
ARPEGE/ALADIN/AROME IO in 39t1

Table of contents
 1 Introduction ...2
 2 Organization of the code ..2

 2.1 Field descriptors..2
 2.2 IO buffers..2
 2.3 Extracting/loading fields...3
 2.4 MFIOOPTS...3
 2.5 Code cleaning...3

 3 Grid-point/spectral ..4
 4 Traditional input/output ..5

 4.1 Grid-point input..5
 4.2 Grid-point output..5
 4.3 Grid-point output alternatives...6
 4.4 Spectral fields input/output..7

 5 Extended traditional output ..8
 5.1 One file per NSTROUT task...8
 5.2 A single file written by all tasks...8
 5.3 An alternative to GATHFLNM...9

 6 Disabling traditional output ...9
 7 Compacting fields with OpenMP ...10
 8 SURFEX IO ...10

 8.1 Anatomy of a SURFEX historic file in FA....................................10
 8.2 Conversion from/to LFI..11
 8.3 Modifying SURFEX historic files..11
 8.4 Enabling FA..12
 8.5 The SURFEX cache...12

 9 The IO server ..14
 9.1 Implementation of the IO server..14

Handling of asynchronous “sends”..14
IO server message “receives”...15
IO server termination..15
Multi-threading..15

 9.2 Namelist parameters..15
 9.3 Field based mode..16
 9.4 Gather based mode...17
 9.5 Reading data produced by the IO server...................................17

Using facat..17
Using an index file..18

 10 Fullpos & SURFEX ...18
 11 Further developments ...18

 11.1 Reading input files with Multi-Threading..................................18
 11.2 Simplifying the code...18
 11.3 Removing LFI from mse project...18

1 Introduction

This document describes the IO subsystem of ARPEGE/ALADIN/AROME for
cycle 39t1. Only historic data IO is covered here, with a few words on Fullpos
IO.

2 Organization of the code

2.1 Field descriptors

IOFLDDESC_MOD contains the definition of the structures designed to contain
the meta-data describing fields to be read or written :

• IOFLDDESC contains all information about the field :

• prefix, level, suffix

• spectral/grid-point

• number of bits to be used for compression

• whether the field contains undefined values

• ...

• IOCPTDESC contains additional information about a compressed field :

• name of the article to be written to LFI

• length of the compressed data

• MIN/MAX/AVG of the field

2.2 IO buffers

IOMULTIBUF_MOD contains the definition of a structure used to store field data.
Its name is IOMULTIBUF.

In order to avoid doing unnecessary copies, it is necessary not to use a big two
dimensional array, but rather a list of two dimensional arrays. In Fortran, this
is achieved by defining arrays of IOMULTIBUF objects.

IOMULTIBUF arrays have some sort of accessor methods :

IOMULTIBUF_SIZE_IDX Compute the total number of fields in
a IOMULTIBUF array

IOMULTIBUF_INIT_IDX Initialize an iterator on a IOMULTIBUF
array

IOMULTIBUF_INCR_IDX Increase the iterator value
IOMULTIBUF_COMP_IDX Compute the direct addressing values

indexed by field

2.3 Extracting/loading fields

Model field copy into buffers is implemented in the following modules :

Module Description

IOGRIDUA_MOD Upper air grid-point fields

IOFU_MOD Cumulated fluxes

IOGRIDVA_MOD Climatological fields

IOXFU_MOD Instantaneous fluxes

IOGRCLIA_MOD Climatological fields

IOGRIDA_MOD Surface physical fields

IOSPECA_MOD Spectral fields

Each of these modules has the very same layout :

• a routine for counting the fields to be copied into buffers (e.g.
IOGRIDUA_COUNT)

• a routine for retrieving the meta-data related to the fields to be
extracted (e.g. IOGRIDUA_SELECTD)

• a routine for copying data from/to model variables to/from buffers (e. g.
IOGRIDUA_SELECTF)

IOSPECA_MOD has additional routines, because of the transformations we need
to apply on the data before doing spectral IO (in ARPEGE, vorticity and
divergence are written, while in AROME/ALADIN, U and V are written).

2.4 MFIOOPTS

This structure is defined and initialized in mfioopts_mod.F90. It is supposed to
contain all parameters related to how to perform output of historic files, except
parameters describing the IO server configuration (described in another
section).

