
Pratial implementation of the "LESIDG" funtionality in Aladin(SI sheme with non-uniform linearized map-fator)P. Bénard, K. Yessad�le : designLESIDG.tex 13 Otober 2006ABSTRACTIn this memo we hoose, among several possible methods, one pratial method for implementing inAladin the LESIDG funtionality, that is, the possibility of using a SI sheme with a non-uniform versionof the linearized map-fator. The algorithms for the hosen method are then desribed. In Appendix Aare some remarks by Karim on spetral omputational aspets. In Appendix B is presented an algorithmfor a robust �tting of the map fator.
1 IntrodutionLESIDG is the name of the future logial swith for ativating a version of the SI sheme of Aladin inwhih the squared linearized map-fator is not taken to a onstant (m∗2), as urrently, but rather to a
y-varying �eld m

2(y) optimally �tted to the exat value m
2. This funtionality is therefore the LAMounterpart of the LSIDG funtionality for the global strethed model. The aim of this funtionality in aLAM is to prevent possible instabilities arising from the expliit treatment of quite large residuals linkedto the map-fator linearization in the SI sheme, when the map-fator itself has big variations insidethe LAM domain. Namely, a possible instability of the model with the urrent SI sheme is antiipated(through analyses) when using the NH version of Aladin with a large domain (Voitus, 2004).Similarly to the global approah, the �t m

2 of the squared map-fator m
2 is performed in the sub-spaeof the spetral spae whih is restrited the two �rst (largest sale) Fourier omponents, in order to keeptraatble omputations. For the global LSIDG sheme, the �t was exat, due to the speial form of themap-fator in the spherial-harmonis representation, but with the projetions available in the Aladinmodel, the �t annot be exat, and will therefore be only a best approximate.Note that here we restrit the possibility of using the LESIDG funtionality to the ase of a Meratorprojetion (being rotated-tilted or not). The LESIDG funtionality ould be used for some partiularases of other projetions existing in Aladin (unrotated Lambert or Polar Stereographi), but the bene�twould be almost vanishing. For instane, for a Lambert projetion m is a �eld whih has variations alongboth the x and y oordinates of the LAM representation. Then a simple �t ofm along a unique oordinatediretion is not possible in the general ase. However, we ould imagine to allow the appliation of theLESIDG funtionality for Lambert projetion in the ase of small domains when the referene longitude isat the enter of the domain, beause in this ase, the variation of m is almost restrited to the y diretion(if the domain is small enough, parallels are almost straigth lines along the x diretion, and meridiansstraight lines almost along the y diretion). But sine the domain must be small for the map-fator to bereasonably �tted in the whole domain, the advantage of the funtionality vanishes by nature.Conversely, in the Merator projetion, the map-fator m is always dependant on the y diretion only.We simply have :

m(y) = cosh
(y
a

) (1)where a is the earth radius, and y is the natural oordinate of the Merator projetion along the ordinatediretion : 1
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)] (2)where θ′′ is the apparent latitude of the projeted point. If there is non tilting/rotation, then θ′′ is thegeographial latitude (for more details on rotated-tilted Merator projetion, see Bénard 2004).The oordinate y has the dimension of a physial length and is the oordinate used along the apparentordinate axis for the LAM domain (the x oordinate is simply x = aλ′′ where λ′′ is the apparent longitude).On the apparent Equator (θ′′ = 0), y is numerially oinident with distanes measured diretly on theground of the (spherial) earth, e.g. :
dy|θ′′=0 = adθ′′ (3)2 Choosing a methodThe goal of LESIDG is two minimize the problems arising in the SI sheme from the expliit residuals ofterms involving the map-fator. In the SI sheme, the map-fator is involved through its square. Moreover,we know that the stability requires that the linearized map-fator is always larger than the atual one.Hene three guidelines are followed :(i) the total variation and the maximum value of m itself must be minimal inside the domain (for a givendomain-size).(ii) m

2 must be larger or equal than m
2 in the whole domain.(iii) m

2 must be optimally �tted to m
2 by the two �rst Fourier omponents, in the sense that themaximum deviation of (m2 − m

2) > 0 must be minimal.As a onsequene of the �rst point, the physial domain (C+I zones) must be entred on the apparentequator (θ′′ = 0) of the projetion. This, in turn, implies that the map fator is 1 at the enter of thephysial domain (C+I), and has the same maximum value at the (apparent) "northest" and "southest"edges of the physial domain.One pratial problem for implementing LESIDG is that the map fator is de�ned (and has to be �tted)only over the physial domain (C+I zones), while the Fourier omponents are de�ned on the whole domain(C+I+E zones). This auses some di�ulties for spetral omputations in omparison to the global ase.Assuming the (C+I+E) domain is de�ned by y ∈ [−ymax, ymax], let us de�ne an adimensional oordinate
Y varying from 0 to 1 in the whole (C+I+E) domain :

