
Coding standards for Arpège, IFS and Aladin

Systems

Météo-France/GMAP and ECMWF

contacts: claude.fischer@meteo.fr, mike.fisher@ecmwf.int

25 novembre 2011

This document summarizes the most important coding norms and rules one
has to keep in mind while designing and writing a piece of code in the Arpège-IFS
software.
This note supersedes the previous document about coding norms, which is kept
available for traceback only at : http ://www.cnrm.meteo.fr/gmapdoc/IMG/pdf/tutorial.pdf

1

1 Standards for the presentation of the code

1. Header

Procedures must start with a documentation header in English containing,
in this exact order :
– A brief description of the procedure.
– Interface details describing all dummy arguments, in same order as they

appear in the call to the procedure.
– A list of all externals called by the procedure.
– A description of the method or a reference to external documentation.
– The name of the author and the creation date of the procedure.
– A list of all modifications to the procedure made during the last 5 years.

2. Variable Declarations

Variables must be declared just after declaration header, in the following
order :
– Module variable declarations.
– Dummy arguments declarations (with INTENT) in the same order as in

the call to the procedure.
– Local variables declarations.
– Function declarations.
– Interface blocks.
Variables should preferably be declared separately (in order to facilitate mer-
ging) and grouped according to type and attributes with separating commas
at the end of the line.

In USE lists, the items have to be presented in an easily readable manner.

3. Code Body

The code body must be split in sections and subsections, which should be
clearly separated from each other.

Lines should be broken in a readable manner with no more than 132 charac-
ters per line.

For readability, nesting of conditional blocks should not be more than 3 levels
deep.

Where blocks are deeply nested, long or complex, they should be given cha-
racter labels.

4. Indentation Rules

Code starts at column 1 except within conditional blocks and DO loops.
Within such blocks, code must be indented with 2 blank spaces with a further
2 blank spaces for each level of nesting.

5. Naming Schemes for Modules

All new modules should end with mod. The name of the file should match

2

the name of the module it contains (e.g. MODULE EINT should be in file
eint mod.F90)

6. In calls, optional arguments must be labelled, not resolved by position.

7. Continuation Lines

An ampersand (&) followed by an identation is mandatory for continuation
lines. The indentation should assist the readability of the statement.

8. Long CALL sequences should be broken at the same places as the continua-
tion marks in the SUBROUTINE sequence in order to ease the reading of
long list of dummy arguments.

9. The first and last executable statements in a subroutine must be calls to
DR HOOK. The string argument to these calls must give the name of subrou-
tine. In the case of a contained subroutine, the string should be constructed
from the name of the parent routine and the contained routine, separated
with a percent symbol (%).

10. END statement must include the name of the subroutine.

Figure 1 shows a header documentation for a procedure.

3

Fig. 1 – Example of header documentation and variables declarations in a proce-
dure.

SUBROUTINE CODESTY(LDLAM,KERR)

! Purpose :

! -------

! *CODESTY* : CODE STYle : To show coding standards in Arpege/Ifs/Aladin.

! Interface :

! ---------

! Input :

! -----

! LDLAM : key to identify model type

! Output :

! ------

! KERR : error code of the subroutine

! Externals :

! ---------

! None.

! Method :

! ------

! Reference :

! ---------

! Coding standards in Arpege/Ifs/Aladin.

! Author :

! ------

! 19-Jul-2002 Ryad El Khatib *METEO-FRANCE*

4

! Modifications :

! -------------

! 30-Oct-2003 M. Hamrud Cleaning for Cycle 28

! 30-Feb-0000 R. Randriamampianina Remove comments that were in Hungarian

! 21-Oct-2011 C. Fischer Add some body statements

! End Modifications

!---

USE PARKIND1 , ONLY : JPIM, JPRB

USE YOMHOOK ,ONLY : LHOOK, DR_HOOK

USE YOMCT0 , ONLY : LELAM

USE YOMLUN , ONLY : NULOUT

!---

IMPLICIT NONE

LOGICAL, INTENT(IN) :: LDLAM

INTEGER(KIND=JPIM), INTENT(OUT) :: KERR

!---

INTEGER(KIND=JPIM), PARAMETER :: JPLEN=16 ! Length of the local message

CHARACTER(LEN=JPLEN) :: CLMESS ! A local message

REAL(KIND=JPRB) :: ZHOOK_HANDLE

!---

#include "ejust_do_it.intfb.h"

#include "just_do_it.intfb.h"

!---

5

IF (LHOOK) CALL DR_HOOK(’CODESTY’,0,ZHOOK_HANDLE)

!---

!* 1. CHECK WHAT MODEL THIS IS

IF (LDLAM) THEN

WRITE(NULOUT,*) ’ THIS IS A LIMITED AREA RUN ’, &

& ’AND THESE GUYS ARE NICE’

CLMESS=’ALADIN MODEL’

CALL EJUST_DO_IT(CLMESS)

ELSE

WRITE(NULOUT,*) ’ THIS IS A GLOBAL RUN ’, &

& ’AND THESE GUYS ARE UGGLY’

CLMESS=’IFS/ARPEGE MODEL’

CALL JUST_DO_IT(CLMESS)

ENDIF

!---

!* 2. SET ERROR PARAMETER FOR RETURN

KERR=0_JPIM

IF ((LDLAM.AND.(.NOT.LELAM)) .OR. ((.NOT.LDLAM).AND.LELAM)) KERR=1_JPIM

!---

IF (LHOOK) CALL DR_HOOK(’CODESTY’,1,ZHOOK_HANDLE)

END SUBROUTINE CODESTY

6

2 Preliminary design of the code

1. Encapsulation rules.
Modules should be splitted up in a sensible manner to avoid too long For-
tran files or too complex modules. One recommandation can be to separate
the data structures, the operators and the descriptive parameters (including
setup if existing). The number of entities in a single module is not limited,
but a reasonable total number should be considered always (about 10 to 20
entities ?).

