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1 Introduction

Initially, the hydrostatic equations used in the NWP model Arpège/Aladin where designed for
a synoptic scale forcasting system. In this context, the description of the liquid and solid species
were based on the pseudo-adiabatic concept : the condensed water species (liquid or solid) are
« instantaneously » evacuated from their original air parcel (no cloud or precipitation species
in suspension in the atmosphere). A condensation process is then a sink of water vapor and an
evaporation process is a source of vapor but the concentrations of liquid and solid water in the
atmosphere remain zero.

In practice, in a NWP model, instaneous transformations are replaced by transformations
during one time step, such a time step being in Arpège of the order of 15 minutes. During this
time step, the liquid and solid phase are falling down to the ground, but they can also evaporate
if they cross non saturated layers in the colomn of atmosphere below their level of formation.

The difficulty of the hypothesis about the precipitation done in Arpege/Aladin is that the
precipitations never are an ingredient of the air in a parcel because they are always instantaneously
evacuated, but these precipitations interacts with the moist air (dry air + water vapor) which is
the only ingredient of the atmosphere in this « pseudo-adiabatic » context through transports
(fluxes) in and out of the air parcels : if the vertical budget (flux divergence) of the precipitation
at a given level is not zero, the precipitations deposit or remove mass, momentum and energy into
or from the moist air present at this level.

2 Definition of δm

In the original Arpège/Aladin equations, the application of the pseudo-adiabatic hypothesis
is applied with an optionnal refinement in the treatment of the mass fluxes. The two options are
known as δm = 0 or δm = 11.

In the case δm = 1, if liquid and solid species form they « instantaneously » fall down. Let’s
suppose that the air is at rest with respect to the ground. In such case, the barycenter of the
mass of air originally contained in the (fixed) volume V where the condensation occured is moving
down.

In the case δm = 0, if liquid and solid species form they « instantaneously » fall down but a
compensating flux of dry air appears in the volume V .

Note that the case δm = 1 is more similar with the case considered in the reference equations
(Malardel, Geleyn and Bénard, 2005, Part 1, to be found on the Aladin web site).

In any case, the air in any volume of atmosphere never contains hydrometeores, the only
constituant are dry air and water vapor. This hypothesis may nevertheless be suspended, and the
system could be generalized to a quasi-pseudo-adiabatic case where only non precipitating water
remains in suspension.

As all the precipitating species are instantaneously evacuated, ρp = 0 exept when it is multiplied
by the velocity of the precipitation which may be in that case considered as infinite. The product

1From cycle 29 of Arpege/Aladin, the definition of δm has changed. This article is dealing only with the original
definition of δm = 0 or δm = 1 (for the time beiing at least).
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of the mass of precipitation by its velocity is the flux of precipitation(in the following, we suppose
that we have only one type of precipitation, and we use the subscript p for this precipitation) :

P = ρpVp

where Vp is the fall velocity of the precipitation (positive value).
A consequence of these hypothesis is :

∂ρp
∂t

= 0 (1)

= −div(ρp~up) + ρ̇p (2)

= −div( ρp︸︷︷︸
=0

~v)− div(ρpVp︸︷︷︸
=−P

~k) + ρ̇p (3)

So finally :

ρ̇p = −∂P
∂z

where ρ̇p is the rate of formation/evaporation of liquid (or solid) species.

3 Mass and species budgets in Arpège/Aladin hydrostatic
equations

3.1 δm = 1 case

As we have done from the beginning of this paper, we will examined budgets of mass, momen-
tum and energy in a fixed volume V .

The two “pronostic” componants of the system are the dry air and the vapor. The budget
equations for this two constituants are :

∂ρa
∂t

= −div(ρa~ua) (4)

∂ρv
∂t

= −div(ρv~uv) + ρ̇v (5)

With our simple hypothesis on the phase changes, we have :

ρ̇v = −ρ̇p =
∂P

∂z

We also suppose that ~ua = ~uv = ~u.
The density of the system is ρ = ρa + ρv.
The mass budget of the system is obtained when summing the equation for each componant

of the system :

∂(ρa + ρv)
∂t

=
∂ρ

∂t
= −div((ρa + ρv)~u) + ρ̇v = −div(ρ~u) +

∂P

∂z
(6)

In the case δm = 1, the continuity equation is :

∂ρ

∂t
= −div(ρ~u) +

∂P

∂z
(7)

or :
Dρ

Dt
= −ρdiv(~u) +

∂P

∂z
(8)

where D /Dt = ∂ /∂t + ~u. ~grad .
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3.2 δm = 0 case

In the case δm = 0, we have a dry air source/sink ρ̇a which compensate the vapor sink/source :

ρ̇a = −ρ̇v = −∂P
∂z

The equation for the different species are then written as :

∂ρa
∂t

= −div(ρa~ua)−
∂P

∂z
(9)

∂ρv
∂t

= −div(ρv~uv) +
∂P

∂z
(10)

The continuity equation in the case δm = 0 is then :

∂ρ

∂t
= −div(ρ~u) (11)

or
Dρ

Dt
= −ρdiv(~u) (12)

4 General budget equation with the Arpège/Aladin original
hypothesis

Let ψ be any specific variable (variable by mass unit).

