a)

b)

Fig. 4 : a) Cloud types and b) cloud top pressure for the 18th of July, 2004.

0  non processed
1  cloud free land
2  cloud free sea
3  land contaminated by snow
4  sea contaminated by snow
5  very low and cumuliform clouds
6  very low and stratiform clouds
7  low and cumuliform clouds
8  low and stratiform clouds
9  medium and cumuliform clouds
10  medium and stratiform clouds
11  high opaque and cumuliform clouds
12  high opaque and stratiform clouds
13  very high opaque and cumuliform

clouds
14  very high opaque and stratiform clouds
15  high semi-transparent thin clouds
16  high semi-transparent meanly thick

clouds
17  high semi-transparent thick clouds
18  high semi-transparent above low or

mediul clouds
19  fractional clouds
20 undefined

CLOUD TYPES

CLOUD TOP PRESSURE



3.2 Pre-processing of the data

The SEVIRI radiances assimilated in the configuration of ALADIN 3Dvar presented in this report
are pre-processed in the following way : 

 To keep the observations relatively uncorrelated,  one pixel out of 5  is extracted from the
database, which gives approximately a 25 km horizontal resolution over France, and thinning
boxes of 66*66 km2 are applied during the screening

 The near IR 3.9  and the ozone 9.7 channels are blacklisted. The broad 3.9 channel is not
used because RTTOV has troubles to simulate it (Roger Saunders, personal communication)

 Since the domain of interest is relatively small, a constant bias is used as a first hypothesis for
the remaining channels. The following values are used :

Bias = (0, -2.8, 0, -0.6, 0, -0.05, 0, -0.3)

 The observed brightness temperature  error for each channel has an empirical value, based on
measurement errors and errors due to RTTOV : 

o = (1.05, 1.7, 1.7, 1.05, 1.05, 1.05, 1.05, 1.05)

The uncertainty of the humidity estimation in the troposphere leads to take a larger o for the two
WV channels.
 A quality control is applied to reject data whose (obs-guess) value exceeds the sum of the

background and the observation error variances (b and  o respectively) times an empirical
constant  : 

     222
/1/ bob

bxHy  

 The CT product presented in the previous section is used to select channels following its
value :  the low peaking channels IR 8.7   ,  10.8   and 12   are kept  only in clear sky
conditions,  the 13.4   is also kept above very low clouds and the two WV channels are
considered even above mid-level clouds.

3.3 Impact on analyses

To compare with the CNTRL experiment presented in section 3.3, an experiment that presents the
same characteristics than CNTRL but with SEVIRI radiances added (SEV hereafter) has been run
during the same period of July 2004. Assimilation statistics plotted in Fig. 5 show that a lot of
information coming from the 6 assimilated channels is taken into account in the analyses. The (obs-
analysis) rms errors over the whole test period are indeed much lower than the (obs-guess) ones.
The relative error decrease is however less pronounced for the 13.4  channel as noted in M2004
which is probably due to the broader shape of its weighting function and/or the choice of a non
optimal observation error variance. The mean biases have values less than 0.2 K which seems to
justify the values of the constant bias correction.
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3.4 Monitoring

Monitoring has been performed and results are plotted on Fig. 6 for the six assimilated channels.
It shows firstly a strong negative bias of about –2.6 K for the WV 6.2   channel which is well
corrected by the flat bias correction. As for the 3.9  channel which is blacklisted, this bias is due to
its  broad spectral  resolution  that  is  badly  taken into  account  by  RTTOV. The  bias  corrected
channels present very stable features during all the period. A diurnal cycle is visible for the biases
and the number of active data for the low peaking channels. For each analysis time, about 1500
observations from the WV channels, 1000 for the 13.4  and between 500 and 1000 for the three
other channels are considered in the variational process. The (obs-guess) rms error presents also a
weak oscillation for the WV 6.2   that coincides with two peaks of convective activity at the
beginning and at the end of the test period.