Y =
1

2

(
1 +

y

ymax

)
⇒ Y ∈ [0, 1] (4)The line Y = 0 orresponding to the "apparent southest" edge of the total (C+I+E) domain , and theline Y = 1 orresponding to the "apparent northest" edge of the total (C+I+E) domain. In the spetralpart of the model and in the spetral transforms, the y-diretion Fourier omponents are de�ned over theinterval Y ∈ [0, 1], Therefore, m2 writes :

m
2 = ℜ[a0 + z1 exp(2iπY ) + z2 exp(4iπY )] (5)In the latter expression, a0 is a real number, while z1 and z2 are omplex numbers. Similarly, a given�eld is de�ned in the spetral spae by its representation in the Fourier basis :

ψ = ℜ

[
N∑

n=0

ψ̂n exp(2inπY )

] (6)where ψ̂n are omplex numbers (exept for zero, where it is real).Let us now de�ne the physial part of the domain (C+I) by Y ∈ [0, 1 − 2ǫ] (hene, ǫ is the half-width ofthe E zone in terms of the Y oordinate). 2



2.1 Multipliation by the squared map-fator in spetral spaeFor the global strethed model, due to the speial form of the deomposition of m in the basis of spherialharmonis, the multipliation of a �eld by the squared map-fator in the spetral spae is quite simple,as seen in Eq. (8) of Yessad and Bénard (1996) : for a given spetral omponent ψ(m,n) of a �eld ψ, theorresponding spetral omponent of [
m

2ψ
]
(m,n)

involves only the neighbouring omponents ψ(m,n−2),
ψ(m,n−1), ψ(m,n), ψ(m,n+1) andψ(m,n+2). It is important to note that in the Legendre Polynomials repre-sentation, the spetral omponent for a given total-wave-number n is purely real. This ontrasts withthe Fourier omponent for a given zonal-wave-number m, whih is omplex by nature (this omplex ishowever treated as a pair of real numbers labelled "m" and "-m" in ARPEGE). As a onsequene, Eq. (8)in Yessad and Bénard (1996) is a purely real equation whih indi�erently applies to positive of negativevalues of m, resulting in a 5-diagonal form of the orresponding operator. This latter property is lostfor Aladin if the squared map-fator has itself a truly omplex Fourier representation, beause real andimaginary parts of the map-fator and of the �eld then have to mix themselves in addition to the mixtureof adjaent meridional wave-numbers. This in the general ase, results in an operator whih an be seenas 9-diagonal, and ating in a spae whih enompasses both real and imaginary parts of the spetralrepresentation (for more details see Karim's note �in frenh� in Appendix A).2.2 First method : blind oding ... but ostlyIf we would like to stik to the simple and diret methodology used in the global model for LSIDG, wewould use the deomposition of m

2 given by (5) and then de�ne diretly the matrix operators requiredfor the SI sheme, in the spetral spae. These operators are twofold :- multipliation of a �eld ψ by m
2 : ψ −→ m

2.ψ- multipliation of a �eld ψ by the inverse of (
1 − αm2

) : ψ −→
(
1 − αm2

)
−1

.ψwhere α is a real number. These two operators appear in both H and NH ases.However, with this method, the map fator is not a symmetri funtion in the interval [0,1℄, i.e. theminimum of m is not loated at Y = 0.5. As a onsequene, for the optimal �t of m
2, (z1, z2) in (5) aretrue omplex numbers as illustrated in Fig. 1. In this plot, for the sake of larity, the �t is performed onlywith wave numbers 0 and 1 (i.e. z2 = 0). The thik line is the squared map fator, and the two dashedlines are the "os" and "sin" Fourier omponents whih must be summed to obtain the optimal �t. Thethin line is the optimal �t.
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Fig. 1 � Sketh of the �t of m2 in the spetral spae with the �rst method. The thik line is the squaredmap-fator m
2, the thin line is the (one-omponent) optimal �t m

