
MITRAILLETTE: ENVIRONNEMENT FILES AND USER’S

GUIDE.

Karim YESSAD and Alexandre MARY (CNRM/GMAP).

November 7, 2017

Version v102017.
Valid for cycle 45T1.
Physics cf. cy42 op2.

Description stands for machine beaufix.

1

1 Introduction.

MITRAILLETTE is a software designed to do some basic validations on ARPEGE, ALADIN, AROME, and
versions used by ALADIN or HIRLAM partners. It is sheared between METEO-FRANCE, ALADIN partners
and HIRLAM partners. It is currently not used by ECMWF.

History can be summarized as follows:

• 1999: first version of MITRAILLETTE, for ALADIN only.

• 2008: portable version of MITRAILLETTE, for LAM models only.

• 2009: portable version of MITRARP, for ARPEGE only.

• 2014: merge of MITRARP and MITRAILLETTE.

• 2015: archive MITRAILLETTE environnement on GIT library.

• 2017: deep rewritings, to make modifications easier for everybody.

The current design of MITRAILLETTE allows to use it on different machines with minimal adaptations
concentrated in a reduced number of environnement files: that allows a minimal amount of work when scripts must
be adapted to a new machine. The design has been adapted in order that introduction of new configurations to
validate will be easy for everybody. It is desirable that everybody can contribute to MITRAILLETTE evolutions,
via GIT branch contributions, as it is already done for code source modifications.

This document explains how to use MITRAILLETTE, and provides information how to modify a configuration
or how to introduce a new configuration.

Additional procedures have been added, or are expected to be added soon:

• A procedure to update namelists from a cycle to another one, including namelist normalisation.

• A procedure to do some checkings on namelists.

• A procedure to compare experiment outputs between two cycles.

• A new procedure to launch experiments.

Use of the following procedures assumes that the following variables are defined in .bash profile of the machine
where validation is done:

export STATION=[name of the machine]

export AMAHOME=/home/gmap/mrpe/mary

and:

VORTEX_VERSION="olive"

VORTEX_INSTALL_DIR=${VEROLIVE_HOME}/vortex/vortex-$VORTEX_VERSION

export PYTHONPATH=$PYTHONPATH:$VORTEX_INSTALL_DIR

export PYTHONPATH=$PYTHONPATH:$VORTEX_INSTALL_DIR/src

export PYTHONPATH=$PYTHONPATH:$VORTEX_INSTALL_DIR/site

module load python

export PATH=$PATH:$PYTHONPATH:$VORTEX_INSTALL_DIR/bin

mocuba

MOCUBA_ROOTDIR=${AMAHOME}/public/mocuba-dev

export PYTHONPATH=$MOCUBA_ROOTDIR:$PYTHONPATH

export PATH=$MOCUBA_ROOTDIR/bin:$PATH

2 Modifications since the former version.

• Quasi-elastic NH configurations have been added (identifiers with NHQ).

• ARPEGE configurations using SURFEX have been added.

• Add some Eulerian NH 2D-model configurations.

• Add some configurations allowing to make climatologies with SURFEX.

• Removal of all NH configurations using ND4SYS=1. NH only uses ND4SYS=2 from now on.

2

• Removal of deep-layer models configurations.

• Removal of configurations using LELTRA=T.

• ARPEGE configurations 501 and 401: one job per script.

• Fix some ill-named identifiers.

• Minor cleanings in scripts and some configuration files.

• Switch on 42 op2 operational environnement.

• Each task now writes separate output files, the name of which starts by the task identifier.

• Each set of MITRAILLETTE tests writes output files in a separate directory.

3 File environnement and user’s guide for MITRAILLETTE.

3.1 Identifier.

The important thing to know is that each configuration to validate has an unic identifier. Each configuration
generally does one task. The identifier appears at several places. In particuliar:

• Protojob script has name: [identifier].pjob . Each protojob is sufficiently auto-documented, so it is useless
to repeat in this documentation a long and tedious inventory of existing configurations with all details
(contrary to what was done until 2016).

• Main namelist has name: [identifier].nam .

• Identifiers also appear in files mitraillette.x, PRO FILE..., profil table.