3.5 Impact on forecast

3.5.1 Forecast scores

As  for  CNTRL,  forecast  scores  have  been  computed  relatively  to  the  dynamical  adaptation
version of ALADIN (DA) and are plotted in Fig. 7. For the geopotential height, the assimilation of
SEVIRI data reduces the bias against radiosoundings of about 4 m between 12 and 24 h of forecast
above 600 hPa, and increases it slightly below. This impact induces a negative bias on sea level
pressure during the forecast which is difficult to explain since no negative bias is present in the
analyses. For the temperature, SEV implies a decrease of rms error on all vertical levels before 12 h
and up to 24 h near 300 hPa. A negative bias is however present from the start above 300 hPa and
in the middle troposphere after 6 h. The rms error for humidity is slightly improved before 6 h of
forecast and up to 12 h near 400 hPa. The analyses for this quantity show however small biases at
all vertical levels that propagate downward with time. Finally, SEV exhibits a larger analysis fit to
the observations than CNTRL   in mid to high troposphere, but slightly worse wind forecast scores.

12

Fig. 5 : Assimilation statistics for the SEV experiment for the July 2004 test period. The vertical axis
denotes the channel number, the left panel the RMS error and the right panel the bias between (obs-

guess) (plain line) and (obs-analysis) (dashed line) brightness temperature.



Globally, the scores of CNTRL against radiosoundings have been slightly degraded. This can be
explained by the fact that the large amount of SEVIRI data added in the assimilation process has
slightly taken away the analysis from radiosoundings observations which are the main source of
observation in CNTRL. To give better weight to the different observation types, the tuning of the
observation error variances will be undertaken in the near future, following the work of Chapnik
(2004) .
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Fig. 6 : Monitoring for the 6 assimilated SEVIRI channels for the SEV experiment from the 6th to the 18th

of July, 2004. Histograms on bottom of figures (associated with the right vertical axis) represent the
number of active data that enter the minimization.
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DA.r12/TP – SEV.r12/TP
(15 cases, 06/07/2004 12UTC -> 22/07/2004 12UTC)

Std Dev RMS BIAS

Fig. 7 : as Fig. 3 but for the SEV experiment.
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3.5.2 Total rainfall forecast

 Case of the 18  th   of July 2004 :   

The total rain forecasted between 6 and 12 hours of lead time by DA, CNTRL and the SEV
experiments from the 00 UTC analysis are plotted on Fig. 8 and compared to rain gauge values
over France. DA missed the NE/SW orientation of the main rain band. CNTRL produces the good
orientation and the SW part of the line seems realistic, although a little bit too south. The  use of
SEVIRI data allows to forecast the observed 2nd cell of intense precipitations located in the NE part
of the line with a slightly  overestimated amount (> 20 mm). The maximum over the Bordeaux
region is  however located too south but  with an amount of 40 mm comparable to rain gauge
observations. The secondary line of precipitation is also quite well captured over the NE of France
with realistic shape and amount.

To understand why SEV produces the observed second cell of intense precipitation in the north-
eastern part of the line contrary to CNTRL, increments of humidity and temperature at 700 hPa of
the  00 UTC analysis  have  been plotted for the two experiments  in Fig.  9.  The  most  striking
difference  between the  two  is  that  increments  produced  by  SEV  present  more  realistic  and
mesoscale patterns than for CNTRL where the main source of information seems to come mainly
from radiosoundings.  In particular,  SEVIRI data  are  cooling  and humidifying  the  mid  to  low
troposphere pre-convective area located upstream of the frontal rain band over western France
which produces intense rain 6 hours later. 

Fig. 8 : Rain gauges observation (top right) and simulated total rainfall between 12
and 6 h of forecast for the 18th of July 2004.

As plotted on Figs. 10 and 11, a large amount of IR radiances coming from SEVIRI is taken into
account  in the  assimilation process  compared to ATOVS data  for example.  Depending on the
analysis time, the ratio of the number of data that enters the screening for these two observation
types is varying between 10 and 25 (Fig. 10). It has however to be noted that for the CNTRL and
SEV, ATOVS data have been assimilated using the screening features of ARPEGE. For HIRS for
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instance, 1 pixel out of 5  have been extracted and thinning boxes of 250*250 km2 have been
applied which is not comparable to SEVIRI (Fig. 11). 

