

Applications aéronautiques des lidars vent

A. Dolfi-Bouteyre, C. Besson, B. Augère, M. Valla

retour sur innovation

Applications aéronautiques des lidars vent

Senseurs de navigation

- mesure de vitesse air 1 point, 3 composantes
 - Mie multiparticules
 - Mie monoparticules
 - Rayleigh

Senseurs d'alertes

- Au sol
 - Turbulence de sillage / wake vortex
 - Cisaillements / rafale (« wind hazard »)
 - Embarqués
 - Turbulence de sillage /wake vortex
 - Cisaillements / rafale / Turbulence en air clair

•

Applications aéronautiques des lidars vent

Applications aéronautiques des lidars vent

Senseurs de navigation

- mesure de vitesse air 1 point 3 composantes
 - Mie multiparticules
 - Mie monoparticules
 - Rayleigh

Senseurs d'alertes

- Au sol
 - Turbulence de sillage / wake vortex
 - Cisaillements / rafales
- Embarqués
 - Turbulence de sillage /wake vortex
 - Cisaillements / Turbulence en air clair

Applications éoliens des lidars vent

- Caracterisation de site
- Optimisation des turbines
 - Ecole d'été Lidar 24 juin au 3 juillet 2013

Principe de l'anémométrie laser

Source : J-L Hantrais-Gervois, Aerodynamics Department, ONERA

Mesure à 50 m dans un flux non perturbé Ou mesure à quelques mètres et on corrige

Principe de l'anémométrie laser : Vitesse de l'air : V=(Vx,Vy,Vz) Axe de visée lidar n° i А Ζ Х Avec notation du "conical scan" (ϕ élévation) $Vri = \cos \theta i. \cos \phi$. $Vx + \sin \theta i. \cos \phi Vy + \sin \phi$. VzAxe de visée lidar n°i θ i Ζ Χ Si vi ouverture du cone $Vri = \cos \theta i. \sin \psi. Vx + \sin \theta i. \sin \psi Vy + \cos \psi. Vz$ Vri= Mi. V 3 inconnues \rightarrow 3 axes de visée lidar minimum (i >=3)

Principe de l'anémométrie laser : erreur de mesure en fonction du nombre d'axe de mesures

```
si y = A * x alors
variance sur y : var(y) = A^2 * var(x),
```

```
ici on a Vr = M * V
avec V le vecteur vitesse (vx,vy,vz)
Vr la matrice des vecteurs vitesse radiales des n axes (Vr1,...,Vrn).
M : matrice (n* 3)
```

 $V = (M.'*M)^{-1} * M.' * Vr (M.' est la matrice transposée)$

alors $var(v) = ((M.'*M)^{-1} *M.')^{2} * var(Vr)$

Critere de choix des angles :

- besoin de reconstruction du vecteur \rightarrow plus l'angle est ouvert, moins il y a d'erreur
- Homogeneité du volume de mesure
- Dynamique de mesure de l'instrument

Flow Field Measurements: lidar anemometer for flight test certification

- Aircraft data requirements for certification process given by Lidar measurement
 - Angle of Attack is deduced from air speed components the XZ plane
 - \bullet Angle of Sideslip is the angle between $V_{\text{plane/air}}$ and the XZ plane
 - Static error correction is deduced from full air speed vector

Ecole d'été Lidar – 24 juin au 3 juillet 2013

 $AOA = \tan^{-1}(V_z/V_x)$

 $AOS = \tan^{-1} \left(V_y / \sqrt{V_x^2 + V_z^2} \right)$

lidar anemo multiparticules Alev (Thales)

Table 7-1: Characteristics of the ALEV 3 system.

Factor	Detail
anemometer type	reference-beam laser anemometer
laser	CO ₂ gas laser
wavelength	10.6 µm
operating mode	continuous wave (cw)
power	5 Watts
detection	coherent mode using a HgCdTe detector cooled to 77 K
detector cooling	Thompson cooling, expansion of pressurized nitrogen gas
measurement	vector true airspeed (TAS) angle of attack (AoA), and angle of sideslip (AoS)
focal distance	between 50 and 100 m
velocity range	10 m/s to 400 m/s
altitude range	up to FL 250 without signal loss, at FL 250 to FL 350 signal is occasionally lost because of insufficient atmospheric backscatter
TAS uncertainty	0.25 m/s (including system and installation uncertainties)
update rate	2, 4, or 8 measurements per second (measurements in the three directions are taken intermittently)
format	ARINC 429
physical characteristics	
scanning	scanning mirror
size (optical unit)	0.75 x 0.5 x 0.75 m
weight (optical unit)	70 kg
developed by:	Crouzet Sextant Thales

Figure 7-2: Installation of ALEV 3 system in the Airbus A340.

