Instrumentation

Objectifs

- Présenter les principaux paramètres de fonctionnement du lidar
- Donner des éléments techniques permettant de concevoir un lidar
- Introduire une modélisation des performances
- Présenter quelques performances en fonction des paramètres instrumentaux
- Exposé centré sur lidar atmosphérique

Deux grandes familles de lidar

Lidar à détection directe

 le signal est reçu sur un détecteur quadratique (courant proportionnel à la puissance)

Lidar à détection hétérodyne

le signal est mélangé avec un oscillateur local sur le détecteur, courant proportionnel au champ électrique (information de fréquence)

⇒ Exposé en 2 parties

Instrumentation

Partie 1. Lidar à détection directe

Schéma d'ensemble

Source Laser

- But: générer des impulsions lumineuses énergétiques (> 1 mJ) d'une durée (1 – 100 ns) compatible avec la résolution en distance
- Principe
 - Excitation d'un milieu amplificateur (généralement solide) par pompage (généralement optique) ⇒ stockage d'énergie
 - Extraction de l'énergie sous forme d'impulsion lumineuse dans une cavité résonante, bloquée puis déclenchée par un dispositif électro-optique (Q-Switch)
 - Eventuellement amplification de l'énergie après émission par l'oscillateur (MOPA)

Modes de la cavité

Sélection spatiale (modes transverses)

- mode propres de la propagation dans la cavité
- mode fondamental TEM₀₀ Gaussien

Qualité de faisceau

- Faisceau laser multimode ou imparfaitement Gaussien
 - pratiquement tous les faisceaux sont sensiblement Gaussien à l'infini mais avec une divergence > faisceau TEM₀₀ de même waist
 - si ω_0 est le rayon et θ la divergence contenant 86 % de l'énergie du faisceau réel: $\theta = M^2 \frac{\lambda}{\pi \omega_0}$
 - les M² des faisceaux réels vont de 1,1-1,2 à qq dizaines
 - Energie extraite plus importante pour les faisceaux très multimodes
 - Bon compromis énergie / qualité avec coupleur à réflectivité variable (ou miroir Gaussien ou GRM)

Propriétés spectrales

Modes de résonance de la cavité

ISL intervalle spectral libre (exprimé en fréquence)

$$ISL = \frac{c}{L}$$

- L = longueur optique de la cavité pour 1 AR (cavité linéaire) ou 1 boucle (cavité en anneau)
- Δv_{L} largeur spectrale produit gain-perte du milieu amplificateur et des éléments optiques de la cavité (miroirs, filtres ...)
- Nombre de modes $N_m = \Delta v_L / ISL$ (valeurs typiques ISL ~ qq 100 MHz, Δv_L ~ qq GHz \Rightarrow qq dizaines de modes
- Largeur spectrale d'un mode $\delta v_m \sim 1/2\tau_L$, τ_L durée d'impulsion

Emission monomode

- Pour certaines applications (Haute Résolution Spectrale, Vent, DIAL) il peut être nécessaire d'avoir une émission spectralement très fine.
- Injection d'une émission laser continue et monomode (laser pilote) dans la cavité.

- La cavité est accordée de manière à ce qu'un de ses modes soit sur la fréquence injectée (asservissement de la longueur de cavité par miroir piézo)
- La puissance injectée est bien supérieure à l'émission spontanée sur laquelle démarre normalement l'oscillation laser
- L'émission à la fréquence d'injection croît beaucoup plus vite que pour les autres modes et sature (extrait l'énergie stockée dans) le milieu amplificateur
- les autres modes n'ont pas le temps d'être amplifiés

⇒ l'émission est monomode

Milieux amplificateurs

Gaz

- Exciplexes (KrF, XeCl, ...)
 - émission UV (248 nm, 308 nm, ...)
 - pompage par décharge électrique
 - forte puissance moyenne (qq 100 W)
 - haute cadence (qq 100 Hz)
 - encombrement et maintenance contraignants

Colorants

- émission visible accordable
- pompage par laser visible
- maintenance contraignante (toxicité)
- remplacés par les OPO
- Lasers solides
 - cristaux
 - fibres

Cristaux dopés Néodyme

Forte émission stimulée à ~ 1060 nm

- autres émissions: 940 nm, 1120 nm, 1320 nm, 1440 nm
- Bonne durée d'état excité (stockage d'énergie important)
- Iaser 4 niveaux (seuil bas)
- Pas d'absorption parasite
- Pompage par lampe flash ou par diode laser AlGaAs à ~ 810 nm

Cristaux dopés Néodyme

D YAG $(Y_3AI_5O_{12})$

- isotrope, bonne conductibilité thermique, bonne résistance mécanique, bonne qualité optique mais lentille thermique et dépolarisation importantes
- émission à 1064 nm
- durée de vie état excité : 230 µs
- ⇒ pompage flash ou diode QCW, impulsions de forte énergie (~ 100 mJ) à 10 100 Hz

• YLF (YLiF₄)

- biréfringent, conductibilité thermique moyenne, bonne résistance mécanique, bonne qualité optique, peu de lentille thermique, pas de dépolarisation.
- 2 émissions 1047 nm et 1053 nm suivant polarisation
- durée de vie état excité : 485 µs
- ⇒ pompage flash ou diode QCW, impulsions de forte énergie (~ 100 mJ) à 10 30 Hz

VVO₄

- isotrope, bonne conductibilité thermique, bonne résistance mécanique, qualité optique correcte en petit volume
- émission à 1064 nm
- durée de vie état excité : 90 μs, très forte émission stimulée
- ⇒ pompage diode CW, impulsions de faible énergie (~1 mJ) à 1 10 kHz

Nd:YAG déclenché

Performances (lasers commerciaux)