In the near future, the impact of higher density ATOVS data will be tested in the 3DVar using two
complementary approaches:

Fig. 9 : Humidity increments (top panels) and temperature increments (bottom
panels) for CNTRL (left) and SEV (right) for the 18th of July 2004 at 00 UTC.

Fig. 10 : Number of radiances entering the screening for the 18th of July 2004.
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 Extraction and thinning at higher horizontal resolutions
 Use of the EARS (Eumetsat ATOVS Retransmission Service) data that are already used in

the operational ARPEGE suite. Their shorter reception time delay allows indeed to get more
data within the +/- 3 hour assimilation window considered in the ALADIN 3DVar.

 Case of the 8  th   of July 2004   : The total rain forecasted between 6 and 12 hours of simulation by
CNTRL and SEV compared to rain gauges and DA are displayed on Fig. 12. DA produces
unrealistic large amounts (over 40 mm) of rain over NE of France contrary to the two 3DVar
experiments that are more comparable to observations. CNTRL reproduces well the shape and
intensity of the northern part of the N-S oriented line of heavy precipitations located in eastern
France,  whereas  DA  totally  missed  it.  The  addition  of  SEVIRI  data  allows  to  enhance
realistically precipitations in its southern part with amounts up to 20 mm and to produce light
rain over the centre of France that are observed by rain gauges.

 Case of the 22  nd   of July, 2004   : for that case, DA underestimates strongly the precipitations that
occur over the western part of France (Fig. 13). The use of a cycled 3DVar allows to correct this
failing. Shapes and intensities of the precipitating cells as forecasted by SEV seem moreover in
better agreement with rain gauge observations and rain rates derived by radars over the sea (not
shown) where amounts bigger than 30 mm were measured.

a) b)

 
c) d)

 

Fig. 11 : Active data for the 18th July 2004 at 00 UTC for a) SEVIRI WV 6.2 , b) SEVIRI IR
10.8 , c) HIRS channel 12 and d) HIRS channel 4.
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Fig. 12 : same as Fig. 8 but for the 8th of July 2004.

Fig. 13 : same as Fig. 8 but for the 22nd of July 2004
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3.5.3 QPF scores

The following Quantitative Precipitation Forecast (QPF) scores were computed for the July test
period for different thresholds x: 

Consider the table:

Sim<x Sim>x
Obs<x A B
Obs>x C D

The following QPF scores are defined:

Frequency Bias: FBIAS = 
DC

DB




 = (number of forecast > x)/(nb of obs. > x)

Equitable threat score: ETS = 
   

    BCADDCBACB

CBDA




Probability Of Detection: POD = 
DC

D


 = (nb of obs > x & nb of for. > x )/(nb of obs > x)

False Alarm Rate : FAR = 
DB

B


 = (Nb of overerestimated forecast)/(nb of forecast > x)

The observations used to compute the scores are the 6 hour total  rainrates measured by rain
gauges. 

The two detection scores (ETS and POD) displayed in Fig. 14 are higher for the experiments that

are using an assimilation scheme. The ETS is comparable for CNTRL and SEV and shows values
almost two times greater than DA for the 5 mm threshold. The addition of SEVIRI data permits to

Fig. 14 : QPF scores for DA, CNTRL and SEV computed for the whole July period for the
total rain forecasted between 12 and 6 h from the 00 and the 12 UTC analysis time (see
text for definition of the scores). Precipitation thresholds  are 0.1, 1, 2, 5, 10 and 30 mm.
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perform a better detection of precipitating events mostly for the 2 and the 5 mm thresholds, with
respective POD of 0.46 and 0.23, compared to 0.34 and 0.16 displayed by CNTRL. However, this
better detection is made to the detriment of the FBIAS : SEV produces too much precipitations for
all thresholds. For small thresholds, the overestimation of the number of simulated precipitating
pixels shown by DA and CNTRL is accentuated for SEV. For thresholds greater than 5 mm, the
FBIAS are comparable for the 3 experiments although slightly greater than 1 for SEV. Finally, the
FAR is greater for SEV for the 30 mm threshold. Since a very small number of observed/simulated
pixels are characterized by values greater than this threshold, QPF scores are weakly representative
at this level.