4.1 δm = 1 case

In the case δm = 1, the budget of ψ in a geometric volume V is given by :

∂[ρaψa + ρvψv]
∂t︸ ︷︷ ︸
A

= −div[(ρaψa + ρvψv) ~ugaz]︸ ︷︷ ︸
B

−div[(ρpψp) ~up]︸ ︷︷ ︸
C

+ Ṡψ︸︷︷︸
D

where

A is the local evolution of the quantity of ψ of the moist air ;

B is the transport budget of the quantity of ψ of the moist air by the velocity of the moist air ;

C is the transport budget of the quantity of ψ of the precipitations by the velocity of the preci-
pitations ;

D is the source of ψ in the moist air.

4.2 δm = 0 case

In the case δm = 0, the budget of ψ in a geometric volume V is given by :

∂[ρaψa + ρvψv]
∂t

= −div[(ρaψa + ρvψv) ~ugaz]− div[(ρpψp) ~up] +div[(ρpψa) ~up]︸ ︷︷ ︸
E

+Ṡψ

The term E is the transport budget of the quantity of ψ of the compensating flux of moist air
by the the compensating flux of moist air.
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4.3 Summary

By definition and hypothesis,

ρp ~up = ρp~v︸︷︷︸
=0

+ ρpwp︸ ︷︷ ︸
=P

~k = −P~k

The general budget equation in Arpege/Aladin is then :

∂[ρaψa + ρvψv]
∂t

= −div[(ρaψa + ρvψv) ~ugaz] +
∂(Pψp)
∂z

− (1− δm)
∂(Pψa)
∂z

+ Ṡψ

In the case δm = 0 and if ψp = ψa, the terms C and E balance each other. This is the case for
the mass and the horizontal momentum budget, but not for the energy (because the specific heats
of water and dry air are different).

5 Horizontal momentum budget in Arpège/Aladin hydro-
static equations

As we have done for the reference équations (Malardel, Geleyn and Bénard, 2005, Part 1), we
suppose that the horizontal velocity is the same for all the species.

5.1 δm = 1 case

The horizontal momentum budget is simply written as :

∂ρ~v

∂t
= −div(ρ~v~u) +

∂P~v

∂z
− ρf~k ∧ ~v − ~gradh(p) (13)

with ρ = ρa + ρv.

ρ

[
∂~v

∂t
+ ~u. ~grad(~v)

]
= −~v ∂ρ

∂t
− ~vdiv(ρ~u) +

∂P~v

∂z
− ρf~k ∧ ~v − ~gradh(p)

Using the continuity equation in the case δm = 1, the « Lagrangian » form of this equation is :

ρ
D~v

Dt
= −∂P

∂z
~v +

∂P~v

∂z
− ρf~k ∧ ~v − ~gradh(p)

The first term on the right hand side is a sink/source of momentum linked with the forma-
tion/evaporation of the precipitation (if the volume V is loosing water because of precipitation,
it looses also the momentum associated with this mass of water. In this equation, we suppose
implicitly that the precipitation which are formed in a layer conserve the horizontal speed of that
layer. But we also suppose that the water vapor wich is evaporated from some precipitation also
get the horizontal speed of that layer).

The second term on the right hand side is the budget of the horizontal momentum put in and
taken out of the parcel by the precipitations.

Combining the two first terms on the right hand side gives finally the following equation :

ρ
D~v

Dt
= P

∂~v

∂z
− ρf~k ∧ ~v − ~gradh(p)

5.2 δm = 0 case

In the case δm = 0, the horizontal momentum equation is even more simple :

∂ρ~v

∂t
= −div(ρ~v~u) +

∂P~v

∂z
− ∂P~v

∂z
− ρf~k ∧ ~v − ~gradh(p) (14)
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or, using the form of the continuity equation in the case δm = 0 :

ρ
D~v

Dt
= −ρf~k ∧ ~v − ~gradh(p)

The sink/source of momentum link with the precipitation in a layer is compensated by an opposite
flux of dry air.

6 The hydrostatic relationship in Arpège/Aladin hydrosta-
tic equations

When we suppose that there is a (quasi) vertical equilibrium between the gravity and the
vertical componant of the pressure force in a system without liquid or solid phase in suspension,
we get in both cases δm = 1 and δm = 0 :

0 = −ρg − ∂p

∂z

where ρ = ρa + ρv.

