

Lidar Géophysique Fondamentaux Lidar (2/2)

Pierre H. Flamant Institut Pierre Simon Laplace Laboratoire de Météorologie Dynamique École Polytechnique, Palaiseau Courriel: pierre.flamant@Imd.polytechnique.fr Téléphone: 01 69 33 51 50

1

- 1. Introduction
- 2. Lidar altimétrique & topographique
- 3. Lidar végétation & canopée
- 4. Lidar bathymétrique & hydrographique

École d' été lidar géophysique, Aspet, 24 juin au 3 juillet 2013

Processus Physiques

Signal Lidar 1/2

• La première information c' est le temps de vol A-R (*t*) des photons et donc la distance (*r*), entre le lidar et la cible :

$$r = \frac{ct}{2}$$

- *c* est la vitesse de la lumière dans le milieu
- **Cibles dures** : le faisceau laser ne pénètre pas. Il est réfléchit, la forme de l'impulsion est plus ou moins déformée
- Cibles molles : le faisceau laser pénètre plus ou moins la cible
- 2 informations : coefficients de diffusion et d'atténuation, sont portées par la puissance optique diffusée
- Le signal est intégré sur une porte de mesure : $\Delta r =>$ énergie (*J*)

$$S_{\underline{L}}(r,\Delta r) = \frac{c}{2} E A m \int_{r}^{r+\Delta r} dr \left(\frac{\beta_{\pi}(x)}{x^2} \exp\left[-2 \int_{0}^{x} \alpha(y) dy \right] + bruits \right)$$

• Seconde équation :
$$\beta_{\pi}(r) = k \alpha(r)$$

Signal Lidar 2/2

- Dépolarisation du signal
- L'émission laser est polarisée linéairement

$$\Delta = \frac{S_{\mathcal{L},\rho e}(r,\Delta r)}{S_{\mathcal{L},\rho a}(r,\Delta r)}$$

Lidar Altimétrique & Topographique

- Technique de mesure la plus simple dans son principe mais pas évidente dans sa réalisation !
- Un laser à haute cadence (jusqu' à 150 kHz)
- Un balayage de la ligne de visée : transverse, conique, etc, par rapport au déplacement de l'avion
- La mesure de la distance lidar par le temps de vol AR des photons, il faut connaître les angles et les positions pour restituer une altitude très précise au-dessus de la surface,
- Détection du dernier écho qui représente (ou non) l'écho de sol,
- Avec un positionnement géo-référencé très précis des distances par rapport à une référence (à choisir)
- On peut construire un modèle numérique de terrain (par exemple logiciel commerciaux comme ArcGIS 9.2 de Environmental Systems Research Institute

École d'été lidar géophysique, Aspet, 24 juin au 3 juillet 2013

Albédo des Sols

reflectance

molecules

•

•

Réflectance des Sols

TLS pour Glissement de Terrain

Institut Pierre

Sciences de

environnement

Lidar Altimétrique Aéroporté

F. Brétar (IGN), 2009

École d' été lidar géophysique, Aspet, 24 juin au 3 juillet 2010

Relevé Topographique

La distribution des données est donnée en nombre de points au sol par m² La distribution spatiale 3D irrégulière des points lidar est due aux mouvements de l'avion, à la réflectivité variable des cibles urbaines, à leurs orientations par rapport au faisceau laser et au processus de recomposition des données

Très grande précision du positionnement de chaque point Processus d'interpolation

MNS & MNT

Premier écho lidar

Dernier écho lidar

New York City « Ground 0 »

Surveillance des installations :

extrait de "Corridor Mapping ALTM Application Note : OR-001 Rev A" ©Optech

Météorite, Failles Sismiques

- En régions boisées, le lidar permet de « soustraire » la couverture végétale et de ne garder que la topographie du sol observée au travers du couvert végétal
- Il en est de même du suivi des failles sismiques dans les régions boisées des zones à risques

LiDAR images of the crater site, showing the full feature image (top) and bare earth image (bottom). The crater is 36 m across.

Bibracte

En avril 2007, la totalité du mont Beuvray et des sources de l'Yonne ont fait l'objet d'une campagne de mesure par balayage laser aéroporté, révélant ainsi le modèle du terrain actuel et une foule d'indices sur sa morphologie antique. Cette nouvelle macrovision de haute résolution dégagée des perturbations végétales, nous permet dorénavant de repérer et de suivre sur de longues distances l'important chevelu des voies antiques environnant le mont Beuvray, les minières et autres structures ponctuelles.

ICESat NASA

1. Surface Altimetry:

- · Range to ice, land, water, clouds
- · Time of flight of 1064 nm laser pulse
- · Digitizes transmit & received 1064-nm waveforms
- · Resolutions: 1 nsec for digitizer
- Noise floor in altimetry: ~ 2.4 cm

2. Laser pointing:

- Laser-beam pointing from star-trackers, laser camera & gyro
- · <10 cm single shot range resolution
- <1.5 arcsec angular resolution

3. Atmospheric lidar:

- · Laser back-scatter profiles from clouds & aerosols
- Uses 1064 nm & 532 nm pulses
- 75 m vertical resolution
- · Analog (1064 nm) photon counting (532nm) detection
- · Simultaneous, co-located measurements with altimeter

3. ICES at Land Applications

Missions NASA Altimétriques

- **1971-1972.** Trois missions Apollo : 15, 16, 17, utilisant des altimètres laser à rubis pour cartographier la lune
- La mission Apollo 17 a embarqué un laser performant qui a fonctionné pendant 12 révolutions

