Preparation of ALADIN-NH initial and lateral boundary conditions

Ján Mašek, Slovak HydroMeteorological Institute

Introduction

- depending on driving model, ALADIN-NH initial and lateral boundary conditions are prepared by configurations (E)E927:

E927	ARPEGE \rightarrow ALADIN
EE927	ALADIN \rightarrow ALADIN

- basically these configurations perform change of geometry including necessary horizontal and vertical interpolations
- when driving model is hydrostatic, they must also invent NH prognostic fields based on true pressure p and vertical velocity $w \equiv \dot{z}$

How to prepare namelist for $\mathrm{H} \rightarrow \mathrm{NH}$ configuration (E)E927?

- take namelist for $\mathrm{H} \rightarrow \mathrm{H}$ configuration (E)E927 and make following changes:
- specify that input FA file is hydrostatic:
\&NAMCTO
LNHDYN=.F.,
- use NH vertical discretization:
\&NAMDYN
NDLNPR=1,
- ask for NH fields in output FA file (n being the number of hydrostatic 3D dynamic fields):
\&NAMFPC
CFP3DF $(\mathrm{n}+1)=$ 'PRESS. DEPART^{\prime},
CFP3DF $(n+2)=$ 'VERTIC. DIVER',

What is stored in output FA file?

- from practical reasons, FA file does not contain directly NH prognostic variables, but their unscaled values:

S<lev>PRESS.DEPART	$\tilde{p}_{l} \equiv p_{l}-\pi_{l}$
S<lev>VERTIC.DIVER	$-g\left(w_{\tilde{l}}-w_{\tilde{l}-1}\right)$

- after being read from FA file, NH prognostic variables must be scaled (depending on choice of NPDVAR, NVDVAR)
- before being written to FA file, NH prognostic variables must be unscaled
- advantage of this approach is that FA header need not contain information about integration settings like NPDVAR, NVDVAR, SIPR, SITR

How are invented NH fields from hydrostatic initial/coupling state?

- NH initial/coupling state is assumed to be in hydrostatic equilibrium:

$$
\frac{\partial p}{\partial z}=-\rho g \quad \Rightarrow \quad p=\pi
$$

- vertical velocity w is set equal to hydrostatically diagnosed vertical velocity in the absence of diabatic terms:

$$
w=\left(w_{H}\right)_{\mathrm{adiab}}
$$

Diagnostics of hydrostatic vertical velocity in z-system (1)

- hydrostatic approximation replaces prognostic equation for w by diagnostic relation between p and ρ :

$$
\begin{aligned}
& \mathrm{NH}: \frac{\mathrm{d} w}{\mathrm{~d} t}=-\frac{1}{\rho} \cdot \frac{\partial p}{\partial z}-g+\mathcal{W} \\
& \mathrm{H}: \quad 0=\frac{\partial p}{\partial z}+\rho g
\end{aligned}
$$

- if H system is formulated in z-coordinate, w remains in vertical advection term and in 3D divergence:

$$
\begin{aligned}
& \frac{\mathrm{d} \mathbf{v}}{\mathrm{~d} t}=-\frac{1}{\rho} \nabla_{z} p+\mathcal{V} \\
& \frac{\mathrm{d} p}{\mathrm{~d} t}=-\varkappa p\left(\nabla_{z} \cdot \mathbf{v}+\frac{\partial w}{\partial z}\right)+\frac{p}{T} \cdot \frac{Q}{c_{v}} \\
& \frac{\mathrm{~d} T}{\mathrm{~d} t}=-(\varkappa-1) T\left(\nabla_{z} \cdot \mathbf{v}+\frac{\partial w}{\partial z}\right)+\frac{Q}{c_{v}} \\
& \frac{\mathrm{~d}}{\mathrm{~d} t} \equiv \frac{\partial}{\partial t}+\mathbf{v} \cdot \nabla_{z}+w \frac{\partial}{\partial z} \quad \rho \equiv \frac{p}{R T} \quad \varkappa \equiv \frac{c_{p}}{c_{v}}
\end{aligned}
$$

Diagnostics of hydrostatic vertical velocity in z-system (2)