2.5 Code cleaning

The reorganization of the code made it possible to clean the following
routines :

Set-up Output
SUGRIDA WRGRIDA

SUGRIDUA WRGRIDUA

SUGRIDVA -

SUGRCLIA -
SUSPECA WRSPECA

- WRXFU

- WRFU

Note that routines such as SUGRIDA and WRGRIDA now use the same building
blocks; they both rely on IOGRIDA to count the fields, retrieve their meta-data
and extract field data to buffers.

All routines dealing with grid-point data rely on WRGP2FA for writing their fields,
and on RDFA2GP for reading.

New routines have also been implemented using this new structure for
handling SURFEX historic data :

Set-up Output
SUGRIDSFX WRSFX

SURFEX IO will be described in detail later in this document.

3 Grid-point/spectral

Spectral data can be read/written in grid-point format; this is activated using
the following flags:

&NAMCT0

 LWRSPECA_GP ! write spectral fields in grid-point format

 LSUSPECA_GP ! read spectral fields in grid-point format

 LWRSPECA_GP_UV ! write U/V instead of VOR/DIV

 LSUSPECA_GP_UV ! read U/V instead of VOR/DIV

/

When LWRSPECA_GP (resp. LSUSPECA_GP) is true, WRSPECA_GP (resp.
SUSPECA_GP) is called in place of WRSPECA (resp. SUSPECA). WRSPECA_GP and
SUSPECA_GP are implemented using basic routines from IOSPECA and the
spectral transforms.

Note that LSUSPECA_GP and LSUSPECA_GP_UV could be set up automatically by
probing the input file for U/V field presence and representation in spectral
coefficients (using FANION), but this is not the case for now.

4 Traditional input/output

4.1 Grid-point input

The RDFA2GP routine reads input fields from FA files in parallel (on NSTRIN MPI
tasks) and distributes fields on all model tasks. It is able to read data from
several input files.

4.2 Grid-point output

What we call traditional output is handled directly by model tasks. It consist of
the following steps :

• re-create whole fields on NSTROUT processors

• compress whole fields on NSTROUT processors

• send compressed fields to MPI #1

• MPI #1 writes to a single file

This is illustrated on the following diagram.

1 2 NPROC....

NSTRIN....

1..NSTRIN
Whole fields

Step 4

Step 3

1Step 2 1..NSTRIN
Decompression

Step 1 Read

Single file

Traditional output is implemented in WRSPECA, WRGP2FA (model historic data),
WRSFP, WRGP2FAFP (Fullpos data). WRSPECA, WRGP2FA and WRGP2FAFP rely on
WRGAFLNM for the last two steps (4 and 5).

4.3 Grid-point output alternatives

Step 2 for grid-point fields can be performed using different MPI

1 2 NPROC....

NSTROUT....

1..NSTROUT
Whole fields

Step 1

Step 2

Step 4

1

1

Step 3 1..NSTROUT
Compression

Step 5

Send to MPI #1

Write

Single file

communications patterns :

• nominal mode : MPI_SEND/MPI_RECV, possibly with OpenMP (controlled
by LWRGRIDOPENMP).

• using MPI_GATHERV, with OpenMP (controlled by L_GATHERV_WRGP and
LWRGRIDOPENMP).

• using MPI_ALLTOALLV, controlled by LWRGRIDALLTOALL

There are several routines doing output of grid-point fields : WRGRIDA,
WRGRIDUA, WRXFU, WRFU. All of them call WRGP2FA. The aforementioned routines
are specialized : each of them handle a particular kind of grid-point field (for
instance WRGRIDUA takes care of upper-air fields).

It is possible to write all grid-point fields (but SURFEX's) in one go and get
more parallelism of field compression. WRGRIDALL does this job, under the
control of LUSEWRGRIDALL.

In principle, it should be possible to write a SUGRIDALL, whose purpose would
be to read all grid-point fields at once.

4.4 Spectral fields input/output

Reading or writing spectral fields is different from reading/writing grid-point
fields, because of the distribution of spectral data. When a grid-point field is
distributed, each MPI task gets a chunk of the field. This is not the case with
spectral distribution: fields are distributed by level and wave-number.

It is then possible to have spectral V-sets working in parallel, as illustrated on
the following diagram (only two V-sets, MPI tasks indexed by their W-set
number). This is what is done in WRSPECA and SUSPECA.

1 2 NPRTRW....

NSTRIN....1

Single file

1 2 NPRTRW....