7 The energy budget in Arpège/Aladin hydrostatic equa-
tions

7.1 δm = 1 case

The energy budget of the system of moist air can be written as :

∂[ρa(ei + ec)a + ρv(ei + ec)v]
∂t

= −div[ρa(ei + ec)a~ua + ρv(ei + ec)v~uv])+
∂(Peip + Pecp)

∂z
+Ẇ+Q̇

with eca = ecv = 1/2~v2.
The work (by unit of time) of the exterior forces applied to the system « moist air » is :

Ẇ = −div(p~u) + ρ~g.~u = −pdiv(~u)− ~u. ~grad(p)− ρgw

From the equation for the momentum, we deduce the equation for the kinetic energy ec :

∂(ρec)
∂t

= −div(ρec)− ~v. ~gradhp+ ~v.
∂(P~v)
∂z

The last term of this equation is the budget of the kinetic energy fluxes of the precipitation
∂(Pec)/∂z .

Substracting the equation for the kinetic energy from the equation for the total energy, we get
(the flux of kinetic energy of the precipitation is balanced by the flux of kinetic energy coming
from the kinetic energy equation present only in the case δm = 1) :

∂(ρei)
∂t

= −div(ρei) +
∂(Peip)
∂z

− pdiv(~u) + div( ~JQ) (15)

Using the classical form of the enthalpy for perfect gaz ha = cpaT and hv = cpvT and neglecting
the pressure in the expression of the enthalpy of the precipitating phase hp = eip, the former
equation is transformed into an equation for the enthalpy h = qacpaT + qvcpvT of the system
(box 1). We also use the notation cph = qacpa + qvcpv.

ρ
D(cphT )
Dt

=
Dp

Dt
− ∂ (P (h− hp))

∂z
− P

∂h

∂z
+ div( ~JQ)

This equation may also be written as :

ρ
D(cphT )
Dt

=
Dp

Dt
−
∂

(
P (Lv(T ) + (1− qv)(cpa − cpv)T )

)
)

∂z
− P

∂(cphT )
∂z

+ div( ~JQ)
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Moving the first term of the right hand side of equation 15 to the left hand side, we get :

ρ
D(ei)
Dt

+ ei

(
∂ρ

∂t
+ div(ρ~u)

)
︸ ︷︷ ︸

∂P
∂z

=
∂(Peip)
∂z

− p

(
−1
ρ

Dρ

Dt
+

1
ρ

∂p

∂z

)
+ div( ~JQ) (16)

or also

ρ
D(ei)
Dt

=
Dp

Dt
− ρ

Dp/ρ

Dt
− ei

∂P

∂z
− p

ρ

∂p

∂z
+
∂(Peip)
∂z

+ div( ~JQ) (17)

and then :

ρ
D(h)
Dt

=
Dp

Dt
− h

∂P

∂z
+
∂(Php)
∂z

+ div( ~JQ) (18)

Combining the second and the third term of this equation, we finally have :

ρ
D(h)
Dt

=
Dp

Dt
− ∂ (P (h− hp))

∂z
− P

∂h

∂z
+ div( ~JQ) (19)

Box 1:

7.2 δm = 0 case

In the case δm = 0, the energy budget of the system is written as :

∂[ρa(ei + ec)a + ρv(ei + ec)v]
∂t

= −div[ρa(ei + ec)a~ua + ρv(ei + ec)v~uv])+
∂(Peip + Pecp)

∂z
−∂(Peia + Peca)

∂z
+Ẇ+Q̇

The term Ẇ is the same than in δm = 1 :

Ẇ = −pdiv(~u)− ~u. ~grad(p)− ρgw

The kinetic energy equation is :

∂(ρec)
∂t

= −div(ρec)− ~v. ~gradhp

Then, after substraction, we get (the flux of kinetic of dry air balances the flux of kinetic of
the precipitations, but this is not true for the internal energy) :

∂(ρei)
∂t

= −div(ρei) +
∂(Peip)
∂z

− ∂(Peia)
∂z

− pdiv(~u) + div( ~JQ)

which may also be transformed in an enthalpy equation :

ρ
D(cphT )
Dt

=
Dp

Dt
+
∂ (P (hp− eia))

∂z
+ div( ~JQ)

And finally :

ρ
D(cphT )
Dt

=
Dp

Dt
−
∂

(
P (Lv(T )− cpvT + cvaT )

)
∂z

+ div( ~JQ)

8 Discussion

– This system of equations is valid only if there is no liquid or solid water in suspension. It
can be generalized to some kind of quasi « pseudo adiabatic » case where non precipitating
water remains in suspension in the atmosphere but the precipitating water is instantaneously
evacuated (à faire).
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– It’s possible to go from the complete system of reference equation (Malardel, Geleyn and
Bénard, 2005, Part 1) to the pseuso-adiabatic system deduced in chapter 1 only in the case
δm = 1. The pseuso-adiabatic solution is then the assymptotic solution when the density
of the condensed phases of water goes (tends ?) to zero except in the flux divergence terms
where the precipitation density is multiplied by the fall velocity of the precipitation (zero ×
infinity = P ).
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