
Pages / OOPS Home / Technical Documentation

Created by Yannick Tremolet, last modified on Aug 02, 2013

OOPS C++ Coding Guidelines

The following guidelines are based on a draft document from Baudouin Raoult, and were updated following the OOPS code review 11-15 July 2011.

Files Extensions

Each class is defined in two files:
The header file contains the class definition and has the extension .h.
The implementation file defines the methods and has the extension .cc

The file names should match the name of the class.
.cc and .h files must be in the same directory.

Header Files

Header files should follow the layout suggested in Documents/ExampleHeader.h
The public, protected and private sections of a class should be declared in that order (i.e. public first, private last).
Use #include guards to protect against multiple inclusions.
The guard name should be constructed from the path to the .h file, as it appears in a #include statement (see below), but with lowercase characters converted
to uppercase, special characters replaced by underscores, and with a trailing underscore.
The #endif for the guard should be followed on the same line by // and then the name of the guard.
All headers should be self-sufficient. A header should compile by itself.
There should be one main class per file. Helper classes are allowed, as long as they are only used from within the file.

Code Documentation

Documentation is generated using doxygen.
Instructions on building the documentation are in the README file.
Have a look at the Doxygen manual.
See instructions for instructions on including \f$\mbox{\LaTeX}\f$ mathematical formulae.

Doxygen recognises special comments:
A brief comment is a single line like this:
/// This one-line comment gives a brief description of a class or method.
A detailed comment looks like this:

/*!

OOPS C++ Coding Guidelines - OOPS - ECMWF Confluence Wiki https://confluence.ecmwf.int/pages/viewpage.action?pageId=25115225

1 sur 8 27/02/2019 13:58

 * This is a detailed comment. It has more than one line,
 * and provides more complete information about a class or method.
 */
Class definitions should be preceded by a doxygen brief comment followed by a detailed comment.
Method and member declarations should be preceded by a doxygen brief comment, unless the role of the method or member is completely obvious from its
name. A detailed comment may also be provided.
Normal C++ comments should be used in .cc files where necessary to explain the internal logic of a function.
The code should be self-explanatory. But, add comments to explain complex algorithms.
Do not comment-out code. Use the source-code management system!
Don't include comments to indicate authorship or modification history. That is what git blame is for!
HTML links to auxiliary documents (e.g. pdf files) can be made to appear on the Overview page by adding them to Documents/overview.h

Includes

Do not include unnecessary headers. Use class forwarding. The compiler only needs to see a class definition when calling methods or establishing the size of
an object. When referring to a pointer or a reference, the compiler does not need to know the detail of the class.
#include<iosfwd> instead of #include<iostream>, if possible.
Included ".h" files must use the full path from the build directory ("oops")
Order of header files:

Own ".h" file.
C System headers (e.g. <unistd.h>).
C++ system headers (e.g. <iostream>).
Other library headers <boost/...>).
Oops/util/logger project headers.

Within each of these categories,use alphabetical ordering.

Identifiers

Identifiers should be in "camel case". That is, they should be mainly in lower case, with an upper case letter at the start of each internal word: e.g.
changeResolution.
Do not use underscores to separate words.
Class names should start with an upper case letter.
Method and member names should start with a lower case letter.
Member names have an underscore at the end.
Use short identifiers for local variables, loop indices, etc.
Use longer, meaningful names for methods, members, classes, etc.

OOPS C++ Coding Guidelines - OOPS - ECMWF Confluence Wiki https://confluence.ecmwf.int/pages/viewpage.action?pageId=25115225

2 sur 8 27/02/2019 13:58

Use of Const

Use const wherever possible.
Avoid passing objects by const value. Pass by const reference instead.
Remember. The rule when reading definitions is to work from right to left. So, for example, char * const test means that test is a const pointer to a char object:

const char * test = "xyz"; // non-const pointer to const data
char * const test = "xyz"; // const pointer to non-const data
const char * const test = "xyz"; // const pointer to const data
bool isEmpty() const; // the isEmpty method does not change its object.

How to Design Classes

By default make classes noncopyable (using boost::noncopyable), unless copy is needed
If you need copy, assignment or a destructor, then you probably need all three.
Make interfaces non-virtual.
Make virtual functions private.
Check for assignment to self in operator=.
A lot more guidelines needed here...

Interface Principle

Guideline to be written...

Templates versus Inheritance

Guideline to be written...