Pompage flash

• émission @ 1064 nm \rightarrow 400 mJ en 5 ns @ 20 Hz

Pompage par diodes QCW

• émission @ 1064 nm \rightarrow 200 mJ en 10 ns @ 100 Hz

Pompage par diodes CW

□ émission @ 1064 nm ~1 \rightarrow 20 mJ / 1- 100 ns @ 10 kHz

Autres cristaux

- **Ruby** (Cr^{3+} : Al_2O_3)
 - Iongueur d'onde laser 694 nm
 - fortes bandes d'absorption visible + durée de stockage élevée ⇒ pompage par flash très efficace
 - système 3 niveaux ⇒ niveau de pompage très élevé
 - forte énergie (> 100 mJ) faible cadence (~ 1 Hz)
- Alexandrite $(Cr^{3+}:BeAl_2O_4)$
 - cristal vibronique, longueur d'onde laser <u>accordable</u> (700 800 nm, max @ 750 nm)
 - fortes bandes d'absorption visible + durée de stockage assez élevée ⇒ pompage par flash efficace
 - faible section efficace d'émission stimulée + absorption dans l'état excité ⇒ faible gain ⇒ niveau de pompage élevé
 - forte énergie (> 100 mJ) cadence réduite (~ 10 Hz)
- **Ti**; Saphir $(Ti^{3+}:Al_2O_3)$
 - cristal vibronique, longueur d'onde laser <u>accordable</u> (670 1070 nm, max @ 800 nm)
 - bande d'absorption dans le vert mais durée de stockage (3 µs) faible ⇒ pompage par flash peu efficace ⇒ pompage par laser (Nd: YAG doublé pour impulsionnel)
 - très forte section efficace d'émission stimulée ⇒ fort gain
 - énergie moyenne (qq 10 mJ) cadence limitée par laser de pompe

Lasers à fibre (déclenchés)

- Pompage continu par diodes
- Taux de répétition très élevé
- Puissance moyenne élevée (bonne gestion thermique)
- Puissance crête limitée par effets non-linéaires
- Grande durée d'impulsion
- Dopage Yb
 - Iongueur d'onde 1,07 μm
 - énergie \rightarrow 1 mJ en 100 ns @ 20 kHz (20 W moyens)

Dopage Er

- Iongueur d'onde 1,55 μm
- énergie \rightarrow 0,5 mJ en 100 ns @ 10 kHz (5 W moyens)

Conversion de fréquence

- Cristaux non-linéaires
 - LiNbO₃, KDP, KTP, BBO, ...

- Doublage, triplage, quadruplage de fréquence
- Emission visible et UV à partir du proche IR
- Accord de phase par effet de dispersion et biréfringence dépend de θ et de T
- Ia divergence du faisceau limite le rendement de conversion (typ. 50% pour doublage 25% pour triplage, 15% pour quadruplage)

Oscillateur Paramétrique Optique

Cristal non-linéaire dans cavité résonante

 $\omega_{p} = \omega_{s} + \omega_{c}$ $n(\omega_{p})\omega_{p} = n(\omega_{s})\omega_{s} + n(\omega_{c})\omega_{c}$

- A partir d'un laser de pompe visible ou UV, permet d'obtenir une émission <u>accordable</u> dans le visible ou le proche IR
- Mêmes cristaux, même nécessité d'accord de phase que pour la conversion de fréquence. Un léger désaccord de phase limite le gain de l'OPO mais le rendement peut rester élevé.
- Cavité résonante pour signal seul (SROPO) ou signal et complémentaire (plus efficace mais plus instable)
- Cavités imbriquées doublement résonante (DROPO) permet d'obtenir une émission monomode (si la pompe est monomode)

Emission Raman stimulée

Diffusion non élastique par création ou annihilation de phonons

Décalage en fréquence (non accordable)

- gaz: H₂, CO₂, CH₄, ... Δω de 1000 à 4000 cm⁻¹
- cristaux Ba(NO₃)₂, KGd(WO₄)₂, KYb(WO₄)₂, ... Δω autour de 1000 cm⁻¹
- Emission stimulée à forte intensité incidente
- $\Rightarrow \text{ Gain } G(z) \propto I(\omega_0, z) ; \qquad I(\omega_0 + \Delta \omega, z) = I(\omega_0 + \Delta \omega, 0) e^{G(z)z}$

Sécurité oculaire

Norme NF EN 60825-1

□ Exposition Maximale Permise (EMP) œil nu

- Très dépendante de la longueur d'onde (50 mJ/m² dans le visible, 100 J/m² en IR > 1400 nm)
- Faible dépendance en durée d'impulsion (dans le domaine d'utilisation lidar)
- Dépendance en nombre d'impulsions observées: N^{-1/4}
- Distance Nominale de Risque Oculaire
 - Exemple: Laser 50 mJ en 5ns / 20Hz / expo 0,25 s, Φ 5cm, divergence 0,5 mrd, sans atténuation atmosphérique

lambda (nm)	1550	1064	532	355
DNRO (km)	0,1	9	28	0,2

Optique de réception

- **Rôle: collecter la lumière rétrodiffusée**
 - ⇒ grande ouverture (typ. 10-100 cm)
- Qualité d'image relativement peu critique (tâche de diffusion généralement bien supérieure à la limite de diffraction)

Système dioptrique

- simple mais assez encombrant
- chromatisme
- diamètre ≤ 10 cm
- Système catadioptrique
 - obturation centrale
 - miroir concave simple, focalisation sur fibre
 - Type Newton
 - Type Cassegrain

Exemples de télescopes

Newton:

primaire parabolique Φ 100 mm Rcc 890 mm

secondaire plan 11 x 16 mm

Focale résultante 445 mm

Encombrement 420 mm

Obturation 4 %

Cassegrain:

primaire sphérique Φ 300 mm Rcc 1500

secondaire elliptique Φ 90 mm Rcx 600

Focale résultante 2250 mm

Encombrement 550 mm

Obturation 9 %

Fonction de recouvrement (ou Facteur géométrique)

• Le champ de l'optique de réception est limité par un diaphragme (surface du détecteur par exemple) à la valeur angulaire : Φ_p

$$\theta_C = \frac{\Phi_D}{2F}$$

- Le laser est placé à la distance D de l'axe de l'optique de réception.
- Son faisceau à une divergence propre θ_L (demi-angle)

⇒ Fonction de recouvrementO(R) variable avec la distance

Choix de la fonction de

recouvrement

- Une faible parallaxe permet un sondage proche du lidar.
- Une parallaxe élevée permet de réduire la dynamique du signal et d'éviter la saturation du détecteur.

Ecole Lidar 25/06/2013

Choix de la fonction de

recouvrement

Paramètres fixes:

- Ouverture télescope: 20 cm
- Divergence laser θ_L = 0,1
 mrd
- distance de parallaxe D = 0
- Paramètre variable
 - Champ θ_c

 Pour sonder les couches très proches du lidar, il est nécessaire d'augmenter le champ.

