Do we need NH model at 2.5 km resolution? (3D real cases) Jozef Vivoda André Simon Ján Mašek Slovak HydroMeteorological Institute ## Introduction - our goal for the near future is to run operational NWP model with horizontal resolution 2.5 km - both theoretical analyses and 2D academic experiments indicate, that at kilometric scales NH effects start to play an important role - but since these results were obtained in idealized (and sometimes meteorologically unrealistic) situations, it is important to evaluate impact of NH effects in full 3D model - for the moment it is not sure, whether NH model at 2.5 km resolution is inevitable ## Selected 3D cases - only two 3D cases will be presented: - 1. wind storm in High Tatra mountains (19.11.2004) - 2. ordinary cold front passage through Central Europe (16.11.2005) ## Cascade of models double nesting was used, driving model for high resolution integrations was operational ALADIN/SHMU (cycle al25t2, resp. al28t3_czphys): | horizontal resolution | $\Delta x = 9.0 \mathrm{km}$ | |---------------------------|------------------------------| | spectral truncation | quadratic | | domain size $(C + I + E)$ | 320 × 288 points | | number of vertical levels | 37 | | coupling frequency | 3 h | high resolution integrations used cycle al25t2 with back-phased NH developments (memory problem occured with cycle al29t2): | horizontal resolution | $\Delta x = 2.5 \mathrm{km}$ | |---------------------------|------------------------------| | spectral truncation | quadratic | | domain size $(C + I + E)$ | 300 × 200 points | | number of vertical levels | 37 | | coupling frequency | 1 h | # **Integration settings** • common settings: SL2TL temporal scheme, LADVF = .T. • model dependent settings: | | | 9 km, H | 2.5 km, H | 2.5 km, NH | |------------|-------|---------|-----------|------------| | LNHDYN | | .F. | .F. | .T. | | NVDVAR | | | | (3), 4 | | ND4SYS | | | | 1 | | extrapolat | cions | SETTLS | SETTLS | LPC_NESC | | NSITER | | 0 | 0 | 1 | | TSTEP | [s] | 400. | 60. | 60. | | SITR | [K] | 300. | 300. | 350. | | SITRA | [K] | | | 100. | | XIDT | | 0.05 | 0.05 | 0. | # **Integration domains** ALADIN/SHMU, $\Delta x = 9.0 \text{ km}$ ALADIN/SK25, $\Delta x = 2.5 \text{ km}$ # Wind storm in High Tatra mountains (19.11.2004) - rapidly developing cyclone moving quickly over south Poland to the east - advection of cold and dry air on its rear side (after front passage) caused a wind storm on leeward slopes of High Tatra mountains - wind blowing from NW reached its maximum strength around 15 UTC, causing extensive damage on S and SE slopes (broken trees, destroyed buildings, . . .) - \bullet wind gusts reaching 45 and 54 ms $^{-1}$ were reported - dry flow with strong winds over steep mountains is an ideal test case for comparison of H and NH dynamics # **Analysis at 12 UTC** # **Analysis at 18 UTC** (T,θ) and (Γ,r) , station Gánovce #### hydrostatic, 9.0 km (T,r) and (u,v), station Gánovce ## hydrostatic, 9.0 km (q,θ) and (θ,θ_e) , station Gánovce #### hydrostatic, 9.0 km (T,θ) and (Γ,r) , station Gánovce ## hydrostatic, 2.5 km (T,r) and (u,v), station Gánovce ## hydrostatic, 2.5 km (q,θ) and (θ,θ_e) , station Gánovce ## hydrostatic, 2.5 km # 10 m wind gusts – H run for +15 h at 2.5 km # 10 m wind gusts – NH run for +15 h at 2.5 km # 2.5 km orography + position of cross section line ω and θ , +15 h forecast ## hydrostatic ## non-hydrostatic, d_4 # Space cross section – d_3 versus d_4 at 2.5 km ω and θ , +15 h forecast non-hydrostatic, d_3 non-hydrostatic, d_4 (!) blows up after 33 hours # Ordinary cold front passage through Central Europe (16.11.2005) - this case was taken only to illustrate differences between H and NH models in common meteorological situation - cold front passing through Central Europe destroys low level temperature inversion which developed in stable anticyclone # Situation predicted by 9.0 km run T and ϕ at 700 hPa level, +24 h forecast # Situation predicted by 9.0 km run T and ϕ at 700 hPa level, +36 h forecast (T,θ) and (Γ,r) , station Wien ## hydrostatic, 9.0 km (T,r) and (u,v), station Wien ## hydrostatic, 9.0 km (T,θ) and (Γ,r) , station Wien ## hydrostatic, 2.5 km (T,r) and (u,v), station Wien ## hydrostatic, 2.5 km ## Conclusions for 2.5 km resolution - in extreme cases, there are detectable differences between H and NH runs - performance of H model is still satisfactory, but the slight tendency to overestimate vertical velocities can be seen - in common meteorological situations, differences between H and NH runs are unimportant - for the time being we do not have a case which would show necessity of NH model at 2.5 km resolution, but it does not mean that there is no such case ## Conclusions for 2.5 km resolution - in extreme cases, there are detectable differences between H and NH runs - performance of H model is still satisfactory, but the slight tendency to overestimate vertical velocities can be seen - in common meteorological situations, differences between H and NH runs are unimportant - for the time being we do not have a case which would show necessity of NH model at 2.5 km resolution, but it does not mean that there is no such case \Downarrow question whether we need NH model at 2.5 km resolution remains opened