NSTRIN....1

VSET 1 VSET 2

5 Extended traditional output

Output is still handled by model tasks. However, different methods have been
implemented.

5.1 One file per NSTROUT task

&NAMPAR1

 NDISTIO(1)=1

/

A single file per NSTROUT processor is created. File have the following names :
ICMSH000+NNNN_MYPROC.

5.2 A single file written by all tasks

Yes, this is possible, but under the following conditions:

• either the file is being created,

• or it already exists, and fields to be written already exist with the right
size

• and the number of fields to be written does not exceed the number of
slots available in the primary FA index (usually 3072). The size of the FA
primary index can be extended using a bigger “facteur multiplicatif”.

1 2 NPROC....

NSTROUT....

1..NSTROUT
Whole fields

Step 1

Step 2

1
Step 3 1..NSTROUT

Compression

Step 4 Write

File
NSTROUT

File
#1

....

Note that a MPI_ALLGATHERV is necessary, so that all NSTROUT tasks exchange
field sizes and be able to compute offsets. Note eventually that writing
compressed data does not go through the FA library, but through a C layer.

Writing to the same file by all tasks is enabled by the following parameter :

&NAMPAR1

 NDISTIO(1)=3,

/

5.3 An alternative to GATHFLNM

GATHFLNM is used to send/receive compressed fields from NSTROUT tasks to MPI
#1. MPI sends are done in synchronous mode, in order not to flood MPI #1
with messages. GATHFLNM encodes/decodes data in a private buffer.

An alternative method with no intermediate buffer has been coded. It is
activated by setting NDISTIO(5) to 1.

Setting NDISTIO(7) to 1 will enable “out of order message reception” by MPI
#1 (default is to receive messages from tasks 1 to NSTROUT consecutively).

6 Disabling traditional output

For testing purposes, it is possible to disable the IO at different stages. Below
are listed namelist parameters from NAMPAR1, and their effects :

1 2 NPROC....

NSTROUT....

1..NSTROUT
Whole fields

Step 1

Step 2

1
Step 3 1..NSTROUT

Compression

Step 4 Write

Single file

Field gathering Field compression Writing

NDISTIO(2)=0

NDISTIO(3)=0

NDISTIO(4)=0

Yes Yes Yes

NDISTIO(2)=1

NDISTIO(3)=0

NDISTIO(4)=0

Yes Yes No

NDISTIO(2)=1

NDISTIO(3)=1

NDISTIO(4)=0

Yes No Yes

NDISTIO(2)=1

NDISTIO(3)=1

NDISTIO(4)=1

No No No

7 Compacting fields with OpenMP

Its possible to compact fields with the FA library and OpenMP. This is done in
WRSPECA and WRGP2FA. Activating FA compression under OpenMP requires
setting NDISTIO(6) to 1.

Using FA with OpenMP requires :

• using the thread-safe interface of FA; all FA routines require an extra
argument (see FACILE_MT in facile.F90)

• duplicating FA state for each thread (see wrmlppa.F90 and
fadup_mod.F).

8 SURFEX IO

SURFEX IO based on FA files is described here.

8.1 Anatomy of a SURFEX historic file in FA

A FA SURFEX historic file contains fields like a regular historic FA file. However,
it contains additional information:

• non field data (integers, character strings, dates, logicals, etc...)

• a field index stored in 5 LFI records :

• _FBUF_SIZE

• _FBUF_DIM1

• _FBUF_DIM2

• _FBUF_NAME

• _FBUF_TYPE

One-layer fields are prefixed with “SFX”; multi-layer fields are prefixed with
“X”.

The field index is necessary to read data. SURFEX does not give a list of fields
with their types to be read, this is why we need this index.

Eventually, note that fields are saved with the extension zone included.

8.2 Conversion from/to LFI

It is possible to perform such a conversion. Dedicated tools have been written
and tested for AROME :

• sfxtools/sfxfa2lfi, conversion article by article

• sfxtools/sfxlfi2fa, conversion article by article; empty output file is
required (for geometry information), and may be created using
lfitools/faempty

• sfxtools/sfxconv converts a PGD and a SURFEX historic file from/to
FA/LFI, going through SURFEX : SURFEX reads the data and writes it.
The consequence is that the SURFEX version of the output file may be
different from the input file.

Beware that this program is not distributed, and has to load the whole
SURFEX data into memory. Therefore, it may not work for large grids.