3.2 Distributed memory environnement.

We recall the different freedom degrees currently allowed for distributed environnement:

• Tunable parameters:

– NPROC IO: the number of processors used by the IO server.

– NBPROCS: the total number of processors (with the IO SERV processors).

– NBNODES denotes the number of nodes.

– NB THREADS is the total number of OpenMp threads.

NBPROCS must be a multiple of NBNODES. Product (NBPROCS/NBNODES)*NB THREADS must be
optimised in order to maximise performances.

• Other quantities:

– NPROC=NBPROCS-NPROC IO: the total number of processors (without the IO SERV processors).

• In the MITRAILLETTE script, NBPROCT, NBPROCA, NBPROCS respectively match NPROC,
NPROC IO, NPROC+NPROC IO.

• The A and B level of distribution (namelist variables NPRGPEW, NPRGPNS, NPRTRW, NPRTRV)
are no longer explicitly given; they do not appear in the MITRAILLETTE environnement and they are
automatically computed. We assume that all runs using NPROC>1 have both A and B level of distribution.

• Example: NBPROCS=64, NBPROCT=NPROC=60, NPROC IO=4, NBNODES=16, NB THREADS=10
means that there are 4 processors and 10 OpenMp threads used per node.

In the current release of MITRAILLETTE one (and only one) distributed memory profile must be chosen. We
do not distinguish any longer between monoproc and multiproc tasks: a task using 1 processor and 1 node is a
particuliar case of multiproc task.

3

3.3 List of files.

On the machine where validation is done, a directory ${HOME}/mitraille must be created. Under this directory
one must find the following files and call tree (example is given for cy45t1 validation):

• cy45t1 (dir)

• mitra home location

• mitraillette.x

• namelist/cy45t1/...nam

• PRO FILE.cy45t1 arpref

• PRO FILE.cy45t1 aldref

• protojobs/...pjob

• protojobs/beaufix/config CY45T1

• protojobs/beaufix/jobtrailer

• protojobs/beaufix/multiheader

• protojobs/beaufix/profil table

More details about these files:

• mitra home location: this environnement file contains the directory where the “mitraillette” procedure and
the above arborescence are stored.

• mitraillette.x is the main procedure launching MITRAILLETTE: it requires two arguments: the cycle (in
uppercase characters), and the PRO FILE file.

• The PRO FILE... are files containing the list of tasks to be launched and the executable to be used for
each task. Each line contains the task identifier, the original executable name, and the actual executable
name (complete path required) to be used.

• The directory “namelist/cy45t1” contains a list of namelists which should be norm-compliant (see
documentation (IDARC)).

• The directory “protojobs” contains a list of scripts.

• The directory “protojobs/[computer name]” contains a list of environnement files:

– files “config CY....”: give information about directories where some files must be found or stored,
modified definitions of some commands (doing file copy, task launching for example), and definition
of some other environnement variables.

– file “jobtrailer” contains the right version of “ja” (to have CPU and memory use).

– file “multiheader” contains the script header.

– file “profil table” contains seven columns giving information about number of processors, nodes,
threads, memory allocation, elapsed time CPU time required for each job.

All these files have a content which may depend on the machine.

The content of namelists and “protojobs..” scripts must not be machine dependent.

Additionally to that a directory is required to store executables and some other ones to store input files (initial
files, coupling files, climatological files for example).

Example of where to find the scripts and files (beaufix):

• Scripts can be found on yessad/mitraille/protojobs

• Namelists can be found on yessad/mitraille/namelist/[cycle]

• Files PRO FILE.. can be found for example on yessad/mitraille

• ARPEGE and LAM model files can be found on yessad/anal mitraille

• Files containing some constant values can be found on yessad/const.

• Files “config..”, “jobtrailer”, “multiheader” and “profil table” can be found on
yessad/mitraille/protojobs/beaufix.

4

3.4 How to launch MITRAILLETTE: classical method.

We consider the following example:

• Validate on machine “beaufix” a oper-type configuration 001 (task
“GM FCTI HYD SL2 VFE ARPPHYISBA SLT IOSV TL798S”); multiprocessor job only.

• The user is mrpx888.