Proper Inheritance

Remember the Liskov substitution principle: don't derive a "square" from a "rectangle"!
More guidelines required here...

Constructors and Destructors

Always declare copy and assignment constructors. Make them private unless you need to copy.
If the default copy constructor is sufficient, include a comment to this effect in the class definition.
Write the constructors and the destructors at the same time.
If the class has a virtual table, its destructor must be virtual.

OOPS C++ Coding Guidelines - OOPS - ECMWF Confluence Wiki https://confluence.ecmwf.int/pages/viewpage.action?pageId=25115225

3 sur 8 27/02/2019 13:58

All resources allocated by an object must be deallocated in the destructor.
Beware of partially constructed objects.
Except for the copy constructor, single-argument constructors should be declared explicit to prohibit implicit type conversions.
Base class destructors must be either public and virtual, or protected and not virtual.
The copy constructor should copy all the data. However, you may wish to give it a second, default argument to allow this behaviour to be over-ridden.
Do not code MyClass a = b;

This looks like assignment, but in fact calls the copy constructor.
Code MyClass a(b); instead.

Member Variables

Member variables should always be private.
Use accessors if you need to access a member variable from outside a class.
Don't use the accessors from within the class. Use the member itself.

Accessors

Accessors (a.k.a. getters and setters) should only be implemented if necessary. They break the encapsulation.
Accessors should be inline.
Accessors must have the same name as the member (but without the underscore) for example, the accessors for a member Foo foo_; should be:

const Foo& foo() const {return foo_; }
void foo(const Foo& f) { foo_ = f; }

Methods

A method is a request to an object to do something or to provide something. The name of the method should reflect this. - E.g. changeResolution is
preferable to resolutionChanger.
If a method is virtual in a base class, declare it as virtual in all derived classes that override it.

Operator Overloading

Don't do it unless it is meaningful.
Don't subvert the mathematical properties (associativity, etc.).
Don't use an operator for conversion. Implement an "asDouble" method rather than "operator double()".

Pointers and References

Prefer references to pointers. If an object is guaranteed to exist, use a reference.

OOPS C++ Coding Guidelines - OOPS - ECMWF Confluence Wiki https://confluence.ecmwf.int/pages/viewpage.action?pageId=25115225

4 sur 8 27/02/2019 13:58

Passing or returning a non-const pointer means passing ownership of the pointed object.
Passing or returning a const pointer means keeping ownership of the pointed object, and that the pointed object can be null
In any other case, pass a reference to the object. Use const whenever the object will not be modified.

Use of Static

Avoid static if possible.
Be aware there are different types of static (function-local, file-scope).
Be aware that static variables cause problems in multi-threaded applications.

Use of Casts

Use c++ style casts.
Avoid downcasting. It is a symptom of bad inheritance, or not enough functionality in the base class
Write "double(expression)", not "(double) expression"
Guideline for the use of const cast to be written....

C Code

Don't use C functions (e.g. printf) if C++ provides the same functionality.
If you must use a C function, prefix it with a double colon (e.g. "::sleep(10)")
When possible, wrap any C function in a C++ object (e.g. Sleeper)
Never use C style casts.
For unsigned value, use a typedef: typedef unsigned long ulong;

Preprocessor

The preprocessor should only be used to define \#include guards in .h files and for variables specified via the -D flag at compile time.
The preprocessor should not be used to define macros or constants.

The only permitted macros are ABORT, ASSERT and LOG, and macros defined in the boost library (e.g. BOOST_AUTO_TEST_CASE).
Don't pepper the code with ifdef's for machine/compiler dependent conditional compilation. Put any such code in a header file that can be included wherever
needed.

Namespaces

Model-independent code should be defined in the oops namespace.
Model-specific code should be defined in a separate, model-specific namespace.
Do not use an entire namespace (i.e. using directive).

OOPS C++ Coding Guidelines - OOPS - ECMWF Confluence Wiki https://confluence.ecmwf.int/pages/viewpage.action?pageId=25115225

5 sur 8 27/02/2019 13:58

By preference, use explicit namespace qualifications (e.g. std::string). However, using std::string etc. is acceptable.
Using statements must never be used at global scope in a header file.
Use anonymous namespaces to restrict classes (e.g. Factories) to file scope.

Readability

As far as possible, adhere to the rules listed in the Google C++ Style Guide. Note however that, contrary to the Google rules:
We do use streams.
We allow non-const references as arguments.

