

Récents développements en lidar cohérent

Ecole d'été lidar

Juin 2010

Claudine Besson, Agnès Dolfi-Bouteyre, Julien Totems, Guillaume Canat, Véronique Jolivet, Matthieu Valla

retour sur innovation

Plan

- Les nouvelles sources laser
 - Développements de sources fibrées à grande brillance spectrale
 - Exploitation des non-linéarités des fibres dopées
- Interêt de la technologie fibrée: exemple
- La vibrométrie laser:
 - Principe de la mesure
 - Traitement du signal
 - Le hardware
 - Application au diagnostique sismique
 - Application à l'identification d'objet

Plan

- Les nouvelles sources laser
 - Développements de sources fibrées à grande brillance spectrale
 - Exploitation des non-linéarités des fibres dopées
- Interêt de la technologie fibrée: exemple
- La vibrométrie laser:
 - Principe de la mesure
 - Traitement du signal
 - Le hardware
 - Application au diagnostique sismique
 - Application à l'identification d'objet

Besoin en source à grande brillance spectrale pour le lidar hétérodyne

- Spécifications:
 - Longueur d'onde à sécurité oculaire (1,5µm)
 - Bonne qualité de faisceau
 - Haute énergie (~1000 µJ), haute puissance crête (1kW)
 - Spectre fin (analyse cohérente)
- · La technologie fibrée possède des avantages:
 - Composants issus des développements du secteur des télécommunications
 - Robustesse (tests lidar en vol dès 2003, DALHEC)

Intérêt des sources fibrées

Intérêt des sources fibrées

	Points positifs	Points critiques
Portées élevées (jusqu'à quelques dizaines de km)	Bonne qualité de faisceau même à P _{MOY} élevée (dissipation thermique efficace)	P _{CRETE} très limitée nécessitant des strctures spéciales
Compacité et applications embarquées sur porteur avion ou satellite	Bon rendement (80% Yb; 30-50% Er:Yb)	Etendue géométrique limitée pour coupler la pompe. Dopage Er:Yb délicat en raison de la présence de P (indice élevé)
Formes complexes (modulation d'amplitude ou de phase, agilité)	Intégration monolithique des fonctions ("tout fibré")	
Agilité spectrale (accordabilité en λ, finesse de raie)	Grâce à l'architecture oscillateur maître amplifié (MOPFA)	

Diffusion Brillouin Stimulée dans les fibres optiques

600

Time (ns)

400

0

200

800

1000

Modélisation de l'effet Brillouin dans les fibres: Évolution de la forme d'impulsion au fur et à mesure que la puissance crête croît

1200

Sources à grande brillance spectrale

Développement de chaînes MOPA fibrées = sources pour les applications LIDAR

M.Valla « Etude d'un lidar Doppler impulsionnel à laser Erbium fibré pour des mesures de champ de vent dans la couche limite de l'atmosphère », Thèse de Doctorat, Ecole Nationale Supérieure des Télécommunications (2005)

Sources à grande brillance spectrale: résultats avec fibres « multifilament »

G. Canat, S. Jetschke, S. Unger, L. Lombard, P. Bourdon, J. Kirchhof, V. Jolivet, A. Dolfi, and O. Vasseur, "Multifilament-core fibers for high energy pulse amplification at 1.5 µm with excellent beam quality," Opt. Lett. 33, 2701-2703 (2008)

Evolution de la portée du lidar impulsionnel (cartographie du vent)

1.5 µm pulsed Lidar range as a funtion of laser energy

A.Dolfi-Bouteyre, G.Canat, M.Valla, B.Augère, C.Besson, D.Goular, L.Lombard, J.P.Cariou, A.Durecu, D.Fleury, S.Broumiche, S.Lugan, B.Macq: "*Pulsed 1.5 micron lidar for axial aircraft wake vortex detection based on high brightness large core fiber amplifier* – J. Select. Tops. 15, P. 441 (2009)