Assimilating SEVIRI  data using the first  configuration defined  in  section 4.2 seems thus to
produce too much precipitation spatially, particularly light rain. The amount of information given
by these radiances during the assimilation step will be weakened in order to limit this drawback
through the tuning of the observation error variances and/or the use of larger thinning boxes.

4. Spin-up  characteristics  of  the  proposed  data  assimilation  cycle

Figures 15 and 16 show the time evolution of surface pressure in the first 6 hours of integration,
for the situation of July 22nd (an active case from the 2 week period). Three points are displayed:
one point in the lateral boundary relaxation zone (5 points from the edge),  one in the gulf of
Biscaya (thus, over sea), one over the Dolomits (Alps). With the chosen settings for digital filtering
(a non-incremental Dolph-Tchebychev filter, with stop-band edge period 1.5h and time span 35mn),
two main characteristics can be stressed:
•  the model surface pressure is fairly well balanced after 1-3 hours of integration. Before this lead

time, low frequency oscillations probably do exist, although their impact on the scores or quality
of meteorological fields is difficult to assess. Case studies on 1-3h lead time precipitations have
shown some irregularities on the precipitating patterns (too wavy structures, misplaced kernels).
After 3 hours of lead time, the case studies rather confirm the spin-up evaluation displaying
meteorologically acceptable fields. Note that  without digital filtering, a significant extra noise
appears in the first 3 hours and later (not shown), which forbids a total removal of any filtering
for the time being.

•  Over orography, a more abrupt initial adjustment occurs, with an almost 2*dt variation. This
kind of reaction seems to remain local, as it was not noticed to propagate to remote areas.

A  by-side conclusion of this evaluation is that we do promote the evaluation of the short-range
forecast scores and case studies starting from 3 h lead time. Especially, in addition to the large-scale
synoptic scores used presently in Arpège and Aladin DA, we propose to compare the forecast at a
hourly or 3-hourly basis with surface mesonet observations.  This would already be a valuable
diagnostic as many traditional scores only are available at  12-hourly basis,  which is  the main
frequency for TEMP data.

In future, a continuous evaluation and work will be devoted to the spin-up question. This work
will include firstly fine diagnostics and a survey of the model spin-up as the data assimilation
system evolves (more observations, new cost function ...), and a survey and testing of additional
initialization devices (balance constraints, incremental digital filters, the impact of the coupling data
choice).

Fig. 15 : Time series of surface pressure in Pa for 2 model points: lateral boundary relaxation zone
(red) and Gulf of Biscaya (green). 9 model iterations represent approximately 1 hour of integration

(dt=415.385 s).
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Fig. 16 : Time series of surface pressure in Pa for 1 model point: over the Alps/Dolomit region
(blue). 9 model iterations represent approximately 1 hour of integration (dt=415.385 s).
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5. Conclusions and future work

Results  of  studies  devoted  to  the  implementation  of  a  pre-operational  complete
assimilation/forecast suite at regional scale using ALADIN and its 3DVar have been shown. A first
and essential step has concerned the choice of the background error covariance matrix, the so-called
B matrix, that allows to filter and to spread out the information brought by each type of observation
during  the  assimilation  process.  Compared  to  the  NMC-type  of  formulations,  the  B matrix
computed  from  an  ensemble  of  ARPEGE/ALADIN  analyses/forecasts  has  shown  the  best
compromise for data assimilation at regional scale: mesoscale correlation lengths and appropriate
vertical correlations. A control experiment has been run during two test periods to test the impact of
the use of a cycled assimilation scheme compared to the actual operational version of ALADIN
which is simply the dynamical adaptation of the global model ARPEGE. This control run was using
a  3DVar  with  the  ensemble  B matrix and was  assimilating  every 6  hours  a  complete set  of
observations within a +/- 3 hours assimilation window. The following general conclusions arised
from this test experiment :

•  Conventional scores match those of Arpège 4D-VAR  over Western Europe. There is an impact
on large scale scores (“output statistics”) when the B matrix is changed (“input statistics”).

