
GIT TOOLBOX VERSION 2.0 : MAIN NEW FEATURES

1) Introduction of a cache sytem :

A cache system has been set up on machines merou, beaufix (login nodes), prolix (login nodes), alose,
orphie, pagre, rason, in order to minimize the accesses to the metadatas Git/GCO's server. Those caches are
updated as soon as ...

– ...a git_post command is executed ;
– ...a branch is created using git_branch ;
– ...branch status (private/public) has changed by the use of git_public .

Note that this mechanism is already working with current server version.

2) The end of git_login ?

Authentification using git_login is now useless. It will be based on your system user name, all the possible
aliases (ex : mrpm602/khatib/elkhatibr) are – in theory... - taking into account (if it is not the case, ask GCO
for help!). However, if you are already authentified as a Git user on a machine, this authentification will
prevail until you disconnect using git_logout .

The git_login command can still be used to connect with any user name, provided you know this user's
password.

3) Faster... :

Direct consequences of point (1) :
– the git_view command is now very fast ;
– commands git_diff and git_history are faster (around 10%) is some cases, and much faster (around

70%) in other cases, it depends on concerned file..

4) ...but asynchronous :

Use of commands git_post & git_branch will work (more or less) asynchronously.

– With git_post, everything will be done asynchronously. The Git « fetch » operations, the update of
metadatas basis, and update of caches, will work in background. It is highly recommended to wait
for the report of git_post execution (by mail) before doing anything else !
However, it's optionally possible to use git_post synchronously with the option -sync .

– With git_branch, the creation of a branch if local Git repository will work synchronously. Only the
update of the base of metadatas and caches will be performed in an asynchronous way.

5) Let's break everything and start over !

You create a Git branch, you do modifications inside, you post them... and you realize too late that there are
mistakes in your posted modifications, even such an important number of mistakes you just want to remove
everything and start over ! Now it will be possible, and there is more than one way to do it !

– If the entirety of your 150 modified routines is OK, except for a few routines, you can use
git_commit with the new option –amend, equivalent to the option –amend of native Git command
commit. This option allows to amend the previous commit, even if it has already been posted. You

will have to post once again your modifications with git_post, using the new option –force,
otherwise it will not work.

– If you wish to ...
* throw away your whole branch ;
* return to a previous version of your branch ;
* return to a previous version of your branch, but just for some modified files ;
...it will be possible, even if you have already posted your modifications ! You will have to use the
new command git_reset, which replace git_rmbranch. In a case of a files' reset, it will be necessary
to perform git_commit and git_post .

– If you performed a reset of your branch with the native Git command reset, don't panic ! You just
have to post again your modifications with git_post, using the option –force .

– It wil be possible to join consecutive commits performed on a same branch with git_commit, using
the new option –join .

WARNING : if you really would like to perform such a massacre whereas your branch has already been
merged by GCO, please discuss with GCO before doing it...

6) Revision of the -k option of git_edit :

The -k option of git_edit didn't have a satisfying way of working... Now, using this option will have the
effect of saving current of edited file, outside of the repository. In addition, the option -r has been
implemented in git_edit : it allows to restore a previous version of a file, edited with -k option in the current
branch.

7) Disappearance of git_rmbranch :

As it was evoked in the point (5), the command git_rmbranch disappears. To remove the content of a branch,
you will have to use git_reset. To remove the branch itself, you will have to use git_branch with the new
option -d .

8) New commands

• git_cache_show :

This command returns the cache status for a branch, a commit, a version, a tag, or a git user.

• git_editor :

This new command allows to set user's editors for file edition, « diff », and merge of files, among the list of
defined editors returned by the command git_editor –list –long . If an editor is available on current machine,
but does not appear in this list, it will be possible to add it (and then to set it as default) with the option –add.

If you wish to use an editor without setting it as default, it is possible to use environment variables
GIT_EDITOR, GIT_DIFF_EDITOR, GIT_MERGE_EDITOR.

For information, default editors are the following :
– on merou : edit=gvim, diff=xcleardiff, merge=xcleardiff ;
– on beaufix & prolix : edit=gvim, diff=meld, merge=meld ;
– on alose/orphie/pagre/rason : edit=gvim, diff=gvimdiff, merge=gvimdiff.

• git_restore :

The new command git_restore allows to restore another version of a file (taken from its history), or the
previous version of this file. Not to be mistaken for the use of git_edit with -r option !

• git_sync :

The new command git_sync replaces git_fetch . It allows to synchronise current branch (or another one) with
the central Gir repository . A native Git fetch command is performed each time you execute git_sync . For
example, when you execute git_sync without any options, you will immediately knowif current branch...

– ...is up to date with respect to central repository (status : is up-to-date) ;
– ...is behind central repository branch (status : update needed) ;
– ...is ahead central repository branch (status:post needed) ;
– ...is desynchronized with cnetral repository branch (status:forced update needed).

• git_fmerge :

Despite its name, this new command has nothing to do with the old ClearCase script cc_fmerge !! This
command will help to overcome two problems inherent to the way of working of native Git command
merge :

– when you perform the merge of a branch in current one, you're going to merge all the commits
« seen » by branch to merge which have not been merged in current branch, not only commits
performed on branch to merge ;

– it is not possible to merge a selection of files from a branch, you have to merge the whole branch.

The command git_fmerge allows to overcome those two problems : it only takes into accounf commits
performed in branch to merge, and it's possible to merge a selection of files from this branch. It does not use
native git command merge, so this is not a real Git merge...

It is important to say that in large majority of cases the use of command git_merge is recommended !

• git_export :

The new command git_export allow to export...
– ...the content of current branch ;
– ...the content of git repository ;
– ...a source version : complete (i.e. : CY43), or incremental (i.e.:CY41T1..CY41T1_op1.15).

If you use option –tgz, you will get an archive file, not a files tree. Besides, it's possible to export sources on
a distant machine.