Ecole Lidar 25/06/2013

Sensibilité au désalignement

Système co-axial, Dtel = 20 cm, $\theta_c = 0.5$ mrd, $\theta_L = 0.1$ mrd

Sensibilité à la défocalisation

Système co-axial, Dtel = 20 cm, $\theta_c = 0.5$ mrd, $\theta_L = 0.1$ mrd

Etendue géométrique

- □ La pupille est le plus petit diaphragme vu du centre de l'objet (champ).
- Si l'instrument est bien construit la pupille est le miroir primaire du télescope et reste identique pour tous les points du champ (pas d'œil de chat).
- L'étendue géométrique du système optique est le produit de la surface collectrice (pupille) A par l'angle solide de champ (vu de la pupille) $Ω_C$
- L'étendue géométrique se conserve dans tout l'instrument, quelque soit le dispositif optique (sauf utilisation d'un fibre).

Conservation de l'étendue géométrique

- Avec Télescope de 20 cm de diamètre et champ de 0,5 mrd (demi-angle)
 - Focalisation sur détecteur avec optique F/1
 ⇒ Diamètre détecteur > 200 µm
 - Focalisation sur fibre ON = 0,22
 - ⇒ Diamètre fibre > 450 µm

Signal lidar

Ordre de grandeur de la puissance reçue

- Lidar sol, troposphère, 50 mJ @ 532 nm, Télescope 20 cm, configuration co-axiale, champ 0,5 mrd
 - Signal optique faible, entre 1 µW et 0,1 nW, soit entre 100 et 10⁷ photons/µs/tir en air clair de 0 à 10 km
 - Dynamique importante > 10⁴ dans les basses couches
- Lidar sol, stratosphère, 100 mJ @ 532 nm, Télescope 1 m, configuration bi-axiale, champ 0,2 mrd
 - < 1 photon/ μ s/tir @ 50 km
 - Dynamique plus réduite (dans la zone d'intérêt)
- Lidar spatial, 400 km, 100 mJ @ 532 nm, Télescope 1 m
 - Signal entre 1 pW et 100 pW dans la troposphère soit entre 1 et 100 photons/µs/tir en air clair
 - Dynamique assez réduite, sauf sol et nuages

Fond radiatif

- Pour les longueurs d'ondes < 10 µm, hors IR thermique, la source radiative principale est la diffusion du soleil sur l'atmosphère ou le sol
- Dépend des conditions atmosphériques (nuages, aérosols, humidité), de l'angle solaire, de l'angle de visée ...
 - modèle de transfert radiatif
- Ordre de grandeur des luminances du ciel en air clair:
 - qq 10⁻² Wm⁻²sr⁻¹nm⁻¹ autour du visible (350 800 nm)

Fond radiatif

Puissance reçue

$$\boldsymbol{P}_{F} = \boldsymbol{T}_{R}\boldsymbol{L}_{F}\boldsymbol{\pi}\boldsymbol{A}\,\boldsymbol{\theta}_{C}^{2}\boldsymbol{\delta}\boldsymbol{\lambda}$$

- *T_R* transmission lidar à la réception
- L_F luminance du fond
- δλ largeur spectrale de réception
- **D** Télescope 20 cm, champ 0,5 mrd, $T_R = 0,5$

$$L_F = 5 \ 10^{-2} \ \text{Wm}^{-2} \text{sr}^{-1} \text{nm}^{-1} \implies P_F = 0.6 \ \text{nW} \ \text{nm}^{-1}$$

⇒ Filtrage spectral

Filtre interférentiel

- Filtre interférentiel (Fabry-Perot en couches minces)
 - $\Delta\lambda$ de 0,15nm à qq 10 nm, T_R de 0,3 à 0,9
 - 1, 2, 3 ...n cavités (sommet plus large, flancs plus raides)
 - sensibilité angulaire
 - tolérance fabrication λ_{max} de 0,1 nm à qq nm $\Rightarrow \lambda_{max} > \lambda_{laser}$ puis accord angulaire
 - sensibilité en température 0,015 0,03 nm/°C
 régulation thermique pour usage hors laboratoire
 - tolérance en divergence qq 10 mrd

$$\theta_D < n \sqrt{\frac{2\Delta\lambda}{\lambda}}$$

Filtre 2 cavités (Andover)

Filtre 3 cavités (Omega)

Fabry-Perot

Fabry-Perot

Détection

Détecteurs photoniques

- conversion des photons en électrons (photoélectrons)
- rendement quantique η = probabilité de créer un photoélectron pour chaque photon incident (avant amplification)
- Gain interne G, multiplication du nombre de photoélectrons dans le détecteur avec facteur de bruit F
- Sensibilité (en A/W) du détecteur

$$S = G \frac{\eta q \lambda}{hc}$$
 q = 1,6 10⁻¹⁹ C, h=6,62 10⁻³⁴ Js

- Photomultiplicateur (PM) @ 532 nm: η = 20%, G = 10⁵
 ⇒ S = 8 10³ A/W
- Photodiode avalanche (APD) @ 1064 nm; η = 40%, G = 100
 ⇒ S = 34 A/W

Ecole Lidar 25/06/2013
Détection

Courant en sortie de détecteur: I = S.P

- PM (G = 10⁵): I de 10 mA à < 1 μA</p>
- APD: I de 30 µA à < 1 nA</p>
- Intégration du signal dans une porte de durée δt correspondant à une résolution en distance $\delta R = (c/2)\delta t \text{ et à une bande passante } B = 1/(2\delta t)$
- Nombre de photoélectrons créés dans la porte (avant amplification) $N_s = \frac{\eta \lambda}{hc} \partial P_s$

Sources de bruit

Bruit de signal

- bruit quantique
- bruit de tavelure (speckle)
- Bruit du fond radiatif
- Bruit détecteur
 - bruit quantique du courant d'obscurité
- **Bruit** électronique
 - bruit de la chaîne d'amplification
- Bruit de numérisation

Bruit de signal

Variance du nombre de photoélectrons dans la porte:

- bruit quantique $\operatorname{var}(N_s)_o = FN_s$
- bruit de tavelure

M est le nombre de tavelures

Bruit de signal (total):

$$\operatorname{var}(N_s) = FN_s + \frac{N_s^2}{M}$$

 $\operatorname{var}(N_s)_T = \frac{N_s^2}{M}$

 $\boldsymbol{M} \approx \left(\frac{\boldsymbol{\delta t}}{\boldsymbol{\tau}_{C}}\right) \left(\frac{\boldsymbol{\pi} \boldsymbol{A} \boldsymbol{\theta}_{L}^{2}}{\boldsymbol{\lambda}^{2}}\right)$

 On peut exprimer cette variance en fonction de la puissance optique du signal lidar reçu:

$$\operatorname{var}(\boldsymbol{P}_{S}) = \frac{Fhc}{\lambda\eta\delta t} \boldsymbol{P}_{S} + \frac{\boldsymbol{P}_{S}^{2}}{M}$$

Bruit du fond radiatif

Pour le fond radiatif le nombre de tavelures peut être considéré comme infini.

■ Variance en puissance optique:

$$\operatorname{var}(\boldsymbol{P}_{F}) = \frac{Fhc}{\lambda\eta\delta t} \boldsymbol{P}_{F}$$

Bruit du détecteur

Courant d'obscurité en sortie de détecteur l_{obs} génère un bruit dont la variance en nombre de photoélectrons est

$$\operatorname{var}(N_D) = \frac{FI_{obs} \delta t}{Gq}$$

Exprimé en puissance optique incidente:

$$\operatorname{var}(\boldsymbol{P}_{D}) = \left(\frac{hc}{\eta\lambda}\right)^{2} \frac{FI_{obs}}{Gq\,\delta t} = \frac{NEP^{2}}{2\delta t}$$

□ NEP = « Noise Equivalent Power » (W.Hz^{-1/2})

$$NEP = \sqrt{\frac{\operatorname{var}(P_D)}{B}} = \frac{hc}{\eta\lambda} \sqrt{\frac{2FI_{obs}}{Gq}}$$

D = 1/NEP , « Détectivité »

Performances détecteurs

Туре	domaine	dim.	η (%)	Gain	S	Iobs	F	Cd	NEP
	(nm)	(mm)	• 、 /		A/W	nA		pF	$fWHz^{-1/2}$
PM	300-600	$\Phi 8$	20 - 40	$\rightarrow 10^6$	$\rightarrow 10^5$	4	1,2	1	0,5
PM	600-800	Φ 8	10 - 15	$5 10^5$	$3.5 \ 10^4$	2	1,2	1	0,6
PM refroidi	1000-	8 x 3	1	10^{6}	$3.5 \ 10^3$	40	1,2	1	10
(-90°C)	1600								
Si-APD	500-800	Ф 0,2	75	100	50	0,05	4	1,5	2
Si-APD	500-800	Φ3	75	60	30	1	4	50	10
Si- APD	1064	Ф 1,5	40	100	34	100	4	3	100
InGaAs-	1000-	Ф 0,2	80	10	9	8	4	1,5	30
APD	1600								

Chaine électronique comptage

Détection par comptage

- But: détecter l'impulsion crée par chaque photoélectron et la discrétiser (discriminateur)
- Seuil discriminateur qq 10 mV 100 mV
- Bande passante > 100 MHz
- Intérêt :
 - si discriminateur bien fait: pas sensible au bruit de l'amplificateur ni au facteur de bruit du détecteur (F = 1)
- Inconvénient:
 - **\Box** sature rapidement < ~100 c/µs
 - dynamique limitée

⇒ adaptée aux faibles signaux (lidar stratosphère)

Chaine électronique analogique

Détection analogique

- But: transformer le courant sortant du détecteur en une tension d'entrée pour le Convertisseur Analogique Numérique (CAN)
- Gamme entrée CAN 0,1 mV qq V
- Bande passante qq 10 MHz
- Quand la sensibilité du détecteur est élevée (PM), une simple résistance de charge est suffisante, sinon il est nécessaire d'utiliser un amplificateur transimpédance (APD).

⇒ Bruit supplémentaire

Résistance de charge

- R_c résistance de charge
- C_d capacité détecteur (qq pF)
- C_c capacité câblage (qq pF)

$$\boldsymbol{V} = \boldsymbol{R}_{c}\boldsymbol{I} \qquad \boldsymbol{B}_{D} = \frac{1}{2\pi\boldsymbol{R}_{c}\left(\boldsymbol{C}_{d} + \boldsymbol{C}_{c}\right)}$$

Idéalement B_d = 1/(2δt)
si δt = 40 ns (δR = 6 m) C_d + C_c = 10 pF ⇒ R_c ~ 1 kΩ
PM, I = 1µA ⇒ V = 1 mV correct
APD, I = 1nA ⇒ V = 1µV insuffisant
Bruit en courant : $var(I_E) = \frac{4kT}{R} \frac{1}{2\delta t}$

Bruit en puissance:

$$\operatorname{var}(\boldsymbol{I}_{E}) = \frac{4kI}{R_{c}} \frac{1}{2\delta t}$$
$$\operatorname{var}(\boldsymbol{P}_{E}) = \frac{\operatorname{var}(\boldsymbol{I}_{E})}{S^{2}} = \left(\frac{hc}{\eta q \lambda G}\right)^{2} \frac{4kT}{R_{c}} \frac{1}{2}$$

Ecole Lidar 25/06/2013

Amplificateur transimpédance

R_c résistance de charge C_d capacité détecteur (qq pF) C_F capacité de filtrage (< pF)

$$\boldsymbol{V} = \boldsymbol{R}_c \boldsymbol{I} \qquad \boldsymbol{B}_D = \frac{1}{2\pi \boldsymbol{R}_c \boldsymbol{C}_F}$$

□ Idéalement B_d = 1/(2 δ t) ■ si δ t = 40 ns (δ R = 6 m) C_F = 0,1 pF \Rightarrow R_c ~ 100 kΩ

• APD, I = 1nA \Rightarrow V = 0,1 mV suffisant

Bruit en courant:

$$\operatorname{var}(\boldsymbol{I}_{E}) = \left(\frac{4kT}{R_{c}} + \boldsymbol{I}_{N}^{2} + \left(\frac{E_{N}}{R_{c}}\right)^{2} \left(1 + \frac{C_{D}^{2}}{3C_{F}^{2}}\right)\right) \frac{1}{2\boldsymbol{\delta}t}$$