•  Marginal  positive  impacts  have  been  shown  on  forecast  scores  against  radiosoundings  :
compared to the dynamical adaptation,  the rms errors remain slightly  reduced after  12 h of
forecast for specific fields and levels only. In general however, the improvement of the initial
state  is lost in a statistical sense,  using conventional observational networks as a reference.
Corresponding scores are indeed neutral which seems to indicate that after this delay the model
is building solutions that are statistically comparable no matter what the initial conditions are. 

•  Precipitations are improved qualitatively and quantitatively for forecast lead times between +3
and +12 hours.  Before  (0-3 h),  spin-up/spin-down processes  are  probably  active  and more
investigation  would  be  necessary.  For  the  time  being,  we  have  decided  to  maintain  non-
incremental digital filter initialisation in both the assimilation cycle and in production forecasts.
We have however decreased the strength of the filter, in a manner similar to DF blending,
following the Prague experience.

SEVIRI data have then been added to this  control experiment to study their  relative impact.
Channels 3.9  and 9.7   have been blacklisted, 1 pixel over 5 has been used, a constant bias has
been  applied  for  each  channel  and  empirical  error  variances  have  been  chosen  in  the  first
configuration. The cloud type classification computed by the CMS in the SAF/NWC framework
has been used to keep data non contaminated by clouds in the variationnal process, which includes
channels that peak over the cloud top. The monitoring shows stable features for all channels during
the whole test period. A lot of information coming from SEVIRI radiances is taken into account in
the analyses through the 3DVar, producing realistic increments. Results deduced from the 15 day
test period are encouraging notably for the short term (i.e < 12h) precipitation forecast, especially
when activity was under-estimated, where the addition of these kind of data allows to simulate
realistic  precipitation  patterns  in  shape  and  intensity.  Forecast  scores  are  slightly  degraded
compared to the control experiment probably because of the large amount of additional data that
slightly move away the analyses from radiosoundings. Moreover, QPF scores have shown that the
experiment that includes SEVIRI radiances has better rain detection scores but produces spatially
too much light precipitations.

One priority for the E-suite version will thus be to tune the error statistics and/or the thinning to
lower the relative impact of SEVIRI in the analyses. Methods based on the use of the DFS (Degrees
of  Freedom  for  Signal)  related  quantities  will  be  applied  to  improve  covariance  matrices
(Desroziers and Ivanov, 2001; Chapnik etal., 2004). In parallel, the use of additional ATOVS data
will be considered, using radiances coming from EARS (Eumetsat ATOVS Retransmission Sevice)
and extracted with a better sampling.  In particular, the impact of AMSU-B data is  one major
concern.  Finally,  the cloud top pressure product  sent  by the  CMS and a  convection detection
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algorithm will be used to compute proxy humidity profiles for convective clouds for assimilation
purposes.

The first configuration of ALADIN 3DVar (including SEVIRI radiances) is scheduled to go into
E-suite hopefully around March 2005. 

The further  improvements  for 2005/6  include  the variationally formulated  coupling with the
Arpège analysis (so-called Jk), the FGAT  computation of innovations (at appropriate time), the
testing of a new humidity control variable (with more Gaussian error statistics), a more refined
balance constraint (beta-plane, non-linear and omega equations), the inclusion of mesonet surface
data and the testing of a more frequent analysis frequency (3 hours). The system will of course
continue to benefit  from the ongoing increase  of  Arpège  data,  possibly with specific  thinning
parameters for the regional scale. In parallel,  the algorithm will need to be further adpated and
shaped toward the requirements of the Arome model, including the cycling of specific surface
fields, the proper treatment of extra dynamical variables and, at a much later stage, the inclusion of
microphysical fields into the Arome control variable.
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6. Appendix: evolution of E-suites in spring 2005

We list here the main characteristics of the experimental suites run in spring and summer 2005,
with a quick scientific overview:

• Version 1 (V1): CY29T1_bf.03 with reduced DFI (TAUS=5400 s, NSTDFI=5). All sets of
Arpège observations (Ps synop, buoys, aircraft airep/amdar/acars, paob/AMV, radiosonde data,
pilot soundings, cleared radiances RAD1C) but not yet QuikSCAT wind data. In addition,
Météosat-8 SEVIRI radiances also are assimilated, with a uniform and constant (simple) bias
correction. Version 1 has run from March 23rd 0 UTC until May 22nd 18UTC. Main results from
the V1 suite are:

• an increased bias and RMS error on mean sea level pressure, by about 0.2 hPa. This error
affects all forecast ranges from 3 hours onwards.