2. The two dashed lines below are the"sin" and "os" Fourier omponents whih must be summed to obtain the optimal �t.3



In these onditions, as stated above, the omputation of the seond operator implies the inversion of 9-diagonal matries of size 4N+1 (one again, for more details on these omputational aspets, see Karim'snote in Appendix A, in frenh). The omputations in this ase appear to be dramatially di�erent fromthe global ase, where the omputations result in the inversion of 5-diagonal matries of size 2N+1. Theode for suh a method is not ready, and preparing this ode would represent a large work, and a largemodi�ation of the spirit of the method ompared to the global version. Moreover, although this methodwould result only in "slightly" heavier omputations (mostly in the setup), it woul require muh morestorage, sine twie more matries are needed, eah of them being roughly twie bigger in size (9-diaginstead of 5-diag).2.3 Seond method : ad ho and ... a bit unsoundIn order to esape the above di�ulty, one ould imagine to remove the problem at its origin, and aeptto de�ne the (C+I) domain as a bit unsymmetri with respet to the apparent equator, in order thatthe map-fator beomes symmetri when onsidered in the whole (C+I+E) domain. In suh a method,the apparent equator of the projetion would be loated at Y = 0.5 + ǫ. The (C+I) domain is then moreextended toward the southern apparent hemisphere, as seen in Fig. 2. In this method, the minimum of themap-fator is realized at the enter of the (C+I+E) domain, therefore the best �t ofm2 on (C+I+E) wouldbe ahieved for a Fourier omponent ontaining only "os" funtions (by symmetry). As a onsequene,the two abovementioned operators beome of a similar nature than their global ounterpart with LSIDG(i.e. the seond operator requires inversion of 5-diag matries with same dimension as in LSIDG).
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Fig. 2 � Same as Fig. 1, but for the seond method. Note the �t is optimal only when onsidered on the(C+I+E) domain.However, this method, although e�ient in CPU and storage, has several disadvantages. First it impliesthat the ratio between the width of the C+I domain and C+I+E domain is known very early in theourse of an appliation, that is, when EGGX is invoked for the �rst time to de�ne the physial domain :we would have to antiipate the width of the E zone as soon as we deide on whih physial domainwe would like to run the LAM. This is not in agreement with the spirit of the system for designingdomains and appliations with Aladin, and ould lead to pratial problems in some ases (for instane,trying to evaluate the impat of broadening the E zone would imply to ompulsorily hange the loationof the physial domain !). Morover, the physial domain would be unsymmetri around the apparentequator, thus violating the �rst requirement above. In addition, the �t obtained with "os" omponentsis optimal in the whole (C+I+E) zone, but there is no speial reason why to inlude the E zone in the�tting area, and when onsidered in the (C+I) area only, this symmetri �t is no longer optimal. Ofourse, the relative width of the E zone is exaggerated in the �gure, but this all these fats represent aninonveniene, espeially if we notie that this dissymetry (or its larger domain, aording to the adoptedpoint of view) signi�antly deteriorates the quality of the �t, as an be seen by omparing to Fig. 1.4



This method does not bring all the bene�ts we ould expet from the implementation of the LESIDGfuntionality. It is onstraining from a pratial point of view, and �nally rather inelegant. It should behosen only in ase nothing better is found.2.4 third method : looks strange, but �nally quite simple and e�ientIn this method, we try to keep the advantage of a physial domain (C+I) entred on the equator of theprojetion, the advantage of a best quality �t, and the advantage of simple and minimally-modi�ed SIoperators.For this, we apply a simple "translation" operator T , to all �elds ψ̃+ entering in the spetral spae(whih are indeed the RHSs of the SI system). This translation is the one whih brings the equator ofthe projetion [i.e. the enter of the (C+I) domain℄ from its initial position Y = 0.5 − ǫ to the enter ofthe (C+I+E) domain, at the position Y = 0.5. The representation of physial domains in the spetralspae is illustrated in Fig. 3 and 4, for the untranslated and translated ases.
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Fig. 3 � Representation of the physial spae in the untranslated spetral-spae.
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Fig. 4 � Representation of the physial spae in the translated spetral-spae.Then in the spetral spae, all omputations are made with translated �elds. Doing this, the �elds beome5