Use cpplintto check your code. You may wish to turn off the following cpplint filters:
build/include_alpha (Because our idea of alphabetic order is different from Google's.)
build/include_order (Because cpplint wrongly thinks boost header files are c-system header files.)
readability/streams (Because we use streams.)

Keep lines below 80 characters.
Tab characters are not allowed.
Indent class and function bodies, if and for blocks, etc.

public, private and protected labels in a class definition should be indented one space with respect to the start of the class definition.
Use a two space indent for everything else.
It is preferable to indent code inside a namespace block. (However, we have many examples where this is not done.)

Split long lines in a way that makes it obvious that the code continues on the next line.
Continuation lines should be indented.
If you split an argument list, align the arguments with those on the previous line.
The opening brace should appear on the same line as the argument list, initialisation list, loop expression. etc.
The closing brace should appear on its own line, and aligned with the start of the statement it closes.
Braces should be used for all control structures (if, for, switch, etc.), even for "one-liners".
The else statement should be on the same line as the closing brace of the preceding block, and the opening brace of the following block.
Don't declare more than one member per line.
Don't initialise on the same line as you declare: (e.g. int i=3;).
Only one statement per line.
Remove whitespace at the end of a line.
Add a space after a comma in an argument list
All operators, except "!" should be surrounded by spaces.
Separate inline comments from code by at least two spaces
There should be a space after // (or after /// in the case of a Doxygen inline comment).
If the initialisation list in a class definition is too long to be on the same line, put in on the next line with the colon indented by 4 spaces.

Optimization

OOPS C++ Coding Guidelines - OOPS - ECMWF Confluence Wiki https://confluence.ecmwf.int/pages/viewpage.action?pageId=25115225

6 sur 8 27/02/2019 13:58

Pass objects by reference, not by value.
Prefer initialization over assignment.
Use ++i, not i++ when incrementing iterators.
Use the initialization list to initialize member objects.

Logging

All logging messages should use the Logger class. Do not write to cout or cerr.
The logger adds a newline at the end of each message, so you don't need to.
endl forces an unnecessary buffer flush. Use \n instead.
Use the appropriate logging category:

Info is for normal output
Trace is for more verbose output that could help the user understand the logical flow of the program.
Warning is for non-fatal error messages.
Error is for fatal error messages.
Configs is for echoing configuration data.
Debug is for debugging. Code in the shared repository should not output to this category.

ABORT, ASSERT and Error Handling

Errors should abort
Use the ABORT macro to exit after an error. Do not call exit directly.
Use the ASSERT macro liberally. It compiles to nothing unless the CHECK_ASSERTS macro variable is set, and it helps the reader to understand the code.
Remember, asserts can be disabled. Your code should not change behaviour if you disable the asserts. Use "if" and ABORT if you want something to be
always checked.
Do not use exceptions (try/catch/throw)

Pointers and Smart Pointers

Use references instead of pointers as much as possible.
Use smart pointers in preference to c pointers.
Use boost::scoped_ptr if possible, otherwise boost::shared_ptr.
Do not use auto_ptr.

Return Values

Use return values instead of argument where possible.
However, do not assume that the compiler will perform return value optimization.

OOPS C++ Coding Guidelines - OOPS - ECMWF Confluence Wiki https://confluence.ecmwf.int/pages/viewpage.action?pageId=25115225

7 sur 8 27/02/2019 13:58

Interfacing Fortran and C++

use ISO_C_BINDING
Only pass pointers and scalar variables between Fortran and C++
naming convention (to be written...)
functions (to be written...)
parameters (to be written...)
const (to be written...)
order (input first, output last) (to be written...)
c prototype of Fortran function - generate automatically? to be written...)

Private, Public and Protected Access

Do not use "protected".
More rules please

Build

Tomas to write this!

Directory Structure

Code for each library should be in its own directory.
Models use OOPS, they are not part of OOPS thus source code for models should be kept outside the OOPS directories.

No labels

Powered by a free Atlassian Confluence Open Source Project License granted to ECMWF. Evaluate Confluence today.

This Confluence installation runs a Free Gliffy License - Evaluate the Gliffy Confluence Plugin for your Wiki!

OOPS C++ Coding Guidelines - OOPS - ECMWF Confluence Wiki https://confluence.ecmwf.int/pages/viewpage.action?pageId=25115225

8 sur 8 27/02/2019 13:58

