
Météo-France's GIT toolbox: GIT-tools
Version 1 English text by C. Fischer (2013/02/11)

based on Version 1 French text by S. Martinez (2012/09/10)

This document introduces the GIT toolbox, developed at Météo-France (MF) and used since 
CY39T1/CY40 as Source Code Repository (SCR) in Toulouse. Therefore, these “GIT-tools” also 
become a reference device for Aladin and Hirlam partners committing code to MF's based common 
libraries.

The note is a shortened translation of the comprehensive GIT-tools documentation written by S. 
Martinez (COMPAS/GCO of MF). The latter in French, describes in more details the reasons for 
the toolbox, with the former Clearcase (cc) handling in mind, and gives a more thorough 
explanation about the various command lines proposed in the toolbox. Like its French base version, 
this English note is not supposed to be a guide to GIT. For a reference documentation about GIT, 
we refer to standard on-line available tutorials.

Table of contents:
• concepts and functions in GIT
• the GIT-GCO meta-data server
• the GIT-GCO toolbox
• tutorial
• appendix A: list of GIT-tools commands
• appendix B: a few native GIT commands

Concepts and functions in GIT:

Repositories (SCR) and branches:

For Clearcase (cc) familiar developers, we recall that all branches in cc are stored in a common 
central repository located on merou at ~marp001/dev. Access to the code is done via “views” on 
main releases, and extra existing branches can be added in the local view using the rules of view 
specifications. Much of this handling is transparent for those using cc_getpack or cc_getview.

With GIT, this procedure is modified. Developers do not work directly on the central repository but 
on a local clone. The clone is a local copy stored anywhere below $HOME. The clone may be on a 
different server than the central repository, provided GIT is installed.

The concept of views disappears, and a direct access to the code is done in the classical Unix way 
(moving in the directories). The concept of a “public” or “private” view also disappears with GIT.

Branches still exist ! Any developer may modify any existing branch in his local repository,even is 
he is not the original author of that branch. 

Although it is rather simple to create branches with native GIT, a specific command git_branch has 
been created in order to mimic cc_getpack (& even though, a rather simple access to any branch, 
and copy elsewhere, is possible within the GIT repository).

1



Modifications are local !:

Changes included in the local GIT SCR remain only local. They won't affect the central SCR. The 
changes are committed to the central repository either by the developer in “push” mode (provided 
the GIT administrator has given permission to do that) or in “pull” mode by the administrator. As a 
consequence, it is not easy to see what other users have changed or are changing, as long as the 
changes have not been committed to the central SCR.

GIT traceback:

Only individual files are traced back, not directories. An empty directory won't be traced at all. Files 
are traced (recognized) simply by their full name (for instance, arp/adiab/cpg.F90). 

To create, suppress, rename or move a file, no specific GIT-tool command has been developed by 
GCO. Simply use the corresponding native GIT commands. Those are indeed safe and simple to 
use.

The “  commit  ”  :

This action corresponds to the cc_edit command in cc. cc_edit actually is performing 3 actions in 
one: check-out of an element (its local version is read-only); edit; check-in (which creates a new 
version in the cc branch).

In GIT, this is simpler: any element can be immediately modified by a simple edit, and more 
generally any creation/suppression/renaming/move is done using Unix commands. The “commit” 
will eventually upgrade the whole GIT branch in one go, not element-wise like in cc. Each 
“commit” is associated with a unique hexadecimal identification of 41 characters, denoted the 
“commit-hash”. Thus, the management of versions in GIT is global to the branch, not element-wise 
like in cc.

For the sake of commodity, 2 specific GIT-tools have been developed for editing a file or for 
committing a file: resp. git_edit (~ cc_edit) and git_commit. If files need to be renamed/moved and 
changed, we advise to first rename/move, then commit, then change its content (edit).

The concept of a “tag”:

In cc, tags are the specific names of versions like for instance CY38T1_bf.02 or CY38. In GIT, a 
“tag” behaves like an alias to a commit (= an alias associated to a given commit-hash).

Merging branches:

In cc, a merge action consists in inserting the content of one branch into the current branch (of a 
given view), in an incremental way. In GIT, mergers are simpler and the resolution of conflicts is 
more elaborate than with cc. GIT in principle is able to identify orthogonal changes in a file, and 
will handle them automatically.

In standard version, GIT does not offer a graphics interface for merge operations (unlike cc_merge). 
However, freeware graphics interfaces exist that can be used with GIT. The command git_merge 
has been developed in order to work in a similar way than cc_merge.

2



Other functions:

• GIT provides a traceback history of all changes, that can be viewed and handled for “diffs” 
between several versions. Like for the merge, GIT however requires external “diff” tools. 
Those do not allow to compare more than 3 different versions. 2 specific GIT-tools have 
been developed to ease those actions: git_history and git_diff.