onsistent with a translated version of m2 having its minimum value at the enter of the Fourier domain
Y = 0.5, hene being �tted exlusively with "os"�type omponents. As a onsequene, the operatorsinvolved in the SI sheme keep their relatively simple form, similar to the form ouring in the globalLSIDG funtionality. When the spetral omputations are ompleted, the �elds ψ+ (and their derivatives)are translated bak to their normal position by appliation of T −1.
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Fig. 5 � Same as Fig. 1, but for the third method.The situation of the map-fator with respet to "os" and "sin" Fourier omponents in the spetral spaeafter the translation is illustrated in Fig. 5. A physial �eld whih would exhibit a minimum at the enterof the (C+I) zone in the physial spae, would have its minimum at the enter of the �gure one in the(translated) spetral-spae.The spetral formulation of operators T and T −1 is quite simple and only involves a "loal" mixingof "sin" and "os" parts of eah individual Fourier omponent ψ(n,m) , without any interation withadjaent Fourier omponents ψ(n′,m′). These operator an be antiipated as easy to ode, and e�ientto apply. Implementing the appliation of these operators to all �elds at the very beginning (and veryend) of spetral omputations should also not be a big problem, due to their simpliity.The reason for doing the translation in the spetral spae rather than in the physial spae, where itwould seem to be "more natural" is threefold :- The translation in physial spae would probably be muh harder to pratially implement due to theparallel omputing segmentation : this would require the knowledge of values for grid-points whih arenot neessarily in the same "paket". Conversely, in the spetral spae, the translation proess is purely"loal" as mentioned above, and therefore, muh easier to implement.- If the translation was made in the physial spae, then only translated �elds would be available in thespetral spae. Sine the historial �les are written at the level of spetral spae and �lled with spetralvalues, these �les would neessarily ontain translated �elds, unless some speial operations are performedin order to prevent this.Doing the translations in the spetral spae, although strange at �rst glane, is �nally more natural, whenonsidering globally all the onstraints of the model.A last omment onerns the interest of applying T "globally", i.e. to all spetral prognosti vetors,instead of "loally", i.e. only when needed. In e�et we ould imagine that we still ontinue to work withnormal (untranslated) vetors in the spetral-spae, and that we just apply loally the sequene T , T −1to the involved vetor when an ourene of m
2 is enountered in the ode of spetral omputations (forone of the two operators mentioned at the beginning). This would minimize the plaes where the data ismodi�ed ompared to the ase LESIDG=.F. However, in terms of ode-management, this would probablybe not very interesting. The oneptual simpliity (readability) and the ode modularity would beomemuh poorer, and these parts of the ode would beome H/NH spei� although there is no speial reason6



for it. One ould argue that it would be more e�ient, at least if the ourenes of m2 operators are lessnumerous than the number of spetral prognosti variables. This is maybe true in the H mode, but notin NH mode, where many ourenes of the map-fator are indeed enountered in spetral omputations.Moreover, even in H mode, the bene�t would be small beause this represents a redution of the CPUby a fator 2/3 only for this transformation the ost of whih is antiipated as very small. Balaning thepros and ontras, the solution of a global transformation to all vetors seems to be more appropriate andmore rational.3 Coding aspets (disretization aspets3.1 Origin of indies in Fourier TransformsThe appropriateness of the implementation of the LESIDG funtionality requires an aurate plaementof the enter of the physial domain (C+I) exatly at the same plae than the enter of the segmentsused in the Fourier tansforms : the translation operator T must be arefully de�ned in order to insure anaurate �t of the map-fator. In other words the suess of LESIDG requires the aurate knowledge ofthe origin of the Y oordinate used in Fourier spae.The omments in Fourier transforms ode (FFT992) indiate that the Fourier vetor is : [X(0), ...,X(N-1)℄, and that the K-eth "os" Fourier funtions is COS(2*J*K*PI/N) with (J=0,...,N-1), thussuggesting that the Fourier segment atually starts at J=0. However, the problem is to know what isatually stored in the so-alled quantity "X(J=0)", when performing the Fourier Transforms. Is it the�rst value in the (C+I ) domain (the one alled X(JGL=1) in the grid-point part), or is it the last valueof the (C+I ) domain (the one alled X(JGL=NDGUX) in the grid-point part), or even something else ?Logially, the origin of "sin" and "os" Fourier omponents should be the position orresponding eitherto the indie J = 0 or J = 1 in grid-point part. Sine the ode is quite umbersome on this point, wehoose, by safety, to let this origin undetermined (i.e. tunable) and therefore, we de�ne a spei� variable
JORIG whih value should be either 0 or 1, and whih indiates the index of the origin of Fourier segmentsin grid-point vetors.4 ConlusionsThe transposition of the LSIDG funtionality from the global (strethed) model to the (projeted) LAMmodel an be made straightforward if some speial are is taken in order to allow a "symmetri" re-presentation of the map-fator in the spetral spae along the y diretion. This an be easily ahievedthrough additional translations of all spetral �elds at the very beginning and near the end of spetralomputations (but before writing historial �les for the inverse translation).In this ase, the methodology of the LESIDG funtionality beomes very similar to the one of the LSIDGfuntionality. The main di�erene is that the linearized map-fator m