• Validation on cycle 45t1.

• Use the executable mrpx888/executable/cy45t1 master-main.01.IMPI512IFC1601 ref.x.exe

Actions to be done:

• File mrpx888/mitraille/PRO FILE.cy45t1 aldref must contain the following line:

GM FCTI HYD SL2 VFE ARPPHYISBA SLT IOSV TL798S cy45t1 master-
main.01.IMPI512IFC1601.x.exe ${HOME}/executable/cy45t1 master-main.01.IMPI512IFC1601 ref.x.exe

• Launch MITRAILLETTE as follows (go to directory mrpx888/mitraille):

mitraillette.x CY45T1 PRO FILE.cy45t1 aldref

Some environnement files are created, with a experiment number (for example we consider that this four digit
number is 4407):

• On directory mrpx888/mitraille: rank file.x4407, job end.x4407, test.x4407, log file CY45T1 4407,
rank last.x4407, mitraillette.o4407, mitra home location.

• On directory mrpx888/mitraille/cy45t1/mitraille 4407:

GM FCTI HYD SL2 VFE ARPPHYISBA SLT IOSV TL798S.cjob

and its link chainjob 000

Launch procedure test.x4407: it launches chainjob 000 on “beaufix”. The output file will be stored on directory
mrpx888/mitraille/cy45t1/mitraille 4407.

This classical method (with job chaining) is expected to disappear in the future.

3.5 How to launch MITRAILLETTE: a new method with “checkpack”.

See below in section “Additional procedures” the paragraph about checkpack.py. More details will be given in
a future release of this documentation. It is expected in the future that this will be the only way left to launch
MITRAILLETTE.

4 Configurations identifiers.

Each configuration has an identifier which has several tens of characters. The old four-letter codes (ex: ah1e,
ar1t, mhlj) have been abandoned.

• Identifier starts by a group of 2 characters saying if model is a global or a LAM one.

– GM: global model, LECMWF=F.

– GE: global model, LECMWF=T.

– L3: 3D LAM model.

– L2: 2D LAM model (vertical-plane).

– L1: 1D LAM model (column model).

• The following group has generally four characters, giving configuration type (forecast, fullpos, etc).

– FCST: forecast without initialisation.

– FCTI: forecast with DFI initialisation.

– C501: configuration 501 (test of linear tangent code).

– C401: configuration 401 (test of adjoint code).

– C601: configuration 601 (make singular vectors).

– FPOP: off-line FULL-POS.

– FPIN: in-line FULL-POS.

– C923: configuration 923 to make climatologies.

5

– C901: configuration 901 to make ARPEGE files from MARS files.

– PGDI: make PGD file for input to configuration 923.

– PGDS: make PGD file using output of configuration 923.

– PGDC: make PGD file: conversion from LFI format to FA format.

– FPMF: make filtering matrices via FULL-POS setup.

– DILA: make dilatation-contraction matrices.

– RGRI: make reduced Gaussian grids.

• For configurations having a temporal advance, we need groups of characters describing dynamics features:

– Dynamical core: HYD (hydrostatic model), NHE (fully compressible non-hydrostatic model), NHQ (quasi
elastic non-hydrostatic model).

– Advection scheme: EUL (Eulerian), SL3 (three-time level semi-Lagrangian), SL2 (two-time level semi-
Lagrangian).

– Vertical discretisation: VFD (vertical finite differences), VFE (vertical finite elements).

– For NH model: RDBBC2 (RDBBC with ND4SYS=2), GWADV2 (GWADV with ND4SYS=2).

– Semi-implicit (SI), full predictor-corrector (PCF), cheap predictor-corrector (PCC).

– Use standard Legendre transforms (SLT), fast Legendre transforms (FLT).

– Use standard Fourier transforms (FT9), FFTW (FTW).

– Is there first-order uncentering (VESL), second-order uncentering (XIDT), no uncentering (NDEC).

– Is there SLHD diffusion (SLHD), static SLHD diffusion (SSLHD), old SLHD diffusion (OSLHD), SLHDKMIN
> 0 (MSLHD).

– COMAD activated (MAD).

– IO server activated (IOS or IOSV).