• Unlike cc, GIT has no standard tool for checking the content of a given branch (cc_list). 
This action is however extensively used in cc in order to check and identify versions and 
their tags. A specific GIT-tool has been developed to remedy this: git_list.

The GIT-GCO meta-data server:

Why this meta-data server ?
• As discussed above, GIT in its standard version does not provide some usual information 

like the identification of the reference version on which a given local branch is based. In this 
particular case, a git log might be used which would show all the piling up of successive 
modifications for a file. That information could allow one to “guess” what the base version 
was/is. Nevertheless, we wish to get the exact information, and in a simple manner.

• The native git log command on a specific SCR element will provide lots of good 
information about the history of changes, like: author, date, commit-hash, documentation 
associated to each commit. However, for instance, the name of the branch in which a given 
commit has been inserted is missing ...

• we wish to replace the little readable commit-hash identification with an explicit 
“branch/version” tag, such as “marp001_CY38T1_bf/2”

• we wish to implement an administrator control for branches. Standard GIT allows any user 
to modify in his local clone any base branch, including those he has not created. This is too 
permissive in our view for the IFS/Arpège code management. A user identification 
mechanism therefore has been designed.

• Conversely, the user-restricted permissions can be tuned such as to allow specific users to 
change branches of designated other users.

Eventually, the need to extend some of cc's limitations, and the need to somewhat re-design GIT's 
functions, has lead to the elaboration of the meta-data server.

The GIT-GCO toolbox:

GIT-tools are a comprehensive set of Perl scripts that encapsulate the native GIT commands, in 
order to ease their usage and implement some of the above concepts. GIT-tools therefore also 
manage the handle to the meta-data server. For many standard developers' needs, GIT-tools will be 
the sufficient toolbox for work; some specific actions however remain to be done with native GIT 
commands (see later).
The list of tools/commands can be found in the Appendix.

At present, GIT-tools are installed on the following platforms: merou (central SCR server), yuki & 
kumo (MF's NEC SX9), tori (MF NEC SX8), serran & mostelle (MF Production servers), mirage 
(COMPAS server). More installations will come soon.

3



Tutorial:

At first ... get started !: run   git_start  :

Before you use GIT-tools at any time, on any platform, you need to initialize your environment by 
running git_start (located in the directory ~marp001/git-install/client/default/bin).

At run time, git_start will first ask you whether you do have a GIT user account. If so, answer 'y', 
otherwise answer 'n' (or RETURN). The script will proceed normally in any case. Note that if you 
do not yet have a GIT user account, please check with MF's GCO team1 and the French LTM2 to get 
a valid account3. 

At the end of the execution of git_start, you should get the following type of return output:

% ~marp001/git-install/client/default/bin/git_start
check env variable GIT_INSTALL ... undef
check env variable GIT_ROOTPACK ... undef
check env variable GIT_HOMEPACK ... undef
check env variable GIT_WORKDIR ... undef
check presence of GIT_BIN_PATH in user's path ... undef
check presence of GIT_CORE_PATH in user's path ... undef
check presence of GIT_CLIENT_PATH in user's path ... undef

You are not authentified. Do you already have a Git account ? [y/n] y
Please authentify yourself.
login : stef
passwd: XXXXXXXX
You are authentified as: stef

set global configuration...

> try to clone master repository ...
Initialized empty Git repository in /home/marp/marp003/git-dev/arpifs/.git/
OK

> please add those environement variables to your profile:
export GIT_INSTALL="/home/marp/marp001/git-install"
export GIT_ROOTPACK="git://mirage"
export GIT_HOMEPACK="/home/marp/marp003/git-dev"
export GIT_WORKDIR="/home/marp/marp003/.git-workdir"

> please add those variables to your PATH:
/home/marp/marp001/git-install/default/bin
/home/marp/marp001/git-install/default/libexec/git-core
/home/marp/marp001/git-install/client/default/bin

this output is available here: /home/marp/marp003/git_start.log

1 gco@meteo.fr
2 At the time of writing this note (January 2013) : Claude.Fischer@meteo.fr
3 GIT user accounts on MF servers will be granted to NWP consortia partners on a case by case basis, but basically 

for all Aladin source code contributors (such as ALARO contact persons, other identified contributors to a given 
cycle, phasers) and the Hirlam System Experts.

4



In this example, user “stef” starts from a fully uninitialized GIT environment. He therefore has to 
set the following variables in his .profile/.bash_profile/etc... file:

• GIT_INSTALL: GIT-tools repository directory
• GIT_ROOTPACK: location of central SCR
• GIT_HOMEPACK: location of the user's local SCR (clone)
• GIT_WORKDIR: user temporary working directory
• don't forget to also add the location of the native GIT commands, as well as the GIT-tools 

commands, in your PATH environmental variable

In case of problems or suspicions: help desk is gco@meteo.fr
In the sequel of this note, we assume the user is a well authenticated GIT user as described above.