Source : "optical air flow measurement" (OTAN)

Anémométrie laser 1.5 µm aéroportée

ORIENTATIONS TECHNOLOGIQUES :

TECHNOLOGIE 1.5 μm

SOURCE : Laser fibré Erbium

- très bonnes qualités spectrale et spatiale
- sécurité oculaire
- bonne transmission atmosphérique
- compacité et fiabilité
- utilisation de composants fibrés

ARCHITECTURE OPTIQUE FIBREE :

- composants fibrés performants et bas coût
- facilité d'utilisation et de réglage
- compacité et fiabilité

Anémométrie laser 1.5 µm aéroportée

THE FRENCH ARROSPACE LAB

Anémométrie laser 1.5 µm aéroportée

DALHEC : collaboration Onera / Thales Avionic Realiser une sonde anémométrique 1.5 µm embarqué sur hélicoptère

Avantage par rapport aux sondes pneumatiques classiques :

⇒ Vitesse air absolue (référence primaire)

- ⇒ Très bonne précision dans tout le domaine de vol
- ⇒ Technologie 1.5µm compacte, fiable et à sécurité oculaire

 \Rightarrow Sonde non intrusive

Sondes pitot : erreur 2 m/s et perturbé par le rotor à faible vitesse

Anémométrie laser 1.5 µm aéroportée lidar DALHEC

SYSTEME OPTIQUE DALHEC

Ecole d'été Lidar – 24 juin au 3 juillet 2013

Diamètre doublet : 30 mr

Anémométrie laser 1.5 µm aéroportée DALHEC Sensor: Flight tests on DAUPHIN (CEV Istres)

DALHEC Sensor: Flight measurements

•Comparison between Dalhec and Pitot estimations

Par rapport aux sondes classiques (Vi), DALHEC mesure des vitesses (Vx) conformes à la vitesse vraie avec une très bonne précision, même aux basses vitesses

Validation de la mesure jusqu 'à des altitudes de 3000 m

Development of an airborne anemometer for in-flight testing onboard on a Piaggio P180 aircraft (AIM2 WP5.1.4)

1.5µm lidar anemometer design

AOA and AOS retrieval from lidar data (Vx, Vy, Vz) with 4 measurement axes V1, V2, V3, V4

✓ Benefit of redundancy in airspeed measurement \rightarrow data integrity check

 \checkmark Narrower α angle has less impact on Vz with 4 axes than 3 axes

✓ Higher optical head cost and complexity

Chosen geometrical angles: $\alpha_1 = 45^{\circ}$, $\alpha_2 = 0^{\circ}$, $\alpha_3 = 40^{\circ}$, $\alpha_4 = -5^{\circ}$, $\theta = 25^{\circ}$

The 4 Lidar axes are time multiplexed by using a fiber optical switch:

✓ Cost effective (fits inside the project envelope)

✓ But less integration time due to multiplexing and axis commutation time

 \rightarrow performance loss

Development of an airborne anemometer for in-flight testing onboard on a Piaggio P180 aircraft (AIM2 WP5.1.4)

1.5µm lidar anemometer design

- \blacktriangleright Lidar technical specifications \Rightarrow Lidar axes geometry
- ✓ Geometrical angles : $\alpha_1 = 45^\circ$, $\alpha_2 = 0^\circ$, $\alpha_3 = 40^\circ$, $\alpha_4 = -5^\circ$, $\theta = 25^\circ$

Airspeed error function of error per axis (noted std_{axis}):
 std_{Vx} = 1.35 std_{axis}, std_{Vy} = 0.75 std_{axis}, std_{Vz} = 1.25 std_{axis}

 $var(v) = ((M.'*M) - 1 *M.')^2 * var(Vr)$

\Rightarrow Compatible with operational requirements:

Angle dynamic: $-20 \le AOS \le +20^{\circ}$; $-2 \le AOA \le +15^{\circ}$ AOA or AOS accuracy: 0.5° TAS dynamic: 50m/s $\le Vx \le 200$ m/s TAS accuracy: 0.2m/s $\Rightarrow std_{Vx} = 1.35 std_{axis} \le 0.2$ m/s $\Rightarrow std_{axis} \le 0.15$ m/s