2 is no longer equal to its exatounterpart, but only approximated through an optimal two-omponents �t. Due to the symmetry of m2over the y-Fourier domain, all operators involved remain 5-diagonal matries with a level of omplexityequal or smaller to that of the LSIDG sheme. Therefore, the same oding framework ould be kept forthe point of view of spetral linear operators.ReferenesBénard, 2004 : New "Rotated/Tilted Merator" geometry in Aladin. Internal GMAP note, availableat :http ://www.nrm.meteo.fr/gmapdo/IMG/ps/rotmer.psVoitus, F., 2004 : Liens entre la géométrie horizontale et le shéma semi-impliite dans les modèlesARPEGE, ARPEGE/ALADIN, et ARPEGE/ALADIN-NH. Rapport de Stage de Fin d'Etudes n° 851.Eole Nationale de la Météorologie, Toulouse.Yessad, K, and P. Bénard, 1996 : Introdution of a loal mapping fator in the spetral part of theMétéo-Frane global variable mesh numerial foreast model. Q. J. R. Meteorol. So.,122, 1701�17197



Appendix A : Karim's omputation sheetPreliminary note : Here MAPapprox is the *SQUARE* of the approximated map-fator.A.1 : First methodMAPapprox = MAP0 + MAP1C * C1 * os(2 PI Y)+ MAP1C * S1 * sin(2 PI Y)+ MAP2C * C2 * os(4 PI Y)+ MAP2C * S2 * sin(4 PI Y)ave C1**2 + S1**2 = 1; C2**2 + S2**2 = 1et deux autres relations liant (C1, C2, S1, S2)puisque (C2,S2) onerne des angles doubles parrapport à (C1,S1)Apres moult aluls ela doit nous donner(je ne garantis pas pleinement le signe des termesen S1 et S2 mais e qui est ertain 'est qu'onretranhe le terme en n+1 (resp. n+2) au terme en n-1(resp. n-2).[MAPapprox F℄ (m,n) = MAP0 F(m,n)+ 0.5 MAP1C * C1 * [ F(m,n-1) + F(m,n+1) ℄+ 0.5 MAP2C * C2 * [ F(m,n-2) + F(m,n+2) ℄+ 0.5 MAP1C * S1 * [ Fs(m,n-1) - Fs(m,n+1) ℄+ 0.5 MAP2C * S2 * [ Fs(m,n-2) - Fs(m,n+2) ℄Meme type de formule pour le premier index egal a 's'au lieu de '' (qui fournit [MAPapprox F℄s (m,n)).[MAPapprox F℄s (m,n) = MAP0 Fs(m,n)+ 0.5 MAP1C * C1 * [ Fs(m,n-1) + Fs(m,n+1) ℄+ 0.5 MAP2C * C2 * [ Fs(m,n-2) + Fs(m,n+2) ℄- 0.5 MAP1C * S1 * [ F(m,n-1) - F(m,n+1) ℄- 0.5 MAP2C * S2 * [ F(m,n-2) - F(m,n+2) ℄Meme type de formule pour le premier index egal a 's'au lieu de '' (qui fournit [MAPapprox F℄ss (m,n)).Les ommentaires qu'on peut faire sur es formulessont les suivants:- il n'y a plus separabilite des termes en F et Fs(resp. Fs et Fss) qui sont maintenant ouples.- Les termes en S1 et S2 sont affetes du signe +dans la premiere expression et du signe - dans laseonde.Matriiellement ela s'erit, pour "m" donne[MAPapprox F℄ = MAPapproxSYM (VECF,VECFs,VECFs,VECFs)+ MAPapproxANT (-VECF,VECFs,-VECFs,VECFss)ou par exemple VECF est le veteur des oeffiients F(m,n)MAPapproxSYM est la matrie symetrique:- de diagonale prinipale omportant des MAP0- de premiere diagonale laterale omportant des 0.5*MAP1C*C18