Access to the GIT SCR – how to create a branch:

In addition to the start initialization, git_start will create a local copy of the central SCR, that is, a 
clone. In our case, the Arpège/Aladin/Arome source code will be stored in a local repository named 
“arpifs”, located in the directory $GIT_HOMEPACK:

% cd $GIT_HOMEPACK
% ls -l
total 4
drwxr-xr-x 22 marp003 marp 4096 jun 12 13:53 arpifs

% cd arpifs
% ls -l
total 76
drwxr-xr-x 44 marp003 marp 4096 jun 12 13:53 aeolus
drwxr-xr-x 18 marp003 marp 4096 jun 12 13:53 aladin
drwxr-xr-x  6 marp003 marp 4096 jun 12 09:20 algor
drwxr-xr-x 39 marp003 marp 4096 jun 12 13:53 arpifs
drwxr-xr-x  8 marp003 marp 4096 jun 12 09:20 biper
drwxr-xr-x  7 marp003 marp 4096 jun 12 13:53 blacklist
drwxr-xr-x  6 marp003 marp 4096 jun 12 09:20 etrans
drwxr-xr-x 22 marp003 marp 4096 jun 12 13:53 ifsaux
drwxr-xr-x  8 marp003 marp 4096 jun 12 09:20 mpa
drwxr-xr-x  9 marp003 marp 4096 jun 12 13:53 mse
drwxr-xr-x  9 marp003 marp 4096 jun 12 09:20 obstat
drwxr-xr-x 27 marp003 marp 4096 jun 12 13:53 odb
drwxr-xr-x 15 marp003 marp 4096 jun 12 13:53 satrad
drwxr-xr-x 11 marp003 marp 4096 jun 12 13:53 scat
drwxr-xr-x 16 marp003 marp 4096 jun 12 09:20 scripts
drwxr-xr-x  7 marp003 marp 4096 jun 12 09:20 surf
drwxr-xr-x  5 marp003 marp 4096 jun 12 13:53 surfex
drwxr-xr-x  7 marp003 marp 4096 jun 12 09:20 trans
drwxr-xr-x 17 marp003 marp 4096 jun 12 13:53 utilities

For the cc familiar reader: please notice from the above example that the former “cc projects” have 

5

mailto:gco@meteo.fr


been renamed: arp => arpifs; ald => aladin; xla => algor; bip => biper; bla => blacklist; tfl => trans; 
tal => etrans; xrd => ifsaux; obt => obstat; sat => satrad; sct => scat; scr => scripts; sur => surf; uti 
=> utilities.
The local version in this clone simply is the current last version available in the central SCR, at the 
very time git_start was launched. Use git_view to easily learn about the history of this version in the 
central repository:

% git_view
CY37T1_op1.08
CY37T1_bf.03
CY37T1

Thus, this command shows how successive versions pile up, like cc_view did in cc. At the date of 
2012/09/06, all cycles and versions from CY18 through CY38T1 are already made available. A 
number of GCO and specific user branches also are present. 

To create a user-local branch, use git_branch from the GIT-tools. This command works in a similar 
manner to cc_getpack. For example, for creating a branch on top of version 05 of MF's E-suite 
version CY37T1_op1, type:

% git_branch -r 37t1 -b op1 -v 05 -u test
 > Do you want to create branch stef_CY37T1_test ? [y/n] y

 >
 > Branch : stef_CY37T1_test
 > Path   : /home/marp/marp003/git-dev/arpifs
 >
 >  1. CY37T1_op1.05
 >  2. CY37T1_bf.03
 >  3. CY37T1
 >
 > Available projects:
 >   aeolus aladin algor arpifs biper blacklist etrans ifsaux mpa mse obstat 
odb satrad scat scripts surf surfex trans utilities
 >

You can notice that the naming of branches starts with the GIT user name (as opposed to the Unix 
system user name, which can differ from a platform to another. “stef” is a unique definition for the 
GIT user both in the central SCR and for clones. “marp001” may become “gco” as a Unix user 
name on a different machine, or “stef”).

How to change files in your branch:

As explained earlier in this note, you do not have to “checkout” nor to “check-in” any code change 

6



in a file. So basically GIT is comfortable with only edits (vi, vim, etc. Ended by a save/quit). 
However, cc's cc_edit command had two specific functions of interest included:

1. any file name is searched throughout the whole cc view. Therefore, one could cc_edit for 
instance cpg.F90 from any directory (not only from “adiab”). 

2. At the beginning of cc_edit, the command return any potential list of branches in which the 
edited file already has been modified or is being edited, if those branches are based on the 
same release.