Note sfxfa2lfi and sfxlfi2fa rely on a module named sfxflddesc_mod.F90
which contain the definition of SURFEX fields; however some (newly
introduced) fields may not be present in this list. It is possible to pass the
missing information to sfxfa2lfi and sfxlfi2fa using the option –sfx-fld-
desc.

See embedded documentation (sfxtools sfxfa2lfi --help) for more
details.

8.3 Modifying SURFEX historic files

Since the field index has to be updated accordingly when creating or deleting
fields, a special tool has been developed. Its name is sfxfilter.

Modifying existing fields can be done using the regular FA/LFI interface, but
adding/deleting fields requires sfxtools/sfxfilter; its usage is as follows :

$ SFXTOOLS SFXFILTER input-file output-file namelist

Fields are processed one by one, so memory consumption is low. The namelist
syntax is :

&NAMSFXFILTER

 CDNOMA(1)="-ALBNIR_ISBA", ! Delete field ALBNIR_ISBA

 CDNOMA(2)="+ALBNIR_SOIL", ! Add field ALBNIR_SOIL

 CDTYPA(2)="X1", ! ALBNIR_SOIL is a X1

 CDNOMA(3)="+LTOTO", ! Add field LTOTO

 CDTYPA(3)="L1", ! LTOTO is a L1

 KDIMSA(1,3)=10, ! Dimensions of LTOTO

/

Note that fields are created but not initialized. Once created, they have to be
initialized using regular FA/LFI API (like FAIENC, etc...).

8.4 Enabling FA

The following namelist parameters (NAMPHMSE/YOMMSE) are available :

Namelist parameter Default Comment

LFMREAD .TRUE. Read from LFI; setting
this to .FALSE. enables
reading from FA

LFMWRIT .TRUE. Write to LFI; setting this
parameter to .FALSE.
Enables writing to FA

LPGDFWR .FALSE. Write PGD fields

LHISFWR .TRUE. Write historic data

LFTZERO .TRUE. Set extension zone of
SURFEX fields to zero
after reading them.

File names are different and depend upon data encoding being FA or LFI :

LFI FA

PGD data Input PGD.lfi Const.Clim.sfx

SURFEX initial
conditions

Input TEST.lfi ICMSH0000INIT.sfx

Historic data Output AROMOUT_0003.lfi ICMSH0000+003.sfx

8.5 The SURFEX cache

The SURFEX field cache is a big structure where all SURFEX fields can be
buffered before initializing SURFEX (during the set-up), or before producing an
output file. It is implemented in modd_io_surf_aro.F90, and may contain
fields of the following types:

Cod
e

Prefix Description Type

T0 SFX. Scalar date metadata

T1 SFX. 1D-array of dates metadata

N0 SFX. Scalar integer metadata

N1 SFX. 1D-array of integers metadata

C0 SFX. Scalar character string metadata

X0 SFX. Scalar real metadata

L0 SFX. Scalar logical metadata

L1 SFX. 1D-array of logicals metadata

X1 SFX. 2D SURFEX 1-level field data

X2 X 2D SURFEX field with several levels data

Note that all fields but those of type X1 and X2 are meta-data and are
expected to have a very small size. Only X1 and X2 are real numeric data.

Two variables of type SURFEX_FIELD_BUF_CACHE are defined :

• YSURFEX_CACHE_IN; used for reading fields; see aroini_surfa.F90,
aroini_surfb.F90, aroini_surfc.F90 and sugridsfx.F90

• YSURFEX_CACHE_OUT; used for producing historic files; see
aro_surf_diag.F90 and wrsfx.F90

This object is complicated, but we list anyway some of the possible operations
(all should be prefixed with SURFEX_FIELD_BUF) :

Description
..._ADD generic Add a new field

..._SET generic Set a new field (not for X1/X2)

..._GET generic Get a new field value (except for
X1/2), get a pointer on field (X1/2)

..._PREALLOC subroutine Allocate big arrays for X1/X2 fields

..._GET2DF subroutine Get pointers on X1/X2 fields and
their meta-data

..._READ_MISC subroutine Read meta-data (fields different from
X1/X2)

..._WRITE_MISC subroutine Write meta-data (fields different from
X1/X2)

..._DEALLOC subroutine Deallocate big arrays (X1/X2)

..._EXIST function

These routines are called from (read|write)_surf(T0|T1|X0|X1|
X2|...)_aro.F90 routines.