- de seonde diagonale laterale omportant des 0.5*MAP2C*C2MAPapproxANT est la matrie antisymetrique:- de diagonale prinipale omportant des zeros- de premiere diagonale laterale omportant des +/- 0.5*MAP1C*S1- de seonde diagonale laterale omportant des +/- 0.5*MAP2C*S2Pour les multipliations spetrales par MAPapprox, elase gere assez bien ar au lieu d'avoir une seule multipliationmatriielle par MAPapproxSYM (appel a MXPTMA) on en a 2(2 appels a MXPTMA, l'un ave MapproxSYM, l'autre ave MapproxANT,au prix de dupliations de tableaux)Pour les inversions de fateurs du style I - alpha MAPapprox'est une toute autre paire de manhe ar au lieu d'avoirune matrie penta-diagonale de dimension (NISNAX(m)+1)**2a inverser et a appliquer a 4 veteurs de longueur NISNAX(m)+1,on a une matrie a 9 diagonales (et non symetrique de surroitar il y a symetrie de ertaines diagonales et antisymetriedes autres), de dimension 4 * (NISNAX(m)+1)**2,qu'on applique a 2 veteurs de longueur 2*(NISNAX(m)+1).Cei oblige a reerire tout le ode pour les aluls matriiels(routines SUHER, SUHES, MXTURE, MXTURS) et par voie de onsequenetoutes les interfaes a es aluls. Cei nous vaut egalementla presene de tableaux plus volumineux.A.2 : Seond method(not doumented).A.3 : Third methodIl existe une transformation spetrale equivalentea une translation meridienne point de grille de longueur E/2(appliation d'une transformation matriielle utilisant desoeffiients Cn=os(2 PI n ee) et Sn=sin(2 PI n ee)ou ee = 0.5 * (largeur meridienne de E) / (largeur meridienne de C+I+E),"ee" etant exprimee dans la meme oordonnee que Y, .a.d. uneoordonnee apparente qui suppose l'equidistane des points;par exemple si on a 100 "latitudes" dont 10 pour la zone d'extensionalors ee=0.05):au prix d'un hangement de variable dans l'espae spetralon se ramenerait au as S1=S2=0, mais ela voudrait direqu'il faudrait faire une transformation vetoriellesur tous les hamps au debut de ESPCSI/ESPNHSI, etrefaire la transformation inverse a la fin de es memesroutines.Dans l'espae spetral translate, on a:MAPapprox = MAP0 + MAP1 * os(2 PI Y)+ MAP2 * os(4 PI Y)Soit F un veteur (non translaté) dansl'espae spetral, ave pour haque nombred'onde (m,n) les quatres oeffiients reels:F(m,n) = [F(m,n); Fs(m,n); Fs(m,n); Fss(m,n)℄9



Les oeffiients du veteur translate G(m,n)seront alors:G(m,n) = os(2 PI n ee) F(m,n) - sin(2 PI n ee) Fs(m,n)Gs(m,n) = sin(2 PI n ee) F(m,n) +os(2 PI n ee) Fs(m,n)Gs(m,n) = os(2 PI n ee) Fs(m,n) - sin(2 PI n ee) Fss(m,n)Gss(m,n) = sin(2 PI n ee) Fs(m,n) +os(2 PI n ee) Fss(m,n)La multipliation par M^2 pour le veteur G s'erit alors:[MAPapprox G℄xx (m,n) = MAP0 Gxx(m,n)+ 0.5 MAP1 * [ Gxx(m,n-1) + Gxx(m,n+1) ℄+ 0.5 MAP2 * [ Gxx(m,n-2) + Gxx(m,n+2) ℄ou xx represente indifferemment: , s, s ou ss.Les ommentaires qu'on peut faire sur ette formulesont les suivants:- il y a separabilite totale des termes en F, Fs, Fs et Fsspour les opérateurs faisant intervenir MAPapproxMatriiellement ela s'erit, pour "m" donne:[MAPapprox G℄xx = MAPapproxSYM (VEC_Gxx)ou VEC_Gxx est le veteur des oeffiients Gxx(m,n),MAPapproxSYM est la matrie symetrique:- de diagonale prinipale omportant des MAP0- de premiere diagonale laterale omportant des 0.5*MAP1- de seonde diagonale laterale omportant des 0.5*MAP2Pour les multipliations spetrales par MAPapprox, elase gere bien.Pour les inversions de fateurs du style (I - alpha MAPapprox)ela se gere bien aussi.Ensuite, vers la fin des aluls spetraux , il faut reveniraux veteurs non translatés, e qui se fait par la translationinverse.A.3 : Other omputational aspets and onlusionsL'essentiel des aluls onernant la prise en ompte de MAPapproxse fait dans l'espae spetral, qui ne onnait pas le deoupageC+I+E. Il y a quelques multipliations a prevoir dansl'espae point de grille: par exemple pour le modele hydrostatique10