In order to preserve these two functions under GIT, a GIT-tool named git_edit has been developed. 
For instance, when the routine apl_arome.F90 is edited from the directory 
$GIT_HOMEPACK/arpifs, the following output is obtained:

% git_edit apl_arome.F90
 > Warning: apl_arome.F90 not found in current directory
 > Getting file arpifs/phys_dmn/apl_arome.F90 ? [y/n] y
 > Versions of arpifs/phys_dmn/apl_arome.F90 - cycle CY37T1:
CY37T1_op1.01     GCO         modified     2012/05/14-08:30:26
CY37T1_bf.02      GCO         modified     2012/05/14-08:24:02
 > Still getting file arpifs/phys_dmn/apl_arome.F90 ? [y/n] y

The desired changes are inserted in apl_arome.F90, and the edit is saved/quit. git_edit then issues 
the following request for confirmation:

 > Save modifications ? [y/n]

At this stage, the user still can decide whether to accept the changes, or not.

How to suppress/rename/add files:

For suppressing files, the corresponding native GIT command has been found well suited for our 
SCR management needs. It is a rather simple command:

% git rm [-r] fichier-à-effacer [fichier-à-effacer ...]

Option -r allows to suppress one or more whole directories.

Another native GIT command allows to rename files or directories, or to move files/directories:

7



% git mv source [source ...] destination

CAUTION:
GIT will not complain if one uses the standard Unix system rm command for removing 
files/directories. However, using the mv command may break GIT's ability to maintain the historical 
traceback of the element of concern. Therefore, we recommend not to use mv !

To add new files/directories, many Unix commands are perfectly accepted and will work with GIT: 
touch, mkdir, cp, vim, etc.

A file is tracebacked by GIT using its fully extended name (for instance, 
arpifs/phys_dmn/apl_arome.F90). If a file has been removed in an old branch, and one wishes to re-
create this file, there is no need for a wrapped command like cc_add was in cc. It is simply 
sufficient to re-create the file as indicated above, and one retrieves the full old history of the 
previously removed file.

How to register your modifications:

For any of the changes performed locally, as described before, 2 operations are necessary for 
registration with native GIT commands:

1. run git add in order to update the file index of the local repository
2. run git commit (without the underscore !) to register the changes

The GIT-tools command git_commit performs both operations in one go. A specific documentary 
message needs to be provided in order to submit a description of those changes. For a short 
message, option -m of git_commit is enough:

% git_commit -m « ceci est mon premier commit »

For bigger changes, or when a substantial description is desired (one or several paragraphs), option 
-f of git_commit will be used. The argument of the option then is a separate file, located outside the 
SCR, and containing the message:

% git_commit -f /tmp/mon_message

Update of the meta-data server, and of the central repository:

8



Thus far, all the performed actions and changes only affected the local GIT SCR. The central SCR 
was not modified. Obviously, this allows any developer to take a while and possibly revisit his/her 
changes and documentation. Nevertheless, once the changes are found consolidated and ripe for a 
definitive commitment, they can be sent to the central repository. This operation is done with the 
command git_post:

% git_post
stef_CY37T1_test/1

In a normal case of execution, git_post will, after a few minutes delay, send back the updated 
version to the developer's local current branch (synchronization step). The command git_view then 
should return a picture like this:

% git_view
stef_CY37T1_test/1
CY37T1_op1.05
CY37T1_bf.03
CY37T1

Note that it is not necessary to git_post changes one by one. You certainly should/can leave your 
changes committed locally, and only update the central SCR when a complete, firm set of changes 
has been obtained. Indeed, git_post will preserve all your intermediate changes/commits you did 
locally, and they will remain in the history traceback udpated in the central SCR, and be sent back 
to your local branch.

How to merge branches:

The native GIT command git merge name_of_branch does allow very simple merges. However, 
this command is unable to tell in advance of starting the actual operation on files, which type of 
actions will be conducted. We wish to keep this facility, which is provided within cc. This is the 
reason for having a specific GIT-tools command git_merge, which operates in a similar manner to 
cc's cc_merge. Before merging, information about what has to be merged will be issued (in terms of 
suppression, renaming, adds, modifications) and of what type each action will be (automatic or 
manual).

For manual merges, GIT unfortunately does not provide a standard graphical interface. External 
interfaces can however be used, as desired, among for instance vimdiff, gvimdiff, tkdiff, meld, 
kdiff3, etc. GCO is proposing kdiff3 since this interface bear many similarities with the one used 
with cc_merge.

CAUTION:
kdiff3 only is available on merou for the time being. Therefore, the sequel of this tutorial applies 

9



strictly speaking only to this platform.