Ecole d'été lidar - Aspet Juin 2010 - C.Besson

10

Plan

- Les nouvelles sources laser
 - Développements de sources fibrées à grande brillance spectrale
 - Exploitation des non-linéarités des fibres dopées
- Interêt de la technologie fibrée: exemple
- La vibrométrie laser:
 - Principe de la mesure
 - Traitement du signal
 - Le hardware
 - Application au diagnostique sismique
 - Application à l'identification d'objet

exploitation des non linéarités des fibres dopées (1/3)

- Aller dans l'IR moyen = disposer de matériaux transparents dans cette bande, savoir fabriquer des fibres (dopées) à partir de ces matériaux, connaître leurs caractéristiques physiques intrinsèques
 - → comment fabriquer des matériaux transparents efficaces ?
- les sources puissantes disponibles sont en bande l

Exploitation des effets NL dans les fibres spéciales:
•sources fibrées en bande II dans les verres chalcogénures, verres fluorés, oxydes lourds
•amplification paramétrique dans les fibres infrarouges
•sources fibrées de forte puissance crête à 2 μm

•sources fibrées supercontinuum en bande II

Fibre microstructurée

Ecole d'été lidar – Aspet Juin 2010 – C.Besson

-

ONERA

Non linéarités des fibres dopées (2/3) Laser superK dans l'IR moyen

Impulsion « fine spectralement » à une longueur d'onde adéquate (régime de dispersion anormale) \rightarrow élargissement sous l'effet des non linéarités

Modélisation de l'émission obtenue avec une fibre ZBLAN Duhant et Al. soumis à JNOG 2010

Ecole d'été lidar – Aspet Juin 2010 – C.Besson

0.1

Modélisation de l'évolution spatiale du spectre d'emission

Non linéarités des fibres dopées (3/3) Lidar à source superK

J. Troles, Q Coulombier, M. Duhant, G. Canat, P. Toupin, L. Calvez, G. Renversez, F. Smektala, Jean Luc Adam, D. Mechin, L. Brilland., *"Low loss microstructured chalcogenide fibers for large non linear effects",* en preparation pour Opt. Expr. Special issue on chalogenide glasses (2011)

Plan

- Les nouvelles sources laser
 - Développements de sources fibrées à grande brillance spectrale
 - Exploitation des non-linéarités des fibres dopées
- Interêt de la technologie fibrée: exemple
- La vibrométrie laser:
 - Principe de la mesure
 - Traitement du signal
 - Le hardware
 - Application au diagnostique sismique
 - Application à l'identification d'objet

Lidar-radar: lidar bifréquence

Ecole d'été lidar - Aspet Juin 2010 - C.Besson

16

Lidar-radar: lidar bifréquence

$$S = \left\langle S_1 \cdot S_2^* \right\rangle \propto s(t) \cdot \exp(2\pi j (f_{d1} - f_{d2})t) \qquad f_{d1} - f_{d2} = \frac{-4V_r f_1}{c}$$

Extraction de la phase:

$$\varphi = 2\pi (2f_1) 2 \frac{V_r}{c} t$$

L'estimation sur la vitesse s'exprime par:

$$V_{r} = \frac{c}{8\pi f_{I}} \cdot \frac{\partial \varphi}{\partial t}$$

Intérêts:

Élimination de bruits corrélés
Effet Brillouin repoussé
Insensibilité aux fumées ou aérosols
Possibilité de mesure Télémétrie-Doppler

→ L'architectures de type radar transposées au lidar permet des fonctionnalités nouvelles (ex.Télémétrie-Doppler)

Vitesse et phase en fonction du temps

ONERA

Plan

- Les nouvelles sources laser
 - Développements de sources fibrées à grande brillance spectrale
 - Exploitation des non-linéarités des fibres dopées
- Interêt de la technologie fibrée: exemple
- La vibrométrie laser:
 - Principe de la mesure
 - Traitement du signal
 - Le hardware
 - Application au diagnostique sismique
 - Application à l'identification d'objet

Principe (1/3)