9 The IO server

The IO server's purpose is to offload IO (only output for now) to a group of
dedicated MPI tasks. The code used to do that is located in arp/io_serv ; the
amount of code involved (comments and blank lines included) is about 5000
lines.

The IO server can handle historic fields (grid-point and spectral), and fields
produced by Fullpos. SURFEX output can be redirected to the IO server as well.

The IO server can receive and process whole fields and field fragments, in
which case whole fields are re-created by the IO server itself.

Fields are compressed using the FA library, and written to disk in the FA
format. The result is supposed to be bitwise reproducible when compared to
traditional output.

9.1 Implementation of the IO server

Handling of asynchronous “sends”

All operations described in this section relate to the model side of the IO
server; that is, these operations are carried out by model MPI tasks.

Asynchronous sends in an MPI context are performed using MPI_ISEND
(wrapped in MPL_SEND); the major issue in this context is memory
management : since memory cannot be reclaimed as soon as the MPI_ISEND
returns, the IO server must manage memory itself.

Hence memory buffers used for communication are allocated by the IO server,
and references to these buffers are kept in a list, with the associated send
request IDs. The number of memory buffers is limited (maximum number
specified in namelist); once the number of allocated buffers has reached its
maximum value, model MPI tasks have to wait in order to allocate memory
(dedicated to asynchronous communications for IO).

The list of pending asynchronous sends is periodically polled (each time some
memory is needed for new sends) :

• when the number of allocated buffers has reached its maximum value,
MPI_WAITSOME is invoked; the MPI task has then to wait until at least one
of already posted send requests have completed.

• when the number of allocated buffers has not reached its maximum
value, then MPI_TESTSOME is used; this subroutine returns immediately.
Buffers whose requests have completed are deallocated.

Allocation of a new buffer is handled by IO_SERV_ALLOC_BUF; this routine
invokes IO_SERV_RECLAIM_BUF_SPACE in either waiting or no waiting mode.

Eventually, IO_SERV_RECLAIM_BUF_SPACE is invoked by IO_SERV_FLUSH when
the model exits until all pending MPI requests have completed (and all
associated buffers have been freed).

The routine used to send data to the IO server is IO_SERV_SEND ; it is currently
used in WRGP2FAFP, WRSPECA and WRGP2FA .

IO server message “receives”

All operations described in this paragraph take place on the IO server side.

The IO server does not assume that the messages arrive in a specific order;
the IO server enters an endless loop and probes message arrival using
MPI_PROBE ; once a message is known to be available, a buffer of the
corresponding size is allocated and the message is read.

The message is then posted to a thread-safe queue (FIFO) in order to be post-
processed. The IO server message reception runs in subroutine IO_SERV_RUN .

IO server termination

The IO server exits its endless loop when it receives stop messages; for now,
each IO server MPI task waits until it have received a stop message from each
model MPI task.

Multi-threading

The IO server can run in multi-threading mode. As this has not proved to be
efficient yet, it is not documented here.

9.2 Namelist parameters

Namelist parameter Comment

NPROC_IO Number of MPI tasks involved in the IO server

NIO_SERV_METHOD Synchronous (1), asynchronous (2)

NIO_SERV_BUF_MAXSIZE Maximum number of send buffers allocated on a
single processor

LMSG_FLUSH_CLIENT Flush client log output

LMSG_FLUSH_SERVER Flush server log output

LCOMPRESS_FA Apply FA compression

LDUMPNORMS Dumps norms (wrgp2fa.F90)

NMSG_LEVEL_CLIENT Log level for client tasks; from 0 (silent) to 3
(verbose)

NMSG_LEVEL_SERVER Log level for server tasks; from 0 (silent) to 3
(verbose)

NOUTPUT_FMT 0 = binary, 1 = FA

LUSE_MAP .FALSE. = field based

.TRUE. = gather based

NPROCESS_LEVEL processing level (for testing, debugging):

• NIO_SERV_PROCESS_NONE = 0
create IO server, but do nothing

• NIO_SERV_PROCESS_RECV = 1
receive messages

NIO_SERV_PROCESS_RECO = 2 pass
fields to compress threads

NIO_SERV_PROCESS_COMP = 3
compress threads

NIO_SERV_PROCESS_COWR = 4 pass
compressed data to writer threads

NIO_SERV_PROCESS_WRIT = 5 write
data

9.3 Field based mode

In this mode, model tasks still gather field data on NSTROUT MPI tasks, but
whole fields are send to the IO server tasks in asynchronous mode, in order to
avoid the cost of extra buffering.