As an example of how to use git_merge, we first create a new branch named “merge” on top of 
CY36T1:

% git_branch -r 36t1 -u merge
 > Do you want to create branch stef_CY36T1_merge ? [y/n] y

 >
 > Branch : stef_CY36T1_merge
 > Path   : /home/marp/marp003/git-dev/arpifs
 >
 >  1. CY36T1
 >
 > Available projects:
 >   aeolus aladin algor arpifs biper blacklist etrans ifsaux mpa mse obstat 
odb satrad scat scripts surf surfex trans utilities
 >

The example consists in merging all the changes present in the bugfix branch of this cycle. This is 
GCO's branch gco_CY36T1_bf:

% git_merge -u gco -r 36t1 -b bf
 > Merging from branch origin/gco_CY36T1_bf ...
 > Base is 9ee6fa1dd782a2302ee71070d83d1a64859a8f43 ...
Add File "arpifs/c9xx/csstbld.F90" (automatic)
Add File "arpifs/function/fcgeneralized_gamma.h" (automatic)
Add File "ifsaux/utilities/ismax_1.F" (automatic)
Add File "ifsaux/utilities/ismin_1.F" (automatic)
Add File "odb/bufr2odb/satobfreq_bynam.F90" (automatic)
Add File "satrad/interface/rttov_ec_alloc.h" (automatic)
Merge File "aladin/adiab/espchor.F90" (automatic)
Merge File "aladin/control/espcm.F90" (automatic)
Merge File "aladin/programs/blendsur.F90" (automatic)
Merge File "aladin/programs/check_limits.F90" (automatic)
[...]
Merge File "surfex/teb/init/writesurf_pgd_teb_parn.f90" (automatic)
Merge File "surfex/teb/phys/urban_drag.f90" (automatic)
Merge File "utilities/ctpini/module/constantes.F90" (automatic)
Merge File "utilities/ctpini/module/fonctions_inversion.F90" (automatic)
Merge File "utilities/ctpini/programs/inversion_master.F90" (automatic)
Merge File "utilities/pinuts/module/egg_tools_mod.F90" (automatic)

deleted files    : 0
renamed files    : 0
added files      : 6
automatic merges : 146
manual merges    : 0

10



 > Do you want to perform automatic merges ? [y/n] y
Updating 9ee6fa1..092ef19
Fast-forward
 aladin/adiab/espchor.F90                        |  184 ++----
 aladin/control/espcm.F90                        |  133 ++++-
 aladin/programs/blendsur.F90                    |   23 +-
 aladin/programs/check_limits.F90                |   18 +-
 aladin/utility/elalo2xy.F90                     |    3 +
 aladin/var/suescal.F90                          |    2 +-
 algor/external/fourier/fft992.F                 |    1 +
 arpifs/adiab/call_sl_ad.F90                     |    4 +-
 arpifs/adiab/laitri.F90                         |    5 +-
 arpifs/adiab/larcin2ad.F90                      |    2 +-
 arpifs/c9xx/csstbld.F90                         |  259 +++++++++
[...]
 utilities/ctpini/module/fonctions_inversion.F90 |  234 +++++---
 utilities/ctpini/programs/inversion_master.F90  |    7 +-
 utilities/pinuts/module/egg_tools_mod.F90       |   68 ++-
 152 files changed, 3228 insertions(+), 2745 deletions(-)
 create mode 100644 arpifs/c9xx/csstbld.F90
 create mode 100644 arpifs/function/fcgeneralized_gamma.h
 create mode 100644 ifsaux/utilities/ismax_1.F
 create mode 100644 ifsaux/utilities/ismin_1.F
 create mode 100644 odb/bufr2odb/satobfreq_bynam.F90
 create mode 100644 satrad/interface/rttov_ec_alloc.h

On execution, the reader will first notice the speed of this operation (as compared, for those 
familiar, with cc_merge operations). Second, the second line in the output of git_merge reads: 
“Merging from branch origin/gco_CY36T1_bf”. What the hell does “origin” mean here ?
This is linked with the fact that gco_CY36T1_bf is not a branch on the local repository, but on the 
central one (that is, the one that has been cloned previously). It is in the jargon named “a distant 
branch”. Had we used the GIT native command git merge gco_CY36T1_bf, we would have got an 
error message: “fatal: gco_CY36T1_bf – not something we can merge”. This type of specific GIT 
behavior, forcing one to specifically understand the nature of a given branch, is avoided by the use 
the git_merge instead. Note that a similar extended facility is associated with git_branch.

If now git_view is run, we obtain:

% git_view
CY36T1_bf.09
CY36T1

which is the normal message, since we simply have merged all bugfixes on top of the originally 
cloned base version CY36T1. 

At present, branch “gco_CY36T1_op1” will be merged as an additional content:

11



% git_merge -u gco -r 36t1 -b op1
 > Merging from branch origin/gco_CY36T1_op1 ...
 > Base is 092ef191a05cf29d586d82fa1c8c1dd83d97bf9b ...
Remove File "arpifs/parallel/disgrid.F90" (automatic)
Remove File "arpifs/parallel/diwrgrid.F90" (automatic)
Remove File "mpa/turb/internals/updraft_sope.f90" (automatic)
Rename File "arpifs/module/yomarar.F90" -> "arpifs/module/yomparar.F90" 
(automatic)
Add File "arpifs/dia/wrgrida.F90" (automatic)
Add File "arpifs/module/disgrid_mod.F90" (automatic)
Add File "arpifs/module/diwrgrid_mod.F90" (automatic)
Add File "arpifs/namelist/namfpdyi.h" (automatic)
Add File "arpifs/obs_preproc/sortscatidx.F90" (automatic)
[...]
Merge File "utilities/progrid/procor2.F" (automatic)
Merge File "arpifs/phys_dmn/achmt.F90" (manual)
Merge File "arpifs/phys_dmn/mf_phys.F90" (manual)
Merge File "arpifs/setup/sugrida.F90" (manual)
Merge File "mpa/turb/internals/compute_updraft.f90" (manual)
Merge File "surfex/sea/phys/coupling_seaflux_sbl.f90" (manual)

deleted files    : 3
renamed files    : 1
added files      : 118
automatic merges : 249
manual merges    : 5

 > Do you want to perform automatic merges ? [y/n] y

The presence of manual merges may be surprising. This will however be a rather frequent situation. 
In our case, the reason for manual merges is that “op1” is a branch based on bugfix version 06 of 
CY36T1, while the latest bugfix version already is 09.
At first, the manual merges will be performed:

Trying really trivial in-index merge...
Nope.
Trying simple merge.
Simple merge failed, trying Automatic merge.
Auto-merging arpifs/dia/cpxfu.F90
Auto-merging arpifs/namelist/namphy0.h
Auto-merging arpifs/op_obs/hretr.F90
Auto-merging arpifs/phys_dmn/achmt.F90
ERROR: content conflict in arpifs/phys_dmn/achmt.F90
Auto-merging arpifs/phys_dmn/mf_phys.F90
ERROR: content conflict in arpifs/phys_dmn/mf_phys.F90
Auto-merging arpifs/pp_obs/pos.F90
Auto-merging arpifs/setup/sugrida.F90
ERROR: content conflict in arpifs/setup/sugrida.F90
Auto-merging arpifs/var/rdfpinc.F90
Auto-merging mpa/turb/internals/compute_updraft.f90
ERROR: content conflict in mpa/turb/internals/compute_updraft.f90
Auto-merging odb/pandor/module/bator_decodbufr_mod.F90
Auto-merging odb/pandor/module/bator_ecritures_mod.F90
Auto-merging odb/pandor/module/bator_init_mod.F90

12



Auto-merging odb/pandor/module/bator_lectures_mod.F90
Auto-merging surfex/sea/phys/coupling_seaflux_sbl.f90
ERROR: content conflict in surfex/sea/phys/coupling_seaflux_sbl.f90
Automatic merge failed; fix conflicts and then commit the result.

 > Do you want to perform manual merges ? [y/n] y

A few comments here:
1. so-called “fast-forward” manual merges are not listed above (they mean that the branch 

gco_CY36T1_op1 is the sole contributor)
2. merges solved as “Auto-merging” without errors are those declared as manual by GIT, but 

nevertheless solved by GIT (for instance, orthogonal contributions)
3. “Auto-merging” merges that issue an error are those where a true manual merge is required 

(thus, to be taken care by the developer)

As with cc, the remaining manual merges are done file by file, with a request for confirmation:

Merging:
arpifs/phys_dmn/achmt.F90
arpifs/phys_dmn/mf_phys.F90
arpifs/setup/sugrida.F90
mpa/turb/internals/compute_updraft.f90
surfex/sea/phys/coupling_seaflux_sbl.f90

Normal merge conflict for 'arpifs/phys_dmn/achmt.F90':
  {local}: modified file
  {remote}: modified file
Hit return to start merge resolution tool (kdiff3):

Typing RETURN, the kdiff3 interface will be open on screen:

13



In the upper window, we successively find: the base version common to both the current branch and 
the branch to merge (Base), the current version (Local), the version that is being merged to it 
(Remote). The lower window displays the result of the merge.
Automatic conflicts are solved by kdiff3, and the remaining conflicts need to be visually handled. 
Those are the ones that remain displayed in the lower window as <Merge Conflict>. Kdiff3 situates 
the edited file immediately at the level of the first unsolved conflict, and underlines in yellow the 
lines to be solved. 
For the conflict displayed above, one simply puts the cursor on the yellow-marked line, right-clicks, 
and chooses the option “Select Line(s) from C”:

14



We then move to the next conflict by clicking on the menu-button having the two arrows 
downward:

and so on for all unsolved conflicts. Once the down-arrows button appears in grey, all conflicts are 
considered as solved. The result is saved and we can leave kdiff3:

CAUTION:
The example above is mostly to illustrate the basic work with git_merge and kdiff3. Therefore, the 
actions suggested for solving the manual conflicts are extremely simple (to simply choose “C” for 
instance). In practice, a number of conflicts will require a careful code analysis, and possibly some 
thorough scientific understanding and help by colleagues. We strongly suggest that large or difficult 
merges are considered as a collaborative effort, not a local one-person activity !