• For configurations having a temporal advance, we need a group of characters describing physics package:

– ADIAB: adiabatic job.

– ARPPHYISBA: upper-air physics is operational ARPEGE one; surface physics uses ISBA.

– ARPPHYSFEX: upper-air physics is operational ARPEGE one; surface physics uses SURFEX.

– AROPHYSFEX: upper-air physics is operational AROME one; surface physics uses SURFEX.

– ALRPHYISBA: upper-air physics is ALARO one; surface physics uses ISBA.

– SIM5PHYISBA: upper-air physics is simplified physics adapted to configuration 501; surface physics uses
ISBA.

– SIM4PHYISBA: upper-air physics is simplified physics adapted to configuration 401; surface physics uses
ISBA.

– VSIPHY: very simplified physics (Buizza).

– AROPHY1D: AROME physics adapted for 1D column model.

– ARPPHY1D: ARPEGE physics adapted for 1D column model.

• For LAM models, a group of characters ending identifier gives information on forecast domain.

– PGAL: ALADIN-PORTUGAL.

– FROC: domain covering South of France.

– FRAN: ALADIN-FRANCE.

– GRANLMRT: large domain covering Europe, with tilted rotated geometry.

– AROMALP1300: domain covering French Alps, resolution 1300m.

– OC0500: domain covering southern France, resolution 500m.

• For global models, information about resolution and geometry may be given by a group of characters ending
identifier.

– TL031U: truncation TL031, unstretched untilted geometry.

– TL030S: truncation TL030, stretched tilted geometry.

– TL798S: truncation TL798, stretched tilted geometry.

– TL1198S: truncation TL1198, stretched tilted geometry.

• FULL-POS configurations require information about the output domain:

6

– SPGAUSS: spectral output on Gaussian grid (formerly denoted 927).

– SPLELAM: spectral output on LELAM grid (formerly denoted E927 or EE927).

– GPGAUSS: grid-point output on Gaussian grid.

– GPLELAM: grid-point output on LELAM grid.

– GPLALON: grid-point output on LALON (lat-lon) grid.

– MODEL: input and output horizontal geometries are identical.

– SURFLELAM: grid-point output on LELAM grid for surface fields.

– CI, CIE: for outputs on LELAM domain, we give a precision if the output domain covers C+I (CI) or C+I+E
(CIE).

• LAM configuration E923 requires information about the output domain (example LELAM FRANCE,
LELAM LACE, LELAM REUNION, LALON FRANX01).

• Technical information:

– IO server activated (IOS, IOSV).

Example 1: L3 FCST NHE SL2 VFD AROPHYSFEX GWADV2 PCCMADIOS AROMALP1300 means:

• L3: this is a 3D LAM model.

• FCST: this is a forecast without DFI initialisation.

• NHE: forecast uses the fully compressible non-hydrostatic model.

• SL2: advection scheme is two-time level semi-Lagrangian.

• VFD: vertical discretisation uses finite differences.

• AROPHYSFEX: upper-air physics is AROME one; surface physics uses SURFEX.

• GWADV2: LGWADV=T, ND4SYS=2.

• PCCMADIOS: cheap predictor-corrector scheme is switched on; COMAD is switched on; IO SERVER is switched
on.

• AROMALP1300: forecast domain covers French Alps; horizontal resolution is 1300m.

We finally reproduce operational version of AROME on a smaller domain.

Example 2: GM FCTI HYD SL2 VFE ARPPHYSFEX SLT IOSV TL798S means:

• GM: this is a global model with LECMWF=F.

• FCTI: this is a forecast with DFI initialisation.

• HYD: forecast uses the hydrostatic model (deep-layer effects are ignored).

• SL2: advection scheme is two-time level semi-Lagrangian.

• VFE: vertical discretisation uses finite elements.

• ARPPHYSFEX: upper-air physics is ARPEGE one; surface physics uses SURFEX.

• SLT: use of standard Legendre transforms.

• IOSV: IO SERVER is switched on.

• TL798S: truncation is TL798, tilted, stretched (high resolution pole on France).

We finally reproduce something close to operational version of ARPEGE, with a smaller resolution.