Bruit en puissance

$$\operatorname{var}(\boldsymbol{P}_{E}) = \frac{\operatorname{var}(\boldsymbol{I}_{E})}{S} = \left(\frac{hc}{\eta q \lambda G}\right)^{2} \left(\frac{4kT}{R_{c}} + \boldsymbol{I}_{N}^{2} + \left(\frac{E_{N}}{R_{c}}\right)^{2} \left(1 + \frac{C_{D}^{2}}{3C_{F}^{2}}\right)\right) \frac{1}{2\delta t}$$

 I_N , E_N bruits en courant et tension de l'amplificateur

Bilan Détecteur + Préampli

Préampli (OPA 657)

In
$$I_N = 1.3 \text{ fA}.\text{Hz}^{-1/2}, E_N = 4.8 \text{ nV}.\text{Hz}^{-1/2}$$

Détecteur	domaine	S	Cd	R _c	C _F	σ (Pd)	σ(Pe)	σ (Pd+Pe)
	(nm)	A/W	pF	kΩ	pF	pW	pW	pW
PM	300-600	10^{5}	1	1	10	1,8	0,2	1,8
PM	600-800	$3.5 \ 10^4$	1	1	10	2	0,6	2
PM refroidi	1000-1600	$3.5 \ 10^3$	1	10	1	35	1,4	35
(-90°C)								
Si-APD 0,2 mm	500-800	50	1,5	100	0,1	7	41	42
Si-APD 3 mm	500-800	30	50	100	0,1	35	1600	1600
Si- APD	1064	34	3	100	0,1	350	155	380
InGaAs- APD	1000-1600	9	1,5	100	0,1	106	230	250

Bruit du CAN

- Numérisation sur n bits (n = 8 16)
- V_{LSB} = V_{Max} / 2ⁿ, tension de l'incrément de numération (Lower Significant Bit)
- □ SNR du CAN

$$SNR_{CAN} = 20 \log \left(\frac{V_{Max}}{\sigma(V)} \right)$$

Bruit supplémentaire:

$$\operatorname{var}(\boldsymbol{P}_{CAN}) = \left(\frac{hc}{\eta q \lambda G}\right)^2 \left(\frac{V_M}{\boldsymbol{R}_C 10^{SNR_{CAN}/20}}\right)^2$$

Bruit total

Détection analogique

$$\operatorname{var}(\boldsymbol{P}_{T}) = \operatorname{var}(\boldsymbol{P}_{S}) + \operatorname{var}(\boldsymbol{P}_{F}) + \operatorname{var}(\boldsymbol{P}_{D}) + \operatorname{var}(\boldsymbol{P}_{E}) + \operatorname{var}(\boldsymbol{P}_{CAN})$$

Détection par comptage

idem avec

$$\operatorname{var}(\boldsymbol{P}_{E}) = \operatorname{var}(\boldsymbol{P}_{CAN}) = 0$$

On peut écrire cette variance sous la forme:

$$\operatorname{var}(\boldsymbol{P}_{T}) = \frac{Fhc}{\lambda\eta\delta t} (\boldsymbol{P}_{S} + \boldsymbol{P}_{B}) + \frac{\boldsymbol{P}_{S}^{2}}{M}$$

avec

$$P_{B} = \frac{\lambda \eta \delta t}{Fhc} \left[\operatorname{var}(P_{F}) + \operatorname{var}(P_{D}) + \operatorname{var}(P_{E}) + \operatorname{var}(P_{CAN}) \right]$$

Rapport Signal à Bruit

Rapport Signal à Bruit ou Signal to Noise Ratio (SNR)

pour 1 tir

$$SNR(N_{tir} = 1) = \frac{P_S}{\sqrt{var(P_T)}}$$

pour N tirs

$$SNR(N_{tir}) = \sqrt{N_{tir}} SNR_1$$

Précision relative d'une mesure de puissance

$$\frac{\boldsymbol{\sigma}(\boldsymbol{P}_{S})}{\boldsymbol{P}_{S}} = \frac{1}{SNR}$$

Optimisation du SNR

Cas idéal (Shot Noise Limit)

- P_B = 0, pas de bruits, pas de fond
- $\eta = 1, F = 1$ $M = \infty$ $SNR_{SNL} = \sqrt{\frac{\lambda \delta t}{hc}} P_{S}$

Puissance optimale avec bruit:

$$P_{S} = \sqrt{\frac{hc}{\eta\lambda\delta t}}FMP_{B}$$

ne peut s'obtenir qu'à une distance donnée mais permet de savoir sur quels paramètres il vaut mieux jouer pour optimiser la mesure (énergie, nombre de tirs etc...)

Modélisation de performances

Pour quoi faire ?

- dimensionner les différents paramètres (laser, télescope ...) en fonction des objectifs d'observation
- faire des compromis entre différents paramètres
- établir une référence de performances à comparer avec les essais réels pour les valider ou rechercher des défauts

Signal lidar Puissance reçue

Equation lidar

$$\boldsymbol{P}_{S}(\boldsymbol{R}) = \frac{\boldsymbol{c}}{2} \boldsymbol{T}_{inst} \boldsymbol{E} \frac{\boldsymbol{A}}{\boldsymbol{R}^{2}} \boldsymbol{O}(\boldsymbol{R}) \boldsymbol{\beta}(\boldsymbol{R}) \exp\left(-2\int_{0}^{\boldsymbol{R}} \boldsymbol{\alpha}(\boldsymbol{r}) d\boldsymbol{r}\right)$$

- P_s puissance optique du signal reçu par le détecteur,
- R range (distance de la cible),
- c vitesse de la lumière
- T_{inst} transmission instrumentale (émission-réception)
- E énergie émise par impulsion
- A surface collectrice (pupille télescope)
- O fonction de recouvrement
- β coefficient de rétrodiffusion
- α coefficient d'extinction

Diffuseurs atmosphériques

Molécules

$$eta_{mol}(z) = rac{p(z)}{kT(z)} \sigma_{mol}$$

$$\alpha_{mol} = \frac{8\pi}{3}\beta_{mol}$$

- z altitude
- p pression
- T température
- k = 1,38 10⁻²³ JK⁻¹
- $\sigma_{mol} = 5,45 \ 10^{-32} \ (\lambda_0/\lambda)^4 \ m^2$
 - $\bullet \ \lambda_0 = 550 \text{ nm}$
 - λ longueur d'onde d'émission (nm)