We then can proceed to the next file. Note that kdiff3 is an advanced editor that is able to solve 
various conflicts by itself. If kdiff3 finds files where it can solve all conflicts, then it will do so, and 
it will not open the graphics interface at all. Don't be therefore perturbed if not all presumably 
manually-to-be-merged files actually are proposed for a visual merge by kdiff3.

Once all manual merges are completed, you should get the following message on screen:

15



[stef_CY36T1_merge 8d2ebfe] Merge with origin/gco_CY36T1_op1

At this stage, git_view should return the following:

% git_view
8d2ebfe35ca6e5651eefd3006251ba5a28d930fa
CY36T1_op1.18
CY36T1_bf.09
CY36T1

The ugly-looking 41 character string above is the commit-hash. This commit-hash is associated 
with the commit that has been performed behind the scene, at the end of the set of manual merges. 
If your changes are then posted/registered by git_post, git_view should return:

% git_post
stef_CY36T1_merge/1
% git_view
stef_CY36T1_merge/1
CY36T1_op1.18
CY36T1_bf.09
CY36T1

which tells you that the meta-data server has associated a specific version number to your current 
branch, corresponding to your merged version. This numbering provides a much clearer visibility 
than the hash.

How to actually see what has been changed during the merge ?:

In general, a merge operation results in a rather big volume of modifications here and there. 
Especially, many of them have occurred with your explicit notice ! To get a comprehensive view of 
which files actually have just been changed in your branch “merge”, git_list will prove most useful 
(as was cc_list for cc):

% git_list
deleted mpa/turb/internals/updraft_sope.f90
deleted arpifs/parallel/diwrgrid.F90
deleted arpifs/parallel/disgrid.F90

16



deleted arpifs/module/yomarar.F90
added arpifs/c9xx/csstbld.F90
added arpifs/dia/wrgrida.F90
added arpifs/function/fcgeneralized_gamma.h
added arpifs/module/disgrid_mod.F90
added arpifs/module/diwrgrid_mod.F90
[...]
modified utilities/ctpini/programs/inversion_master.F90
modified utilities/gobptout/prochien.F
modified utilities/gobptout/procor1.F
modified utilities/gobptout/progeom.F
modified utilities/pinuts/module/const_standart_mod.F90
modified utilities/pinuts/module/editfield_prg_mod.F90
modified utilities/pinuts/module/egg_tools_mod.F90

The only difference with cc_list is that git_list also provides an information about the nature of the 
change: suppression, renaming, add, modification. It is also possible to check what was modified on 
any specific branch using the options -u, -r and -b, in a similar manner as with cc_list.

Conclusion:

You now do have all the basic knowledge to get started and work with the GIT-tools. The 
remaining part of this note gives a more detailed inventory of all available commands.

17



Appendix A: list of GIT-tools commands

In this Table, ct = cleartool to indicate Clearcase counterparts.

Command Description Equivalent 
ClearCase

git_add_branch To register a branch that was not originally created with 
git_branch4

git_branch To create a branch, or to open an existing one5 cc_getpack
cc_getview

git_commit To perform a commit (to commit)

git_diff To visually display the differences between 2 (or max 3) 
versions of an element from the repository6

cc_diff

git_edit To edit an element of the repository7 cc_edit

git_  fetch  To fetch a remote (or origin) repository, and update (all or) 
given local branches if required8

git_finger To search the identification of a user

git_help Manual (on-line) help for any GIT-tools command cc_help

git_history To retrieve the history of changes of an element of the 
repository

ct lshistory

git_info To get the GIT description of an element of the repository, 
of a branch, a tag or a commit

ct describe

git_list To list all modifications applied in a branch9 cc_list

git_login To enable authentication on the local platform

git_logout To disable authentication on the local platform

git_merge To merge a remote branch on the current one10 cc_merge

4 We recommend to ask help/supervision by GCO before using this command !
5 Option -U takes the GIT user identification, not the System identification (eg. 'gco' not 'marp001') ! Please also 

keep in mind that 'public branches' in the sense of cc do not hold for GIT: any user may open and change branches 
of any other user. However, submit changes made on a non-proprietary branch to the central SCR (by git_post) is 
not possible.

6 The editor tool that will be launched by git_diff is platform-dependent (depending on the default editor setting). A 
user may choose his custom editor for git_diff by setting the environmental variable GIT_DIFF_EDITOR to the 
complete path+name (eg. /usr/X11R6/bin/gvimdiff). Some editors run in background mode by default, which is 
unsuitable for git_diff. If so, check for the appropriate command line option to disable background mode (eg.  
export  GIT_DIFF_EDITOR = /usr/X11R6/bin/gvimdiff -f .

7 Same note as for git_diff (see above)
8 When a branch of the remote SCR already exists locally, then the local branch will be updated via a merge 

operation. If no local branch exists, then it is created and updated. Note that merges should be automatic, otherwise 
the local update of that branch will fail. We expect that most git_fetch operations will be applied with no command 
line option.