la linearisation fournit un terme en MAP_REFSI * D', mais lapartie expliite des aluls point de grille ne onnait que ladivergene geographique D, qui vaut D = M**2 * D'Don MAP_REFSI * D' = (MAP_REFSI / M**2) * DMAP_REFSI est la valeur de referene de MAP=M**2 pour le semi-impliite.Dans ARPEGE:LSIDG=F: MAP_REFSI=**2, don MAP_REFSI * D' = (**2/M**2)*DC'est don (**2/M**2)*D qu'on trouve dans les aluls pdg.LSIDG=T: MAP_REFSI=M**2, don MAP_REFSI * D' = DC'est don D qu'on trouve dans les aluls pdg.Dans ALADIN:RSTRET, 'est la valeur maximale du fateur d'ehellesur C+ILESIDG=F: f. LSIDG=F d'ARPEGELESIDG=T: MAP_REFSI=MAP_approx,don MAP_REFSI * D' = (MAP_approx/M**2)*DC'est don le fateur (MAP_approx/M**2) qui va apparaitredans les aluls point de grille, e qui suppose de onnaitreM (alule dans le tableau GM) et MAP_approx (a aluleret a stoker dans un tableau SI_GMAPP egalementdimensionne ave NGPTOT).Comme les aluls point de grille ne sont faits que sur C+Iil n'y a pas besoin de aluler la valeur point de grillede MAP_approx sur la zone "E" et de toute faon la valeurpoint de grille va etre alulee ave la formule utilisantles MAP0, MAP1 et MAP2.Pour M, on n'a pas plus besoin de la representation pointde grille dans la zone "E", pas plus qu'on en a besoin pourLESIDG=F ou dans le restant des aluls.
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5 Appendix B : Algorithm for the �t of m
2 by m

2We assume that the relevant translation has been performed at the beginning of spetral omputations,as explained in setion 2, thus insuring that the physial �eld m
2 is entered in the spae of Fouriersegments de�ned by Y ∈ [0, 1]. Therefore, Y = 0.5 is assumed to orrespond to the plae where m

2reahes its minimum. However, the proposed algorithm is designed in view of beint quite robust and togarantee a proper �t even if this latter ondition is not ful�lled exatly. As a onsequene, we will assume,as a starting hypothesis that the map fator is "almost" entered in the (C+I) domain.As mentionned in setion 3 a "universal" solution is adopted here in order to garantee an easy tuning ofthe sheme with respet to the origin of Fourier segments in grid-point vetors : a tunable value of theorigin JORIG for the Fourier segment is de�ned as an extra variable of the problem. The value of JORIGmay be either 1 or 0.A last remark before beginning the design of the �tting algorithm is that the proposed algorithm shouldbe appropriate (i.e. should provide a relevant �t) even if the domain is not orretly entered at theapparent equator of the tilted Merator projetion. This last requirement is imposed for the sake ofrobustness, beause the environnement of Aladin allows bugs or "boulettes" to be made by users, and itis preferible to have robust algoritms in NWP.The data of the problem are :- JORIG, whih is a "tuning" parameter allowed to be 0 or 1.- NDGL, NDGUX, the dimensioning parameters for (C+I+E) and (C+I) domains.- m
2
j , the list of m

2 values on the latitudes of the (C+I) domain j ∈ {1, 2, ..., NDGUX}From now on, JGL always represents the index used in Aladin for desribing the (C+I) domain latitudes,with JGL ∈ (1, 2, ..., NDGUX). The non-translated oordinate Y introdued in the above setions, may bede�ned, in terms of model variables, by :
Y NT (JGL) =

JGL− JORIG

NDGL
(7)This oordinates always varies between 0 and 1 in the whole Fourier segment, and is 0 at the pointorresponding to the index JORIG.The real parameter ǫ introdued above writes :

ǫ =
1

2

(
NDGL− NDGUX+ 1

NDGL

) (8)and the translated oordinate whih we will work with, is de�ned by :
Y T (JGL) =

[
Y NT (JGL) − Y NT (JGL = 1) + ǫ

]
=

JGL− 1

NDGL
+ ǫ (9)The (C+I) domain is de�ned by Y T ∈ [ǫ, 1 − ǫ].We want to optimally �t m

2 by a ombination of funtions {
1, cos 2πY T , cos 4πY T

}, i.e. we want
(a0, z1 , z2) in (5) to be three real numbers. The onstraints are that m

2 is always bigger than m
2, andthat the maximum (positive) deviation (m2 − m

2) is as small as possible.We rewrite (5) in the following form :
m

2(a, b, r, Y T ) = a+ b
[
cos(2πY T ) + r cos(4πY T )

] (10)The values taken by m
2 on the points of the physial grid are :
m

2
JGL(a, b, r) = a+ b

[
cos 2πY T (JGL) + r cos 4πY T (JGL)