Diffuseurs atmosphériques

Aérosols

- distribution très variable mais concentration notable principalement dans les basses couches (CLA), plus faible (plusieurs ordres de grandeur) au dessus, sauf cas de transport d'aérosols désertiques ou volcaniques par exemple
- dépendance en longueur d'onde très variable, on admet grossièrement λ^{-1,3}
- rapport α/β également variable suivant composition (particules désertiques, suies etc..) valeur typique: 50

Diffuseurs atmosphériques

Nuages

- Distribution très variable, en altitude (du sol à 20 km) et en β (de 10⁻⁷ à 10⁻¹ m⁻¹)
- Faible dépendance en λ
- Rapport α/β entre 15 et 20

Modèle de performances

Lidar sol 355 nm

Visée verticale

Lidar sol 355 nm

Télescope 20 cm, Energie 25 mJ (0,5 W @ 20 Hz)
 Filtre 5nm, T 25 % Détection PM, δR = 6 m

Lidar sol 355 nm

SNR sur 100 tirs moyennés (5s @ 20 Hz)

Lidar sol 532 nm

Visée verticale

Lidar sol 532 nm

Télescope 20 cm, Energie 50 mJ (1W @ 20 Hz)
Filtre 0,5 nm, T 45 %, Détection PM, $\delta R = 6$ m

Lidar sol 532 nm

SNR sur 100 tirs moyennés (5s @ 20 Hz)

Lidar sol 1064 nm

Visée verticale

Lidar sol 1064 nm

Télescope 20 cm, Energie 100 mJ (2W @ 20Hz)
Filtre 1 nm, T 45%, Détection Si-APD, δR = 6 m

Lidar sol 1064 nm

SNR sur 100 tirs moyennés (5s @ 20 Hz)

Lidar sol 1550 nm

Visée verticale

Lidar sol 1550 nm

Télescope 20 cm, Energie 25 mJ (0,5 W @ 20 Hz)
 Filtre 1 nm, T 45%, Détection InGaAs-APD, δR = 6 m

Lidar sol 1550 nm

SNR sur 100 tirs moyennés (5s @ 20 Hz)

Microlidar sol 532 nm

Télescope 20 cm, Energie 0,2 mJ (1W @ 5kHz)
Filtre 0,5 nm, T 45 %, Détection PM, $\delta R = 6$ m

Microlidar sol 532 nm

SNR sur 25000 tirs moyennés (5s @ 5 kHz)

Lidar spatial 532 nm

Altitude 400 km, Télescope 100 cm, Energie 50 mJ / 20Hz
Filtre 0,03 nm, T 50 %, Détection PM, δR = 100 m, 200 tirs

Laser LNG

	Energie @ 20 Hz (mJ)	Pulse duration (ns)	Linewidth (MHz)	Divergence after beam expander (mrd)
1064 nm	50	8	~ 120	5.6
532 nm	10	7	160	4
355 nm	50	6	~ 200	0.16

Réception LNG

	FOV (mrd)	Filter bandwidth / transmission	Detector
1064 nm	8	1 nm / 30%	APD Perkin- Elmer C30659-1060
532 nm	6	0.2 nm / 25%	PM Hamamatsu H6780-02
355 nm // and ⊥	355 nm 0.5 5 nm / 25% // and ⊥		PM Hamamatsu H6780-04

Detection bandwidth 5 MHz Digitization : 16 bits / 25 MHz

Ensemble LNG

- Optical bench (+ frame):
- length 1.8 m
- **u** width 0.65 m
- height 0.95 m
- weight 130 kg
- Electronics rack
- length 0.6 m
- width 0. 6 m
- height 1 m
- weight 110 kg
- Total
- weight 270 kg (with cables)
- Consumption: 2.2 kVA

LNG dans ATR 42

Lidar MARBLL

- Laser Thalès Nd: KGW 30 mJ / 1Hz
- Pas de refroidissement
- Télescope Newton 10 cm, champ 0,5 mrd
- Transport signal par fibre
- Détecteur Si: APD
- Mesure Doppler par Mach-Zehnder

Instrumentation

Partie 2. Lidar à détection hétérodyne

Détection hétérodyne Principe

Interférence de l'onde reçue avec celle d'un oscillateur local (OL)

 E_R onde partiellement cohérente, amplitude et phase variables, fréquence v_R E_{OL} onde cohérente (Gaussienne), amplitude et phase déterminés, fréquence v_{OL}

$$i_D(t) = S(P_{OL} + P_R + 2\sqrt{\gamma_H P_{OL} P_R} \cos[2\pi v_H t + \varphi(t)])$$

$$P_{R} = \int_{D} \langle E_{R}(x) E_{R}^{*}(x) \rangle dx \qquad P_{OL} = \int_{D} \langle E_{OL}(x) E_{OL}^{*}(x) \rangle dx$$

fréquence de battement $v_{H} = v_{R} - v_{OL}$ dans le domaine RF (MHz)

Ecole Lidar 25/06/2013

Signal hétérodyne

- Passage dans une résistance de charge R_c
- Echantillonnage du signal à la fréquence F_E
- Filtrage autour de la fréquence v_H $v_H(t) = 2R_C S \sqrt{\gamma_H P_{OL} P_R} \cos(2v_H t + \varphi)$
- Calcul de la puissance moyenne dans une fenêtre Δt = N/F_E $\langle v_H^2(t) \rangle = 2R_C^2 S^2 \gamma_H P_{OL} P_R(t)$
- Calcul du spectre de puissance dans la fenêtre de N points $V_H^2(v) = |TF(v_H(t))|^2$

Signal hétérodyne

□ Valeurs typiques:

- largeur spectrale laser (monomode) $\Delta v_{L} \sim 1 \text{ MHz}$
- bande de détection hétérodyne $B_H = F_E / 2 \sim qq 10 MHz$
- sensible uniquement à la diffusion particulaire
- (le signal diffusé par les molécules a une largeur spectrale de l'ordre du GHz)
- Du fait de la phase aléatoire φ, la sommation directe des signaux est inutile.