- diagnostic formula for w must be found in order to close the system
- it uses the fact that in H system evolution of p and ρ is not independent, but it must respect hydrostatic assumption:

$$
\begin{gathered}
\frac{\mathrm{d} p}{\mathrm{~d} t}=-\varkappa p\left(\nabla_{z} \cdot \mathbf{v}+\frac{\partial w}{\partial z}\right)+\frac{p}{T} \cdot \frac{Q}{c_{v}} \\
\frac{\mathrm{~d} \rho}{\mathrm{~d} t}=-\rho\left(\nabla_{z} \cdot \mathbf{v}+\frac{\partial w}{\partial z}\right) \\
\frac{\mathrm{d}}{\mathrm{~d} t}\left(\frac{\partial p}{\partial z}+\rho g\right)=0 \Rightarrow \quad \frac{\partial}{\partial z} \frac{\mathrm{~d} p}{\mathrm{~d} t}-\frac{\partial \mathbf{v}}{\partial z} \cdot \nabla_{z} p-\frac{\partial w}{\partial z} \cdot \frac{\partial p}{\partial z}+g \frac{\mathrm{~d} \rho}{\mathrm{~d} t}=0 \\
\Downarrow \\
\frac{\partial}{\partial z}\left(\varkappa p \frac{\partial w}{\partial z}\right)=\frac{\partial}{\partial z}\left(-\varkappa p \nabla_{z} \cdot \mathbf{v}+\frac{p}{T} \cdot \frac{Q}{c_{v}}\right)-\frac{\partial \mathbf{v}}{\partial z} \cdot \nabla_{z} p-\rho g \nabla_{z} \cdot \mathbf{v}
\end{gathered}
$$

Diagnostics of hydrostatic vertical velocity in z-system (3)

- resulting diagnostic formula is Richardson equation
- since it is second order differential equation for w, two boundary conditions must be specified in order to determine unique solution
- at domain bottom given by relation $g z=\phi_{S}(x, y)$, free slip boundary condition is usually applied:

$$
g w_{S}=\mathbf{v}_{S} \cdot \nabla_{z} \phi_{S}
$$

- at domain top, elastic boundary condition $p_{T}=$ const (combined with assumption that no mass crosses the boundary) takes the form:

$$
\left(\varkappa p \frac{\partial w}{\partial z}\right)_{T}=\left(-\varkappa p \nabla_{z} \cdot \mathbf{v}+\frac{p}{T} \cdot \frac{Q}{c_{v}}\right)_{T}
$$

Diagnostics of hydrostatic vertical velocity in p-system (1)

- situation in p-system is different since continuity equation becomes diagnostic relation for pressure vertical velocity $\omega \equiv \dot{p}$
- H equations can be closed without diagnosing w (it is sufficient to diagnose 3D divergence)
- still w can be diagnosed by combining continuity equation with prognostic equation for p :

$$
\begin{gathered}
\frac{\partial \omega}{\partial p}=-\nabla_{p} \cdot \mathbf{v} \quad \Rightarrow \quad \omega=\omega_{T}-\int_{p_{T}}^{p} \nabla_{p} \cdot \mathbf{v} \mathrm{~d} p^{\prime} \\
\frac{\mathrm{d} p}{\mathrm{~d} t}=-\varkappa p\left(\nabla_{p} \cdot \mathbf{v}+\rho \nabla_{p} \phi \cdot \frac{\partial \mathbf{v}}{\partial p}-\rho g \frac{\partial w}{\partial p}\right)+\frac{p}{T} \cdot \frac{Q}{c_{v}} \\
\Downarrow
\end{gathered}
$$

$$
-\varkappa p \rho g \frac{\partial w}{\partial p}=-\varkappa p\left(\nabla_{p} \cdot \mathbf{v}+\rho \nabla_{p} \phi \cdot \frac{\partial \mathbf{v}}{\partial p}\right)+\frac{p}{T} \cdot \frac{Q}{c_{v}}+\int_{p_{T}}^{p} \nabla_{p} \cdot \mathbf{v} \mathrm{~d} p^{\prime}-\omega_{T}
$$