9 Option -u requires the GIT user identification, not the user's System identification ! git_list only will work once the 
branch of interest has been updated in GCO's meta-data base. Indeed, git_list requires to know the commit(-hash) 
associated to a branch, an information which is not available by a standard GIT command.

10 (1) unlike the native git merge command, only one branch at a time can be merged with git_merge  (2) the default 
(and rather recommended) working mode for git merge is 'resolve' – the -s option in git_merge allows to switch to 
another mode of git merge but we recommend the highest caution to users when changing this mode !  (3) option 
-u requires the GIT user identification, not the UNIX System identification  (4) instead of using the standard 
options -u/-r/-b, it is perfectly possible to use option -v with the name of a branch+version (eg. 
'gco_CY37T1_op1/1') or a commit(-hash) or a tag (advanced use)  (5) the list of all merge operations that need to 

18



cc_fmerge

git_mod To list all modifications performed on an element of the 
repository, based on the very same release as the current 
branch

cc_md

git_password To change the user's password

git_post To submit (/ ask for) an update of the central repository and 
the meta-data server, with all modifications performed in the 
current branch11

git_public To enable public access to a branch, for all or for specific 
users

cc_public

git_start To initialize the GIT-tools environment

git_user To obtain information on any user

git_view To obtain the rules of view for the current branch12 cc_view

be performed can be saved into an output file using option -o  (6) in the case when the list of merge operations has 
been saved on file beforehand, the merge itself can be stopped (for instance with CTRL-C) and resumed later using 
option -f  (7) since GIT does not provide a standard graphical interface to help for manual merge, a user-specified 
graphical display is needed. GCO recommends kdiff3 which is available on merou (see also body text for details)

11 git_post won't work if the user is not authenticated on the current platform, if he doesn't have 'write' authorization 
on the central repository, if he is not the owner/creator of the current branch

12 Unlike in Clearcase, it is not possible to insert any additional user's branch within the rules of view of a current 
branch

19



Appendix B: few native GIT commands

Here are listed a few native, standard GIT commands, that can prove to be useful and help making 
things easier ...

 clone a repository:

% git clone URL-towards-distant-repository

 clone a repository and change its name with respect to the origin repository:

% git clone URL-towards-distant-repository name-of-local-repository

 get the list of all local branches:

% git branch

 get the list of all remote (distant) branches:

% git branch -r

 create a new branch on top of the current one, without however changing branch:

% git branch name-of-new-branch

 create a new branch on top of any reference (a commit, a  tag, a name of branch [local or distant], 
etc...), without however changing branch:

% git branch name-of-new-branch reference

 open an existing branch:

% git checkout name-of-branch

 create and open a new branch on top of the current one:

% git checkout -b name-of-new-branch

 create and open a new branch on top of any reference (a commit, a tag, a name of branch [local or 
distant], etc...):

% git checkout -b name-of-new-branch reference

 get  status  information  about  the  current  situation  in  a  branch,  since  the  last  commit  was  done 
(modified / added / renamed / deleted files, files not yet added to the index etc.):

% git status

 update the index table of the files present in the repository (Note: this action has to be done from the  
“top directory” of the repository):

% git add .

20



 Perform a commit with a short message:

% git commit -m 'message-for-commit'

 perform a commit and invoke a text editor for typing an extended message:

% git commit

 perform a commit, and add as message text contained in a file:

% git commit -F name-of-file

 change  the  message  of  the  last  commit,  or  even  change  the  content  of  the  last  commit  with  
modifications done since then (Note: changing the content is absolutely proscribed if the commit  
already has been posted with git_post !):

% git commit --amend

 return  back  to  the  previous commit,  while  preserving  the  modifications  done  since then.  These 
modifications are then ready to be re-committed (Note: this action is absolutely proscribed if the 
commit already has been posted with git_post !):

% git reset –-soft HEAD^

 return back to the previous commit, without preserving the modifications done since then (Note: this 
action is absolutely proscribed if the commit already has been posted with git_post !):

% git reset –-hard HEAD^

 merge a branch into the current one:

% git merge name-of-branch

 “piling up” commits in the current branch:

% git log

 “piling up” commits in a reference (a branch, a tag, a file, etc...) :

% git log reference

 cleaning up files that have become useless, from the local repository, and optimization/compression  
of the data (Note: to be done regularly !):

% git gc

 add a distant repository, and update the data from that repository:

% git remote add alias-of-distant-repository URL-towards-distant-repository
% git fetch  alias-of-distant-repository

 suppress one or more files (or directories) (Note: syntax is similar to the Unix command rm):

% git rm [-r] name-of-file [name-of-file ...]

21



 rename/move one or more files (or directories) (Note: syntax is similar to the Unix command mv):

% git mv source [source ...] target

22