• Rappel du principe

$$i_{het} = i_0 \cos(2\pi f)$$
 Signal hétérodyne
 $f(t) = f_{AOM} + 2 V/\lambda + 2 v_{vib}(t)/\lambda$
Modulation
de fréquence
 $TF(v_{vib})$ Fréqs modales
 f

Principe (2/3)

Définitions

Principe (3/3)

 $i_{het} = i_0 \cdot M(t) \cos(2\pi f_{MAO}t - 2\pi f_{dop}t + \Phi_{distance}(t) + \Phi_{vib}(t) + \Phi_b(t)) + i_b(t)$

- •Modèle gaussien (OL, signal)
- •Troncature limitée ($R_{pup} = \sqrt{2.\sigma_L}$) •En faisceau collimaté
- •Pupille emission=pupille réception

•Ondes Signal et OL identiques sur les pupilles emission et reception

$$\left\langle i_{het}^{2} \right\rangle = 4S^{2}T_{atmAR}\rho T_{ins}.P_{s}P_{ol}.\pi \frac{\sigma_{L}^{2}}{Z^{2}}.\eta_{het}$$

$$\eta_{het} = \eta_{turb} . \eta_{speckle} . \eta_{polar}$$

$$\eta_{turb} = \frac{1}{1 + \frac{\sigma_L^2}{S_a^2(Z)} + \frac{k^2 \sigma_L^4}{4Z^2}}$$

So(Z): longueur de cohérence transverse après propagation turbulente sur une distance Z σ_1 : rayon gaussien à 1/e²

21

$$\frac{1}{2} \le \eta_{polar} \le 1 \qquad \qquad \eta_{speckle} \approx \frac{1}{2}$$

Les bruits additifs (2/5)

Bruits électroniques:

$$\left\langle i_{b,elec}^2 \right\rangle = \left\langle i_{therm}^2 \right\rangle + \left\langle i_{amp}^2 \right\rangle + \left\langle i_{acq}^2 \right\rangle = (S.nep)^2 \cdot B + \frac{4k_b T}{R_c} F \cdot B$$

Bruits optiques:

$$\left\langle i_{b,opt}^{2} \right\rangle = \left\langle i_{schot}^{2} \right\rangle + \left\langle i_{RIN}^{2} \right\rangle = 2eSB.P_{ol} + 10^{0,1.RIN}.S^{2}.P_{ol}^{2}.B$$

Détection équilibrée

$$\langle i_b^2 \rangle = 2eSB.P_{ol} + (S.nep)^2.B + \frac{4k_bT}{R_c}F.B + 10^{0.1.RIN}.S^2.P_{ol}^2.B$$

Spectre de RIN - laser à fibre Er-Yb

Bruit de phase dû au speckle (3/5)

$$i_{het}(t) = Io(t) \cdot \cos(\omega_{MAO}t - \omega_{doppler}t + \varphi_{vibration}(t) + \varphi_{speckle}(t) + \varphi_{turbulence}(t) + \varphi_{laser}(t))$$

$$f = f_{MAO} + \frac{2V_{Dop}}{\lambda} + \frac{1}{2\pi} \frac{d}{dt} \left[\varphi_{vibration}(t) + \varphi_{speckle}(t) + \varphi_{turbulence}(t) + \varphi_{laser}(t) \right]$$

Longueur de cohérence (longitudinal) $L_{spec} = \frac{\lambda Z^2}{r^2}$

Longueur de cohérence (transverse) $D_{spec} = \frac{\lambda Z}{4r^2}$

Z: distance laser-cible r: rayon tache laser sur la cible Ω : vitesse angulaire cible

Évolution temporelle du speckle dû à la rotation:

•Défilement/translation de la figure de speckle

•Évanouissement

•Elargissement Doppler (différentiel entre les diffuseurs)

Application numérique: λ =1,55 μm Rp=10 cm Z=10 km Ω=0,01 rd/s

$$B_{trans} = \frac{2.Z.\Omega}{\frac{\lambda Z}{r}} \approx 4kHz$$

P.Gatt, T.P.Costello,C.LVogt,C.M.Stickley:"*Laser radar spectrum of a rotating random surface*", Vol. 1936, SPIE (1993)