Exemple de signaux

Rendement hétérodyne

Calcul dans le plan du détecteur

 $\gamma_{H} = \frac{\iint_{D} \langle E_{R}(x) E_{R}^{*}(x') \rangle E_{OL}^{*}(x) E_{OL}(x') dx dx'}{P_{OL} P_{R}}$

- E_R obtenu après propagation aller, diffusion incohérente, puis propagation retour.
- dépend :
 - de la distance
 - des différentes troncatures du faisceau
 - des distorsions de front d'onde
- difficile à calculer

Rendement hétérodyne

Calcul dans le plan de diffusion

Oscillateur local retro-propagé (OLRP)

Optimisation du rendement

■ Laser monomode M² ~ 1

Rendement hétérodyne croît quand la taille du faisceau laser croît

- ⇒ effet de troncature par la pupille du télescope d'émission
- ⇒ réduction de la transmission T_P
- \Rightarrow Rendement système: $\eta_S = \eta_H T_P$
- Télescope sans obturation
- Qualité optique proche de la limite de diffraction
- Alignement OL / Laser critique

⇒ un seul télescope émission-réception (système monostatique)

Optimisation rendement

Système monostatique

Influence de la turbulence d'indice

\Box r_c, rayon de cohérence sur la pupille du télescope (rayon a_T)

En l'absence de turbulence: r_{c,0}
Contribution de la turbulence : r_{c,t}

$$\mathbf{r}_{c,t}(z) = \left[1,46\frac{4\pi^2}{\lambda^2}\int_0^z \mathbf{C}_n^2(z')\left(1-\frac{z'}{z}\right)^{5/3}dz'\right]^{-3/5}$$

•
$$C_n^2 \sim 10^{-15} - 10^{-13} \text{ m}^{-2/3} \text{ dans Ia CLA}$$

Diminution du rendement hétérodyne

$$\eta_H \propto \left(1 + \frac{a_T^2}{r_{c,0}^2} + \frac{a_T^2}{r_{c,t}^2}\right)^{-1/2}$$

limite le diamètre de télescope

favorise les grandes longueur d'ondes

Ecole Lidar 25/06/2013

Influence de la turbulence d'indice

 $\lambda = 2 \ \mu m$, Dtel = 5 cm,

 C_{n}^{2} sur 100m

 $\lambda = 10 \ \mu m$, Dtel = 10 cm,

 C_n^2 sur 100m

Ecole Lidar 25/06/2013

Bruit en courant

Bruit total en hétérodyne

$$\operatorname{var}(i_B) = 2qB_H[S(P_{OL} + P_B + P_R) + I_{obs}] + \operatorname{var}(i_E)$$

- var(i_E) donné par la même expression qu'en détection directe
- Pour des puissance modérées de l'OL (~ 1 mW), 2qB_HSP_{OL} est bien supérieur aux autres termes

$$\operatorname{var}(\boldsymbol{i}_{B}) \approx 2\boldsymbol{q}\boldsymbol{B}_{H}\boldsymbol{S}\boldsymbol{P}_{OL}$$

CNR

Le CNR (Carrier to Noise Ratio) est défini comme le rapport de la puissance moyenne du signal à celle du bruit

$$CNR = \frac{\left\langle i_{H}^{2} \right\rangle}{\operatorname{var}(i_{B})}$$

Avec le bruit de l'OL prédominant on a:

$$CNR = \frac{\gamma_H}{qB_H} S \langle P_R \rangle = \frac{\gamma_H \eta \lambda}{hcB_H} \langle P_R \rangle$$

• équivalent à la limite du « shot noise » , au terme $\gamma_H\eta$ près

Bruit de tavelure

- Le signal hétérodyne ne correspond qu'à une seule tavelure spatiale (celle qui se superpose à l'OL)
- Sur une durée d'impulsion laser τ_L (une tavelure temporelle) le signal varie avec une PDF

$$p\left(\frac{P_R}{\langle P_R \rangle}\right) = \exp\left(-\frac{P_R}{\langle P_R \rangle}\right)$$

u Sur une fenêtre $\Delta t = M_t \tau_L$ la PDF devient

$$p\left(\frac{P_R}{\langle P_R \rangle}\right) = \frac{M_t^{M_t}}{\Gamma(M_t)} \left(\frac{P_R}{\langle P_R \rangle}\right)^{M_t - 1} \exp\left(-M_t \frac{P_R}{\langle P_R \rangle}\right)$$

Bruit de tavelure

D Probabilité de puissance détectée, dans une fenêtre $M_t \tau_L$ et sur 1 tir

SNR

- Le SNR inclut le bruit apporté par l'OL (CNR) et la statistique de puissance due aux tavelures
- **Dans une fenêtre** $M_t \tau_L$, pour 1 tir:

$$SNR = \sqrt{M_t} \left(\frac{CNR}{1 + CNR} \right)$$

Incertitude relative sur la puissance:

$$\frac{\boldsymbol{\sigma}(\boldsymbol{P}_{\boldsymbol{R}})}{\langle \boldsymbol{P}_{\boldsymbol{R}} \rangle} = \frac{1}{\boldsymbol{SNR}} = \frac{1}{\sqrt{\boldsymbol{M}_{t}}} \left(1 + \frac{1}{\boldsymbol{CNR}} \right)$$

Erreur relative sur la puissance

Dans une fenêtre $M_t \tau_L$, pour 1 tir

Erreur sur la fréquence

- Fréquence d'échantillonnage F_E
- **D** Fenêtre $\Delta t = N F_E$
- M_t tavelures dans la fenêtre
- Estimateur de Levin

$$\frac{\sigma(\boldsymbol{v}_{H})}{\boldsymbol{F}_{E}} = \frac{\boldsymbol{M}_{t}}{N^{\frac{3}{2}}\sqrt{CNR}} \frac{1}{\sqrt{\boldsymbol{g}_{1}(\boldsymbol{\alpha}_{1})}}$$

avec

$$\boldsymbol{\alpha}_{1} = \frac{N}{M_{t}} \frac{CNR}{\sqrt{2\pi}} \qquad \boldsymbol{g}_{1}(\boldsymbol{\alpha}_{1}) = \frac{\boldsymbol{\alpha}_{1}}{\sqrt{2\pi}} \int_{-\infty}^{+\infty} \frac{\boldsymbol{x}^{2} \exp(-\boldsymbol{x}^{2})}{1 + \boldsymbol{\alpha}_{1} \exp(-\boldsymbol{x}^{2}/2)^{2}} d\boldsymbol{x}$$