2. Subroutines should have no more than 300 executable statements. For a
module containing several entities, this limit of 300 executable statements is
applicable for each inner subroutine.

3. Avoid cosmetic changes that will make merges difficult (such as re-ordering
argument lists and USE statements, or changing the indentation of large
blocks of code). As exception, cosmetic changes can happen when a routine
is heavily modified, and only one well identified developer will contribute to
the code for the next common cycle.

4. Declarations of unused variables must be removed

5. Variables suffixed with L are local in the sense of the parallel distribution.
Variables suffixed with G are global.

6. The use of array syntax is not recommended except for initalization and very
basic computations.

7. Cut-and-paste of existing piece of code should be avoided. Common code
should be extracted to a separate subroutine or function.

8. The variable LECMWF should be used only in setup subroutines.

9. The variable LELAM is not to be used below SCAN2M.

10. The choice between LFI/LFA or GRIB format should be made using the
variables LARPEGEF or LARPEGEF xx (and not LECMWF).

11. The MPL package must be used as the interface for any message passing.

12. Derived types should be declared in a module.

13. Code must be threadsafe.

7

3 Detailed design of the code

1. Abnormal termination must be invoked by ABOR1.

2. Variables in data modules must be saved using the SAVE statement.

3. Array shape and Variable type must not be changed when passed to a su-
broutine.

4. Use SELECT CASE when possible instead of IF/ELSEIF/ELSE/ENDIF.

5. For each called routine there must be a“"#include" statement that includes
an explicit interface block for the routine. Note that the files containing the
explicit interface blocks are automatically generated during compilation.

6. Routines should have a small number of dummy arguments. Routine with
more than 50 dummy arguments are not allowed.

7. Variable names should be meaningful to an English reader. Very short names
should be reserved for loop indices.

8. Conventional prefixes or suffixes are to be used for all variables except derived
types, as described in table 1 in section 4. There is no naming convention for
derived types.

9. Aladin subroutines that are counterparts of IFS/Arpège ones should have the
same name but prefixed with E. Aladin setup routines that are counterparts
of IFS/Arpège (prefixed SU) should be prefixed SUE.

10. The logical unit for output listing is NULOUT. Output to NULOUT must
be deterministic and should not change according to the parallel distribution
or the time at which the job is run. Error messages should be written to unit
NULERR.

11. Universal constants must be stored, saved and initialized in data module
YOMCST. They cannot be modified elsewhere and should not be accessed
via dummy arguments.

12. Calls to MPL subroutines should provide a CDSTRING identifying the caller.

13. Source code is partitioned into projects. Each source file must be put in the
proper directory for its project.

14. Runtime specification of variables must be done using namelists.

15. DATA statement should be avoided if possible and is allowed only for small
lists.

8

4 Detailed Fortran coding standards

1. The code should be Fortran 90 free format.

2. Use a consistent style throughout each module and subroutine.

3. The TAB character is not allowed.

4. IMPLICIT NONE is mandatory in all routines.

5. Array dimensions must not be hard-coded.

6. Declarations must use the notation “::”.

7. Variables and constants must be declared with explicit kind, using the kinds
defined in PARKIND1 and PARKIND2.

8. All USE statements must include an“ONLY”clause, except for modules that
override ASSIGNMENT, where this is dangerous.

9. Constants should be PARAMETERs wherever as possible

10. Variable names should follow the prefix convention defined in table 1.

Status Variable Dummy Local Loop Any
or scope in data module argument variable control Parameter

Type
INTEGER M, N K I J but not JP JP

REAL A, B, E to H, O, Q to X P but not PP Z - PP

LOGICAL L but not (LD,LL,LP) LD LL - LP

CHARACTER C but not (CD,CL,CP) CD CL - CP

Tab. 1 – Naming Convention for Variables

11. The following statements are banned :

(a) STOP

(b) PRINT

(c) RETURN

(d) ENTRY

(e) DIMENSION

(f) DOUBLE PRECISION

(g) COMPLEX

(h) GO TO

(i) CONTINUE

(j) FORMAT

9

(k) COMMON

(l) EQUIVALENCE

12. Arrays should not be declared with implicit size : “A(*)”.

13. Large arrays should be allocatable. Small or low-level arrays should be au-
tomatic.

14. All allocated arrays should be explicitly deallocated.

15. Use Fortran 90 comparison operators (e.g. == rather than .EQ.).

16. Explicitly set variables (parameters, constants, namelist variables,...) should
be always exactly compared (using == or \=, etc). Evaluated variables (that
might be subject to roundoff error) should be tested against a reference using
a threshold.

17. All dummy arguments must specify the INTENT attribute

18. Optional arguments must be called in the same order they are declared.

19. END statements for blocks should not have a space after END. For example
an IF block should end with ENDIF, not “END IF”.

20. Inactive (e.g. commented-out) code must be removed. (However, it is accep-
table for explanatory comments to include example code.)

10

	Standards for the presentation of the code
	Preliminary design of the code
	Detailed design of the code
	Detailed Fortran coding standards