ONER

Bruit de phase dû à la turbulence (4/5)

$$i_{het}(t) = Io(t) \cdot \cos(\omega_{MAO}t - \omega_{doppler}t + \varphi_{distance}(t) + \varphi_{vibration}(t) + \varphi_{speckle}(t) + \varphi_{turbulence}(t) + \varphi_{laser}(t))$$

$$f = f_{MAO} + \frac{2V_{Dop}}{\lambda} + \frac{1}{2\pi} \frac{d}{dt} \left[\varphi_{vibration}(t) + \varphi_{speckle}(t) + \varphi_{turbulence}(t) + \varphi_{laser}(t) \right]$$

Le piston de la turbulence induit une imprécision de mesure de vitesse Le bruit de phase est coloré et brouille préférentiellement les basses fréquences

Spectre de puissance de la phase turbulente ≡ bruit de vitesse dû au piston

$$S_{p}(\omega) = \frac{10,9.Vp^{\frac{5}{3}}.C_{n}^{2}.Z}{\omega^{\frac{2}{3}}}$$

P.Gatt,S.W.Henderson,J.Thomson,D.L.Bruns: « *Micro doppler lidar signals and noise mechanisms: theory and experiment »* Vol. 4035, SPIE (2000).

Bruit de phase du laser (5/5)

$$i_{het}(t) = Io(t) . \cos(\omega_{MAO}t - \omega_{doppler}t + \varphi_{vibration}(t) + \varphi_{speckle}(t) + \varphi_{turbulence}(t) + \varphi_{laser}(t))$$

$$f = f_{MAO} + \frac{2V_{Dop}}{\lambda} + \frac{1}{2\pi} \frac{d}{dt} \left[\varphi_{vibration}(t) + \varphi_{speckle}(t) + \varphi_{turbulence}(t) + \varphi_{laser}(t) \right]$$

Largeur de raie « long terme »:

Fluctuations de la fréquence laser pendant le temps d'aller-retour (Variance d'Allan):

$$\Delta v_{eff} < \sigma_{Vvib} < B_m$$

A.Yariv, P.Yeh, « Optical electronics in modern communications », Oxford University Press, USA, Sixth edition (2006)
M.Harris, G.N.Pearson, J.M.Vaughan, D.Letalick, C.Karlsson, « The role of laser coherence length in continuous wave coherent laser radar ». J.MOd.Opt., Vol.45, n 8 (2002)

ONERA

Plan

- Les nouvelles sources laser
 - Développements de sources fibrées à grande brillance spectrale
 - Exploitation des non-linéarités des fibres dopées
- Interêt de la technologie fibrée: exemple
- La vibrométrie laser:
 - Principe de la mesure
 - Traitement du signal
 - Le hardware
 - Application au diagnostique sismique
 - Application à l'identification d'objet

Traitement de signal: le spectrogramme

- Temps de calcul modérés
- Adapté quand le bruit de speckle domine

V.Jolivet, « *Etude théorique et expérimentale de la vibrométrie laser à longue distance par lidar cohérent »* Thèse de doctorat, Université Paris-Sud XI

Échantillonnage optimal

Cible à la distance Z, de vibration monofréquence d'amplitude a, de fréquence f_{vib}:

Traitement du signal

Ecole d'été lidar – Aspet Juin 2010 – C.Besson

ONERA

Spectrogramme en bande large µ >> 1

type ID cible - B=1MHz, 5 modes de vibration

Spectrogramme en bande étroite µ < 1

Type sismologie – B=100 kHz, 5 modes de vibration

Spectrogramme en bande étroite µ < 1

Type sismologie– B=100 kHz, 5 modes de vibration

Z = 2 kmCNR = 10 dB $Cn2 = 10^{-13} \text{ m}^{-2/3}$ Vp=10 m/s

Plan

- Les nouvelles sources laser
 - Développements de sources fibrées à grande brillance spectrale
 - Exploitation des non-linéarités des fibres dopées
- Interêt de la technologie fibrée: exemple
- La vibrométrie laser:
 - Principe de la mesure
 - Traitement du signal
 - Le hardware
 - Application au diagnostique sismique
 - Application à l'identification d'objet