Diagnostics of hydrostatic vertical velocity in p-system (2)

- resulting diagnostic formula for w corresponds to vertically integrated Richardson equation
- it is only first order differential equation for w, but unique solution still requires 2 boundary conditions (one for w_{S}, another one for ω_{T})
- free slip bottom boundary condition now have the form:

$$
g w_{S}=\mathbf{v}_{S} \cdot \nabla_{p} \phi_{S}
$$

- elastic top boundary condition $p_{T}=$ const (combined with assumption that no mass crosses the boundary) translates to:

$$
\omega_{T}=0
$$

Interpretation of invented NH initial/coupling state

- so far NH initial/coupling state was constructed assuming hydrostatic equilibrium with hydrostatically diagnosed vertical velocity w :

$$
p=\pi \quad w=w_{H}
$$

- using prognostic equation for NH pressure departure $\mathcal{P} \equiv(p-\pi) / \pi$ it can be shown that these requirements are equivalent to:

$$
\left.\mathcal{P}\right|_{t=t_{0}}=\left.0 \quad \frac{\mathrm{~d} \mathcal{P}}{\mathrm{~d} t}\right|_{t=t_{0}}=0
$$

- it means that initial/coupling NH fields are constructed in such way that they do not bring any acoustic energy into the system

Why does it work?

- integration starting from invented NH initial state quickly adapts to local forcings \Rightarrow realistic NH state is reached after short time
- this process can be illustrated using non-linear 2D potential flow:
- uniform background flow with horizontal wind speed $15 \mathrm{~ms}^{-1}$ over bell shaped mountain with half width $a=100 \mathrm{~m}$ and height $h=100 \mathrm{~m}$
- isothermal background stratification with temperature 239 K
- background surface pressure 101325 Pa
- periodic domain with 64 gridpoints (8 points in coupling zone), horizontal resolution $\Delta x=20 \mathrm{~m}$
- 39 levels vertical levels with $\Delta z \approx 20 \mathrm{~m}$, sponge layer between 450 and 750 m
- time constant LBC (coupling files identical to init file)
- adiabatic integration using SL2TL NESC scheme with $\Delta t=1 \mathrm{~s}$

NL potential flow - initial state

hydrostatic vertical velocity w_{H}

$$
\Delta t=1.0 \mathrm{~s}, N_{\text {step }}=+0000
$$

NL potential flow - H versus NH evolution

spectral norms of kinetic energy

NH model

H model

$$
\Delta t=1.0 \mathrm{~s}
$$

NL potential flow - H versus NH results

vertical velocity w

NH model, $w_{N H}$

$$
\Delta t=1.0 \mathrm{~s}, N_{\text {step }}=+0200
$$

NL potential flow - NH results, w_{H} versus $w_{N H}$

vertical velocity w in NH model

$$
\Delta t=1.0 \mathrm{~s}, N_{\text {step }}=+0200
$$

NL potential flow - adaptation of NH prognostic variables

evolution of spectral norms
NH pressure departure \widehat{q}

$$
\Delta t=1.0 \mathrm{~s}
$$

How do we know that flow is non-linear?

- in linear regimes system responds to forcing linearly
- if the forcing changes sign, response should also change the sign
- in orographic flows forcing is the slope of terrain (gradient of orography)
- to check for non-linearity it is enough to replace volcano by crater and look at response
- comparison should be done in $x \eta$-coordinate plane, since in $x z$ coordinate plane the two computational domains are different

Proof of flow non-linearity (1)

vertical velocity $w, x z$-plane

$$
\Delta t=1.0 \mathrm{~s}, N_{\text {step }}=+0200
$$

Proof of flow non-linearity (2)

vertical velocity $w, x \eta$-plane

$$
\Delta t=1.0 \mathrm{~s}, N_{\text {step }}=+0200
$$

Example of linear potential flow

vertical velocity $w, x z$-plane

$$
h=1 \mathrm{~m} \quad h=-1 \mathrm{~m}
$$

$$
\Delta t=1.0 \mathrm{~s}, N_{\text {step }}=+0200
$$

Adaptation of NH prognostic variables - conclusions

- invented NH initial state quickly adapts to local forcings, providing realistic NH fields after short evolution time
- side effect of digital filter initialization is adaptation of NH initial fields
- in NH model, difference between prognostically computed vertical velocity $w_{N H}$ and hydrostatically diagnosed vertical velocity w_{H} is usually small
- this is true also in NH regimes, where hydrostatic model is not able to provide correct vertical velocity field

Why is hydrostatic vertical velocity diagnosed without diabatic term Q ?