1 2 NPROC....

NSTROUT....

1..NSTROUT
Whole fields

 Compression

 Write

Step 1

Step 2

Step 4

Step 3

Step 5

Collect fields on IO server

1

NPROC+1 NPROC+NPROCIO....

File # 1 File # NPROCIO

9.4 Gather based mode

In this mode, field fragments are sent to the IO server, which collects them in
queues and re-create whole fields. Then all goes on as usual (compression +
writing). Note that NSTROUT does not play any role in this mode.

9.5 Reading data produced by the IO server

The IO server creates a single FA file per IO task. Reading data back with the
model requires some attention.

Using facat

lfitools/facat makes it possible to concatenate several FA files with the
same geometry into a single one. The model then reads the result of the
concatenation as usual.

1 2 NPROC....

 Create whole fields

Step 1

Step 3

Step 2

Step 4

Collect fields fragments on IO server

NPROC+1 NPROC+NPROCIO....

Step 5

Compression

Write

File #1 File #NPROCIO

Using an index file

The model can read input data spread across multiple files. It is first necessary
to create an index using lfitools/faidx whose usage is :

$ lfitools faidx file1 file2 ... fileN file.idx

Once this index is created, setting the following namelist parameter will tell the
model to try to look for the index file, read it and set-up things so that it open
the right files to read the required fields :

&NAMCT0

 LIOTRYIDX=.TRUE.

/

Since input and output goes through the same routines for making field lists
(for instance iogrida_mod.F90, etc...), it should not be necessary for all model
tasks to open all files produced by the IO server. If this were to happen and
were a problem, it should in principle be possible to re-organize the code a
little bit to avoid multiple open/close operations.

10 Fullpos & SURFEX

The creation of SURFEX input files from ARPEGE/ISBA files has been
distributed. fp2sx1fa.F90 calls PREP bits of code in a distributed context.
Another routine (rdclimosfx.F90) has been written to read SURFEX PGD
(Const.Clim.sfx).

Beware, though, that this works only with the FA format.

11 Further developments

11.1 Reading input files with Multi-Threading

This should be possible very soon. For now, FA/LFI have a thread-safe
interface, but reading/writing files is not thread-safe in Fortran. In principle, it
should be enough to replace Fortran IO with C IO.

This would make it possible to use multiple threads to read a FA/LFI file.

11.2 Simplifying the code

Many options are available for doing IO. This is probably too much to maintain,
and this will be simplified when enough experimentation has been conducted
on scalar machines.

11.3 Removing LFI from mse project

This has to happen someday when everybody in the ARPEGE, ALADIN,
AROME, HARMONIE world use FA for storing SURFEX fields. The LFI layer
coded in mse is a terrible mess and should be removed.

	1 Introduction
	2 Organization of the code
	2.1 Field descriptors
	2.2 IO buffers
	2.3 Extracting/loading fields
	2.4 MFIOOPTS
	2.5 Code cleaning

	3 Grid-point/spectral
	4 Traditional input/output
	4.1 Grid-point input
	4.2 Grid-point output
	4.3 Grid-point output alternatives
	4.4 Spectral fields input/output

	5 Extended traditional output
	5.1 One file per NSTROUT task
	5.2 A single file written by all tasks
	5.3 An alternative to GATHFLNM

	6 Disabling traditional output
	7 Compacting fields with OpenMP
	8 SURFEX IO
	8.1 Anatomy of a SURFEX historic file in FA
	8.2 Conversion from/to LFI
	8.3 Modifying SURFEX historic files
	8.4 Enabling FA
	8.5 The SURFEX cache

	9 The IO server
	9.1 Implementation of the IO server
	Handling of asynchronous “sends”
	IO server message “receives”
	IO server termination
	Multi-threading

	9.2 Namelist parameters
	9.3 Field based mode
	9.4 Gather based mode
	9.5 Reading data produced by the IO server
	Using facat
	Using an index file

	10 Fullpos & SURFEX
	11 Further developments
	11.1 Reading input files with Multi-Threading
	11.2 Simplifying the code
	11.3 Removing LFI from mse project