Erreur sur la fréquence

N = 128 (pts dans la fenêtre)

Domaine spectral de la DH

- Sensible uniquement aux particules (sondage basses couches ou transport aérosols, nuages)
- Laser monomode, M² ~ 1
- Télescope proche de la limite de diffraction
- Alignement sensibilité interférométrique
- Grande longueur d'onde (moins sensible à la turbulence d'indice)
- Peu d'exigences sur le détecteur (contrairement à la détection directe)

\Rightarrow domaine IR (1,5 µm \rightarrow 10 µm)

Stratégie de mesure en DH

Mesure de puissance

- Energie émise telle que CNR ~ 1 à une distance choisie
- Durée d'impulsion nettement plus faible que la résolution en distance (M_t élevé)
- Cadence élevée pour moyenner un grand nombre de tirs

Mesure de fréquence (Doppler)

- Durée d'impulsion proche de la résolution en distance (M_t faible)
- Energie émise telle que CNR ~ M_t à une distance choisie
- Cadence élevée non nécessaire

Lasers pour HD

- **3** principaux types:
 - Laser CO_2 (9 μ m < λ < 10 μ m)
 - Laser Ho (2,05 μ m < λ < 2,1 μ m)
 - Laser Er (1,5 μm < λ < 1,6 μm)

Produits commerciaux:

- Très peu de lasers monomodes impulsionnels
- OL / injecteurs CW plus courants

Laser CO₂

□ Longueur d'onde principale 10,6 µm

- plusieurs autres raies entre 9 μm et 11 μm
- Pompage par décharge électrique
- Fort gain, fort stockage d'énergie, bon rendement
- Grand volume (encombrant)
- Emission de forte énergie (> 100 mJ) basse cadence (qq Hz)
- Matériaux optiques: Si, Ge, ZnSe

Laser Ho

- Accordable de 2,05 μm à 2,1 μm
- Fort stockage d'énergie
- Faible gain
- Cristaux massifs : YAG ou YLF (ou LuLiF)
 - Co-dopage Tm-Ho
 - Pompage par diodes du Tm @ 780 nm puis transfert d'énergie
 - Gain limité par « up-conversion »
 - Energie émise de 10 mJ @ 200 Hz à 1 J @ 2 Hz
 - Dopage Ho seul
 - Pompage @ 1940 nm par laser CW Tm: Fibre (pompé par diodes)
 - Moins de « up-conversion »
 - Energie émise de 70 mJ @ 50 Hz à 10 mJ @ 5 kHz (en préparation)

Laser Er

Laser Er: Fibre (monomode)

- Accordable entre 1,5 μm et 1,6 μm
- Pompage par diode CW @ 980 nm
- Bon contrôle thermique
- Bon stockage d'énergie
- Limitation de la puissance crête par Brillouin stimulé
- Energie émise 0,1 mJ @ >10 kHz

Détecteurs

- **I**InGaAs (1,5 μ m \rightarrow 2 μ m)
 - η ~ 75 %
 - S ~ 1 A/W
 - $B_H \rightarrow 1 \text{ Ghz}$
- □ HgCdTe (10 µm)
 - = $\eta \sim 75 \% \ge 50 \%$ qd P \nearrow
 - S ~ 6 A/W > 4 A/W
 - $\blacksquare \quad \mathsf{B}_{\mathsf{H}} \to 100 \; \mathsf{MHz}$
- Bruit OL prédominant qd

$$P_{OL} > \frac{\operatorname{var}(i_E)}{2qS}$$

var(i_E) dominé par l'amplification

$$\sqrt{\operatorname{var}(i_E)} \approx 10 \ pA / \sqrt{Hz}$$

⇒ P_{OL} > 0,3 mW @ 1,6 – 2 μm ⇒ P_{OL} > 0,1 mW @ 10 μm

Exemple de télescope

Télescope Afocal Hors-Axe:

primaire parabolique Φ 100 mm Rcc 1000

secondaire parabolique Φ 10 mm Rcx 25

Grossissement résultant x 40

Encombrement 500 mm

Sans obturation

Qualité front d'onde $\lambda/4$ @ 2 μm

Modèle de performances

Lidar sol 10 µm

 \square E = 400 mJ / 4Hz (1,6 W), Δv_{L} = 1MHz, DTel 20 cm, η_{H} = 0,1

Lidar sol 10 µm

E = 400 mJ / 4Hz (1,6 W), Δv_L = 1MHz, DTel 20 cm, η_H = 0,1
ΔR = 100 m, visée 45 °, Ntir =12 (3s)

Lidar sol 2 µm

 \blacksquare E = 10 mJ / 10Hz (0,1 W), Δv_{L} = 3MHz, DTel 10 cm, η_{H} = 0,1

Lidar sol 2 µm

E = 10 mJ / 10Hz (0,1 W), Δv_L = 3MHz, DTel 10 cm, η_H = 0,1
ΔR = 100 m, visée 45 °, Ntir = 30 (3s)

Lidar sol 1,5 µm

E = 0,1 mJ / 10 kHz (1 W), Δv_L = 2MHz, DTel 10 cm, η_H = 0,1

Lidar sol 1,5 µm

□ E = 0,1 mJ / 10 kHz (1 W), Δv_L = 2MHz, DTel 10 cm, η_H = 0,1 □ ΔR = 100 m, visée 15 °, Ntir = 30000 (3s)

Montage expérimental à 2 µm

Montage expérimental à 2 µm

Analyse de performances

Mesures de vent

Analyse de performances

Mesures de vent

Ecole Lidar 25/06/2013

Analyse de performances

Mesures de vent

Conclusion

Détection directe

- mesure de puissance
- optique (laser et télescope) peu critique
- performances détecteurs critiques
- domaine UV-visible-proche IR
- sécurité oculaire critique (sauf UV)

Détection hétérodyne

- mesure de fréquence (puissance moins précise)
- qualité optique (laser et télescope) très critique
- performances détecteurs peu critiques
- domaine IR
- sécurité oculaire généralement assurée