- prognostic equations for p and T have the form:

$$
\frac{\mathrm{d} p}{\mathrm{~d} t}=-\varkappa p D_{3}+\frac{p}{T} \cdot \frac{Q}{c_{v}} \quad \frac{\mathrm{~d} T}{\mathrm{~d} t}=-(\varkappa-1) T D_{3}+\frac{Q}{c_{v}}
$$

- however, in current ALADIN code they are modified in order to parameterize hydrostatic adjustment:

$$
\frac{\mathrm{d} p}{\mathrm{~d} t}=-\varkappa p D_{3}+0 \quad \frac{\mathrm{~d} T}{\mathrm{~d} t}=-(\varkappa-1) T D_{3}+\frac{Q}{c_{p}}
$$

- direct consequence is that Q term disappears from diagnostic formula for hydrostatic vertical velocity w
- this is advantageous, since hydrostatic vertical velocity w can be diagnosed without call to model physics (no need to evaluate diabatic heating rate Q)

Quick look at hydrostatic adjustment (1)

- assume that heat amount $\Delta \mathcal{Q}$ is quickly added to the air parcel with mass m, initial temperature T and pressure p
- if fast enough, heating will happen at constant volume, increasing parcel's temperature and pressure by amounts:

$$
\Delta T=\frac{\Delta \mathcal{Q}}{m c_{v}} \quad \Delta p=\frac{p}{T} \cdot \frac{\Delta \mathcal{Q}}{m c_{v}}
$$

- due to pressure increase, parcel will not be in mechanical equilibrium with its surroundings \Rightarrow it will expand adiabatically until the new equilibrium is reached
- work done during expansion at the expense of internal energy will be radiated away by acoustic waves

Quick look at hydrostatic adjustment (2)

- final state of parcel will be the same as if the heat $\triangle \mathcal{Q}$ was added at constant pressure (no generation of acoustic waves):

$$
\Delta T=\frac{\Delta \mathcal{Q}}{m c_{p}} \quad \Delta p=0
$$

- parameterization of hydrostatic adjustment is important in H model, since it prevents false dynamical response to pressure changes induced by diabatic heating (system cannot respond correctly, since hydrostatic approximation filters out acoustic waves)
- currently it is used also in ALADIN-NH where it might be beneficial (acoustic waves are present in NH model, but they are slowed down by semi-implicit scheme)

Quick look at hydrostatic adjustment (3)

- hydrostatic adjustment parameterization is incompatible with mass continuity equation, because:
heated layer expands and displaces layers above, but we pretend there is no vertical velocity connected to this displacement \Rightarrow density of heated layer decreases while there is no divergence of mass flux
- in order to reach consistency, corresponding source term must be introduced in continuity equation:

$$
\frac{1}{\rho} \cdot \frac{\mathrm{~d} \rho}{\mathrm{~d} t}=-D_{3}-\frac{Q}{c_{p} T}
$$

- it means that with parameterization of hydrostatic adjustment diabatic heating acts as mass sink
- so far this problem was ignored in ALADIN \Rightarrow it is probably not very harmful

Summary

- initial and lateral boundary conditions for ALADIN-NH are prepared by configurations (E)E927, there are only few namelist changes with respect to H case
- in case of H driving model, NH specific fields must be invented
- they are constructed in such way that initial/coupling NH state is in hydrostatic equilibrium and free from acoustic disturbances
- this approach works thanks to the fact that NH fields quickly adapt to local forcings (orography, diabatism, ...)
- in order to be consistent with hydrostatic adjustment parameterization, hydrostatic vertical velocity w is diagnosed with omitted diabatic heating term