<u>i i m spé horizostri</u>	possion 400	and patter the	<u>5 10(1-55)</u>		<u>, 17, 19, 29, 29, 19</u>			
Mission Name	Launch Date	Туре	Firing Rate, Hz	Shots fired	Geolocated Ranges	Horizonta accuracy	l Vertical precision	Vertical accuracy
Apollo 15, 16, 17	1971-1972	Ruby	0.06	7,080	5,140	30 km	4 m	400 m
Clementine	1994	Cr:Nd:YAG ^b	0.6	600,000	72,300	3 km	40 m	90 m
SLA-01	01/1996	Cr:Nd:YAG	10	3,000,000	1,203,000	40 m	0.75 m	2.78 m
SLA-02	08/1997	Cr:Nd:YAG	10	3,000,000	2,090,000	40 m	0.75 m	6.74 m
NLR	02/1996	Cr:Nd:YAG	1-2	20,000,000	15,868,304	20 m	0.31 m	10 m
MOLA	11/1996	Cr:Nd:YAG	10	675,000,000	583,000,000	100 m	0.38 m	1 m

 Table 1. Laser Altimetry Missions^a

^aThe number of geolocated ground returns does not necessarily reflect the instrument's ability to range. Spacecraft off-pointing, data loss, gaps in tracking, clouds, as well as range failure limit the altimetric product.

^bChromium:neodymium-doped yttrium-aluminum-garnet

- 2003. ICESat-I
- 2004. Mercury Laser Altimeter
- 2008. Lunar Orbiting Laser Altimeter

Topographie de Mars

Mission NASA Mars Orbiter Laser Altimeter (MOLA)

Lidar Végétation & Canopée

École d' été lidar géophysique, Aspet, 24 juin au 3 juillet 2013

 Exemple de retour d'onde complète (« full waveform »)

Mission NASA altimétrique pour les glaces aussi utilisées pour la canopée

Analyse du signal au moyen d'une somme de gaussiennes de largeur variable

Pierre Simon Laplace Absorption & Fluorescence de la Chlorophylle a

École d' été lidar géophysique, Aspet, 24 juin au 3 juillet 2013

Sciences de environnement

École d' été lidar géophysique, Aspet, 24 juin au 3 juillet 2013

Excitation laser à 405 nm et spectre obtenu avec un spectromètre

Lidar Fluorescence pour Végétation

Institut

Pierre Simon Laplace

Sciences de

Lidar Bathymétrique & Hydrographique

École d'été lidar géophysique, Aspet, 24 juin au 3 juillet 2010

46

École d'été lidar géophysique, Aspet, 24 juin au 3 juillet 2010

École d'été lidar géophysique, Aspet, 24 juin au 3 juillet 2010

Fugro: LADS Mk 3 Optech: Shoals, CZMIL, Aquarius RIEGL: VQ-820-G AHAB: Hawkeye, Chiroptera

Function/Capability					
Operating altitude	Bathymetry: 250 to 400 m nominal				
	Topography: up to 1500 m AGL				
Pulse repetition frequency	Bathymetry: 18 kHz. Topography: up to 400 kHz				
	12 bit full waveform capability in both channels				
	Both channels operate simultaneously				
Horizontal accuracy	Bathymetry: 75 cm rms spot center. Topography: 20 cm rms @ 400 m AGL				
Depth accuracy	15 cm rms sea bed				
Range accuracy	2 cm rms flat target				
Scanner principle	Palmer scanner, Ellipsoidal scan, degrees of incident 14° to 20°				
Scan frequency	Programmable up to 70 rps = 140 scans per second				
Scan angle	± 20° sideways				
POS	AeroControl from IGI GmbH				
Data storage	Ruggedized removable solid state disks				
Beam divergence	Bathymetry: 3 mrad. Topography 0.5 mrad.				
Laser classification	Class IV (FDA CFR 21)				
Depth penetration	k*D < 1.5 @ 10% reflectance sea-bed, 0.10< k <0.25				
	k=0.10 : D=15 m				
	k=0.15 : D=10 m				
	k=0.20 : D=7.5 m				
	k=0.25 : D=6.0 m				
Camera options	5 MPix CCD RGB digital camera				
	50 MPix RGB or CIR DigiCam from IGI GmbH				
Pilot Monitor & Guidance	CCNS 5 from IGI GmbH				

Lidar Fluorescence en Milieu Aquatique

Institut Pierre

Simon

Sciences de environnement

- Excitation laser à 355 nm
- Diffusion Raman de l' eau à 404 nm ($\Delta v = 3400 \text{ cm}^{-1}$)
- Le spectre Raman peut être utilisé pour mesurer la température de l'eau
- La signature spectrale des Matières Organiques (DOM) dissoutes apparaît dans le bleu.

53

Global Market for Airborne Lidar Systems and Services

 « Le marché Lidar à connue une croissance annuelle de 18% depuis 2005 et les professionnels de l'industrie s'attendent à ce que cette croissance soutenue de poursuive pour les cinq prochaines années » déclare Tina Cary, présidente de Cary Associates, « Comparativement à l'année de référence 2005, nous avons observés une augmentation de 75% des systèmes LIDAR et de 53% du nombre d'opérateurs. Les réponses à notre enquête montrent que le nombre d'usagers a doublé durant cette même période. »