Exemple d'architecture fibrée

and income statements in an

Compensation de la largeur de raie laser

élargissement du pic hétérodyne \rightarrow Ligne à retard

Architecture du vibromètre Devisage et de la chaîne de traitement analogique

Ecole d'été lidar – Aspet Juin 2010 – C.Besson

ONERA

Installation expérimentale

Ecole d'été lidar – Aspet Juin 2010 – C.Besson

ONERA

Plan

- Les nouvelles sources laser
 - Développements de sources fibrées à grande brillance spectrale
 - Exploitation des non-linéarités des fibres dopées
- Interêt de la technologie fibrée: exemple
- La vibrométrie laser:
 - Principe de la mesure
 - Traitement du signal
 - Le hardware
 - Application au diagnostique sismique
 - Application à l'identification d'objet

Diagnostic sismique (1/4)

Objectifs:

Utiliser un vibromètre laser pour analyser les modes de vibration de bâtiments

Enjeu: sécurité de personnels

Méthode:

Mesure de la réponse vibratoire du bâtiment excité par le fond sismique avant et après un séisme

 \rightarrow Modification des modes propres

→Diagnostic d'endommagement

Intérêt de la mesure à distance

→Surveillance de plusieurs bâtiments de grande hauteur dans une ville →Le personnel ne s'approche pas (\neq des sismomètres)

19

Diagnostic sismique (2/4)

Le vibromètre doit répondre aux spécifications suivantes :

- Fréquences à mesurer : entre 0 et 30 Hz
- Vitesse de la vibration : entre quelques dizaines et quelques centaines de µm/s
 - > Pendant un séisme la vitesse de vibration peut aller jusqu'à 0,1 cm/s
 - > En bruit de fond, la vitesse de vibration est de l'ordre de $10 \,\mu$ m/s
- La résolution spectrale nécessaire est de 0,1 Hz

$$\mu \approx 0.4$$
 B_m \approx 80 Hz

Traitement en bande étroite

Les points durs à résoudre:

- Recouvrement OL/Signal
- Bruit de phase de la turbulence (BF)
- Largeur de raie laser

Diagnostic sismique (3/4)

Architecture fibrée 1,5 µm

- •Compacte
- •Facilité d'alignement
- •Fiabilité des composants

Diagnostic sismique (4/4)

- Validation croisées vibromètre-sismomètre (mesures simultanées)
- Projection x,y,z des mesures sismomètre selon la ligne de visée lidar
- Comparaison

Plan

- Les nouvelles sources laser
 - Développements de sources fibrées à grande brillance spectrale
 - Exploitation des non-linéarités des fibres dopées
- Interêt de la technologie fibrée: exemple
- La vibrométrie laser:
 - Principe de la mesure
 - Traitement du signal
 - Le hardware
 - Application au diagnostique sismique
 - Application à l'identification d'objet

Identification (1/4)

Objectif: identifier un objet lointain par sa signature vibratoire

Exploitation des modes de vibration de structure (basses fréquences) Fréquences à mesurer: 10 à 100 Hz Vitesses de vibration ≈ cm/s

µ≈ 130 Bm ≈ 25 kHz

Traitement en bande large

Faible signal (longue portée) - bruit de phase dominé par le speckle

Questions posées:

- •Quelles sont les performances d'un vibromètre laser?
- •La vibrométrie laser peut-elle restituer des vibrations complexes?
- •Quelle est la robustesse d'algorithmes d'identification lorsqu'il y a extinction de fréquences (point de visée)

V.Jolivet, J.Fournier, X.Normandin, J.P.Cariou: "Feasability of air target identification using laser radar vibrometry", SPIE Vol.5803, (2005).

Identification (2/4): principe

Identification (3/4)

Validation partielle du modèle à l'aide de mesures sur maquette

Identification (4/4)

Objectif: identifier un objet camouflé par sa signature vibratoire

Merci de votre attention