] (11)5.1 Positiveness of (m2 −m
2) at the edgesFirst, we notie that in ase of an exat entering, the optimal �t is always obtained when m

2 is equalto m
2, at the edges of the (C+I) domain, as illustrated in Fig. 6.This latter remarks allows to write a �rst onstraint whih relates a to (b, r) for an exat entering :12
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Fig. 6 � Case of an exatly entered �eld m
2. The domain represented horizontally is the total domain (C+I+E),i.e. Y ∈ [0, 1], the two vertial lines show the edges of the (C+I) domain. Thik line : (m2

− 1) ; thin line (m2 − 1),de�ned in the total domain ; the dashed lines joins the two maximums of (m2
− 1). The red (bottom) urve is theresidual (m2 − m

2). The values of domain parameters are NDGL=200, NDGUX=89,
a(b, r) = m

2
1 − b (cos 2πǫ+ r cos 4πǫ) = m

2
1 − m

2
1(0, b, r) (12)As outlined above, when using the LESIDG funtionality, the only allowed projetion is the rotatedMerator projetion. In addition, at the level of domain design (EGGX), this projetion imposes that thephysial domain (C+I) is entered around the apparent equator :

min
(C+I)

(y) = −max
(C+I)

(y) (13)or equivalently, the value of the map fator is exatly 1 for y = 0. However, an imperfet ful�lment ofthis property annot be totally exluded, due to roundo� error, or to any other ause. Hene, for the sakeof robustness, it is preferible to assume that the ondition is not neessarily ful�lled exatly. In suh aase of an imperfet entering of m around the physial domain, we notie that the optimal �t is alwaysobtained when the deviation (m2−m
2) vanishes at the edge of the (C+I) domain where m is the largest,as illustrated in Fig. 7.
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Fig. 7 � Case where the physial domain is not orretly entered. Same onventions as in Fig. 6.Therefore, for the sake of robustness, we rewrite (12) in a more general form :13



a(b, r) = max
[
m

2
1 − m

2
1(0, b, r) , m

2
NDGUX

− m
2
NDGUX(0, b, r)

] (14)A similar remark ours in ase of an imperfet translation T . In this ase, the map fator is symmetriin the (C+I) domain, but its minimum does not oinide with the one of "os" funtions, as illustratedin Fig. 8.
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Fig. 8 � Case where the translation T is not orret. Same onventions as in Fig. 6.Nevertheless, the above de�nition of a insures that the deviation (m2 − m
2) is always positive even atboth edges, in any of these two pathologial situations.5.2 Optimal �t (a, b) for a given value of rIn this sub-setion we assume a given value of r, and we seek the optimal value of b , i.e. the one whihinsures that the maximum deviation of δ = (m2 −m

2) is as small as possible, while positive everywhere.For a given b, we determine a using (14), whih insures positiveness of δ at the edges (C+I) domain. Thepriniple is that if b inreases, the minimum value of δ beomes negative, and vie-versa. For b1 = 0 theminimum value δmin of δ on the (C+I) domain (exluding the two edges) is positive. For large values of
b, as e.g. b2 = 2(1+m

2
max), the value of δmin is negative. Therefore, we an �nd the optimal value of b bya simple dihotomi proess, starting with these two values (b1, b2) stopping when the residual is smallerthan a hosen value. Then take the last value of b whih insures a positive value of δmin.Finally, this proess provides tho optimal b(r) for the given value of r.5.3 Optimal �t (a, b, r)We de�ne δmax(r) as the maximum (positive) value reahed by δ for a given value of r , when hoosing bas b(r) and a as a(b, r). The funtion δmax(r) is highly onvex, and has a unique minimum, as illustratedin Fig. 9.We start from two values r1 and r4 whih are ertainly smaller and larger than the optimum and weapply an iterative proess of desent along the gradient to �nd this optimum. Sine the funtion cosh(x)is more �at than the funtion cos(2πx) at x = 0, the optimum value of r is always positive, hene wean take r1 = 0 . At the other edge, we take r4 = (NDGUX/NDGL), whih is always larger than the optimalvalue. Then we de�ne r2 = (r1 + r4)/2 and r3 = r2 + 0.01(r1 − r4). We then replae r1 by r2 or r4 by

r3, depending on the sign of δmax(r3) − δmax(r2). This proess onverges quikly, and is robust for anyon�guration of the data.
14
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Fig. 9 � Typial shape of the funtion δmax(r). The on�guration is as in Fig. 6
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