• Too strong precipitations (factor 2 to 3 !) at 6 and 12 hours.
• Too wet analyses (relative humidity at 850 hPa or 500 hPa)
• the occurrence of more « Aladinades » in the assimilation suite has not been noticed (a

good news, given the previously mentioned shortcomings).
• Version 2 (V2): CY29T1_op1, with code corrections for surface data thinning and SEVIRI bias

correction and blacklisting. DFI are set back to dynamical adaptation (TAUS=10800 s,
NSTDFI=9). All sets of Arpège data are used, plus 2m temperature and relative humidity from
synop. SEVIRI radiance biases are now « dynamically » corrected using 4 predictors (2
geopotential depths of atmospheric layers, surface temperature, total water vapour content; the
learning regression has been run over a sequence of specific screenings, through the V1 E-suite
period). Additionally, all infrared channels over land have been blacklisted, as their assimilation
was too much depending on the (poor) quality of the surface temperature of the model. The
relative weight of the observational weak constraint (Jo), compared to the background constraint
(Jb), has been reduced: REDNMC=1.8 in V1, decreased to 1.5 in V2, which amounts to a
changing of the background error variances from 3.24 to 2.25. Furthermore, the number of
iterations in the minimizer has been decreased from 70 (V1) to 50 (V2), which allows a correct
convergence with a reduction of the norm of the gradient by about 100 to 1000, but not a fully
horizontal curve on the Jo(iter) graphic. SEVIRI data are proven to considerably speed down
convergence. Compared to V1, the new bias correction for SEVIRI diminishes drastically the
assimilation of systematic biases from these data. The inclusion of 2m data dries off the PBL and
lower troposphere: this systematic, biased, behaviour is accepted as it counter-balances the wet
bias of SEVIRI data in the middle troposphere. DFI have been set back to « old » values as part
of the MSLP problem most likely is a result of remaining imbalances, that may be of small
intensity and fairly short period (1-2 h), but that probably were not efficiently enough filtered in
V1  (DFI are not perfect step functions ...) and therefore survived and prospered. The Jb
weighting reduction is performed to decrease the amplitude of analysis increments (in order to
diminish their possible imbalance effects and the observational bias problems). When tested
individually, these changes had the following impacts:

• DFI: half less MSLP bias and RMS increase, compared to dynamical adaptation
• SEVIRI bias correction: far less precipitation spin-down at 6 and 12 hours, better

humidity analysis compared with V1
• 2m T and RH: dryer low levels, less precipitations globally over the Aladin domain with

more dry spots (less « drizzle »)
• REDNMC and NITER/NSIMU: almost neutral

Version V2 has run in E-suite from June 2nd, 0 UTC until July 25th. V2 has become operational
on July 25th .

• Version 3 (V3): porting to cycle CY29T2. Additional changes are:
• new climatological files (improved input data from ECOCLIMAP, computation

performed with CY29T2/3 (?)).
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• Lopez microphysics scheme for large scale precipitations switched on, which imposes
the treatment of three extra fields in the assimilation cycle: cloud liquid water, ice, rain.
These fields are cycled, but not analyzed.

• ECMWF radiation scheme RRTM switched on for long wave radiation, but the solar
radiation scheme remains an older version of ECMWF's.

• New bias correction files for radiosoundings (same as in Arpège)
• miscellaneous technical adaptations to Arpège observation dataflow, as required by the

change from OBSOUL to BUFR format.

Acknowledgements :  The assimilation of  SEVIRI into 3DVar is  based on the outcome from
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