Example 3: GM FPOF HYD SPLELAM CIE LAM2 means:

• GM: this is a global model with LECMWF=F (for departure geometry).

• FPOF: this is an off-line FULL-POS configuration.

• HYD: forecast uses the hydrostatic model (deep-layer effects are ignored).

• SPLELAM CIE: output geometry is a spectral LELAM one, covering C+I+E.

• LAM2: additional appendix in order to distinguish between close identifiers.

We finally reproduce something close to a E927 FULL-POS configuration to make LAM files from ARPEGE
ones.

7

5 Examples of configurations modifications: a short user’s
guide.

5.1 How to introduce a new configuration?

• Define a new identifier: the identifier must comply the rules of existing identifiers.

• Reference to this new configuration must be added in the following files: mitraillette.x,
PRO FILE.currentcycle aldref if LAM configuration, PRO FILE.currentcycle arpref if global model
configuration, profil table. Order of configurations must be the same in all these files.

• Appropriate profiles must be given in file profil table. It is desirable to have an elapsed time limited to
10 mn for validation.

• Namelists used by this new configuration must be provided, and enter directories “namelist” and
“namelist ref”. Name of main namelist is [identifier].nam . Additional “.selnam” namelists may be required
(for example for configurations using FULLPOS on domain LALON, SURFEX). Namelists must be norm
compliant (see documentation (IDARC)).

• Protojob used by this new configuration must be provided, and enter directory “protojob”. Name of
protojob is [identifier].pjob . Design of this protojob must comply the general design (see z GM frame.pjob
or z L3 frame.pjob). Please remember that $ECP can be a copy or a symbolic link, $CP is always a copy.
“cp” (with or without antislash) are forbidden; “rm” and “cat” require an antislash. Commands “ftget”
and “ftput” are forbidden.

• New input files may be required, and provided in this case.

• Contributor must check that:

– the new introduced configuration works.

– existing configurations still work.

5.2 How to remove an obsolete configuration?

• Reference to this configuration must be removed from the following files: mitraillette.x,
PRO FILE.currentcycle aldref if LAM configuration, PRO FILE.currentcycle arpref if global model
configuration, profil table.

• Namelists and protojobs of this configuration must be removed.

5.3 How to modify an existing configuration?

• Need to modify namelist? modify it.

• Need to modify input files? provide new input files; modify protojob.

• Need to modify distributed memory environnement, memory, time: update the appropriate configuration
files.

• Files “config..” may require an update when a new version of PGD, ecoclimap or RRTM files is necessary.
This is the case for example when a new version of SURFEX is implemented (need to use a new set of
ecoclimap files).

5.4 How doing porting on another machine?

• A new machine name must be introduced (new directory under “protojobs”).

• A new set of files “config..”, “jobtrailer”, “multiheader”, “profil table”, must be provided.

• Normally, mitraillette.x does not need to be modified.

• Normally, content of namelists and protojobs must not be modified.

6 Additional procedures.

Most of these procedures can be also used on OLIVE/VORTEX namelists and operational environnement
namelists. When not precised, these procedures are present on machine beaufix.

8

6.1 Namelist normalisation (procedures xpnam and alignnamelist).

Procedure xpnam allows to put namelist elements in alphabetical order.

xpnam [namelist].nam

Procedure alignnamelist (directory yessad/ykproc) allows to put namelist elements in alphabetical order, and
to put the same elements as the reference (empty) namelist “vide”.

alignnamelist vide [namelist].nam

6.2 Namelist update (procedure tnt.py).

This procedure is under VORTEX environnement
(/home/mf/dp/marp/verolive/vortex/vortex/bin/tnt.py), and uses some directive files stored under GIT.
Example, to update namelists from cy45 to cy45T1.

tnt.py -d directives_updnam_cy45_to_cy45t1.py [namelist].nam

It is possible to update all namelists with appendix .nam as follows:

tnt.py -d directives_updnam_cy45_to_cy45t1.py *.nam

And for help about tnt.py usage:

tnt.py -h

6.3 Namelist checkings (procedure nam check consistency.py).

This procedure does additional checkings in namelists (for example it checks that attribute LPT of GFL does not
appear in NAMGFL). It is stored under GIT (and also under mary/public/nam check consistency.py) and uses
some VORTEX environnement. Examples of use:

nam_check_consistency.py [namelist].nam

nam_check_consistency.py *.nam

6.4 Individual output comparison (procedure compare listings.py).

This procedure is under VORTEX environnement
(/home/mf/dp/marp/verolive/vortex/vortex/site/arpifs listings/bin/compare listings.py).
This procedure does output comparison for one MITRAILLETTE configuration. Examples:

Norms comparison:

compare_listings.py -n listing1 listing2

Jo-Tables comparison:

compare_listings.py -j listing1 listing2

Jo-Tables comparison, print only the maximum differences for each step:

compare_listings.py -j listing1 listing2 -x

And for help about compare listings.py usage:

compare_listings.py -h

9

6.5 Global output comparison (procedure ciboulette.py).

This procedure does output comparison for a set of MITRAILLETTE configurations.

For example we want to compare 45t1 outputs with 45 outputs:

• Experiment number for ARPEGE experiments is 3195.

• Experiment number for ARPEGE references is 3193.

Under directory “mitraille”, launch command:

ciboulette.py cy45t1 cy45 -t ’mitraille_3195’ -r ’mitraille_3193’ -s _arpref

This procedure produces the file 45t1-45 arpref.html

And for help about ciboulette.py usage:

ciboulette.py -h

6.6 Running jobs in parallel (under progress...): procedure checkpack.py.

Developpement of this procedure is still under progress. More details will be given in a future release of this
documentation.

For help about checkpack.py usage:

checkpack.py -h

7 Content of GIT library:

The MITRAILLETTE environnement is now stored on GIT library, like the ARPEGE code. It is stored under
the project “validation”, directory “validation/mitraille”.

• Directory “doc”: contains the present documentation, and file “history difnam” which summarizes namelist
evolutions since cycle 36.

• Directory “namelist”: contains the namelists for current cycle.

• Directory “namelist ref”: contains the namelists for a reference cycle. Allows to rerun a reference for
comparison.

• Directory “procedure”: contains mitraillette.x and some automatic procedures allowing to update
namelists.

• Directory “pro file”: contains PRO FILE files.

• Directory “protojobs”: contains protojob files and some configuration files. Directory protojobs/beaufix
contains some configuration files.

What is stored under GIT must allow to do a set of runs with the current cycle, and the same runs with a
(supposed validated) reference cycle.

All GIT users are welcomed to make evolve MITRAILLETTE by giving GIT branches.

Remark about reference operational cycle which is taken into account for validations:

• For developpement cycles, the reference operational cycle is the one which is operational at the time the
current cycle is labelled. For cycle 45t1, the reference operational cycle is cycle 42 op2.

• For operational cycles, the reference operational cycle is the current operational one.

10

8 Expected future modifications:

At least two new versions of MITRAILLETTE will be done in 2018. Expected modifications are:

• Update some FULLPOS configurations to make them more consistent with the current operational use.

• Update the LACE-ALARO configuration.

• Validating more configurations without DFI, and less with DFI, could be studied.

• All technical proposals from A. Mary which could be implemented.

• In particuliar, simplifications in protojobs: for example processor naming must be consistent in protojobs
and procedure mitraillette.x.

A new validation tool is expected to validate bricks of 4DVAR assimilation: it will use Python language, and it
will be stored under a new directory in project “validation” (the name is still to be decided). First developpements
are expected late 2018, or maybe rather in 2019.

9 References:

• (IDMITR) Vanda Sousa da Costa, A. Deckmyn, A. Dziedzic, N. Bouzouita and G. Bölöni, 2006:
MITRAILLETTE: procedure to validate a release of the code Aladin, version 4. Internal note, available
on “http://www.cnrm.meteo.fr/gmapdoc/” (topics “Coding, phasing, porting”).

• (IDARC) Yessad, K., 2017: Library architecture and history of the technical aspects in ARPEGE/IFS,
ALADIN and AROME in the cycle cycle 45T1 of ARPEGE/IFS. Internal note, available on
“http://www.cnrm.meteo.fr/gmapdoc/” (topics “Coding, phasing, porting”).

11