Development of an airborne anemometer for in-flight testing onboard on a Piaggio P180 aircraft (AIM2 WP5.1.4)

Development of an airborne anemometer for in-flight testing onboard on a Piaggio P180 aircraft (AIM2 WP5.1.4)

1.5µm lidar anemometer design

 \blacktriangleright Lidar mechanical integration study \Rightarrow Sensor head definition

- ✓ Dimensions : 403X251.5X431.5mm
- ✓ Weight: 14kg
- ✓ Includes 4 measurement axes orientated as specified

Development of an airborne anemometer for in-flight testing onboard on a Piaggio P180 aircraft (WP5.1.4)

1.5µm lidar anemometer design

 \blacktriangleright Lidar technical specifications \Rightarrow Lidar signal processing performance

✓ Lidar processing for each axis (Onera work):

✓ Airspeed vector, AOA and AOS reconstruction (post-processing)

✓Comparison Lidar measurements/Piaggio calibration procedure (post-processing) ⇒Temporal synchronization using common GPS time

AIM2: Advanced In-flight Measurement technique 2

Lidar Tests onbaord van : Side aiming lidar

AIM2: Advanced In-flight Measurement technique 2

Airspeed measured by each lidar axis for a van speed between 30km/h et 90km/h.

Lidar embarqué: échos de nuages

Solution: codage en fréquence

Modification de l'architecture lidar pour modulation de fréquence : ajout d'un modulateur de phase.

- Modulation de fréquence : le modulateur de phase génère un décalage fréquentiel (commande électrique en dents de scie)
- Modulation sur la voie signal et oscillateur local : aucun changement du traitement du signal.

travaux pour amélioration de l'anémomètre

Modulation de type saut de fréquence à code dispersif

Objectif: atténuer la réponse du nuage

Pas d'impact sur le traitement du signal si la durée du mot du code est égale à la durée d'un spectre.

Dispersion du parasite nuage :

 \Rightarrow Atténuation égale à la longueur du code.

 \Rightarrow Levée d'ambiguïté entre le parasite et le signal aérosol par sa largeur spectrale. Intérêt: Code économe en bande passante.

Proposition de travaux pour amélioration de l'anémomètre DALEV

Simulation type saut de fréquence:

code de 30 symboles

Puissance signal aérosol = puissance parasite nuage

CNR = 0 dB

 \Rightarrow atténuation

d'un facteur 30

Applications aéronautiques des lidars vent Applications éoliens des lidars vent

Applications aéronautiques des lidars vent

Senseurs de navigation

- mesure de vitesse air 1 point 3 composantes
 - Mie multiparticules
 - Mie monoparticules
 - Rayleigh

Senseurs d'alertes

- Au sol
 - Turbulence de sillage / wake vortex
 - Cisaillements (« wind hazard »)
- Embarqués

26

- Turbulence de sillage /wake vortex
- Cisaillements / Turbulence en air clair

Applications éoliens des lidars vent

- Caracterisation de site
- Optimisation des turbines
 - Ecole d'été Lidar 24 juin au 3 juillet 2013

A haute altitude , la concentration en aerosol peut devenir très faible

 \rightarrow Lidar monoparticule :

mesure avec un seul aerosol dans le volume de mesure

Avantage : pas de bruit de speckle .

Statistique de mesure liée à la statistique de repartition des particules

Lidar Anemometre monoparticule Étude de l'atmosphère : tropopause (10 km)

- ⇒ Aérosols majoritaires du fond : noyaux d 'Aitken
- \Rightarrow Concentration : Np = 5 parts/cm³
- \Rightarrow Taille : 0.1 µm
- $\Rightarrow \sigma$: section efficace de rétrodiffusion $\sigma = \beta / 4\pi$
- \Rightarrow Coefficient de rétrodiffusion : $\beta = 10^{-9} \text{ m}^{-1}.\text{sr}^{-1}$

Lidar Anemometre monoparticule : Modélisation instrumentale

 \Rightarrow Une particule en mouvement : x = V_t. t ; Z = V_r. t

Ecole d'été Lidar – 24 juin au 3 juillet 2013

x 10⁻⁶

6 65

Lidar monoparticule

Courant heterodyne pour une particule en (p,Z)

$$i_{het}(t) = \sqrt{2. \langle i_{het}^2 \rangle_{(p,Z)}} .\cos(-2\pi(v_L - v_{OL}).t + 2kZ)$$

Courant heterodyne maximum lorsque la particule passe en (0, Ft) (centre du faisceau, waist)

$$\langle i_{het}^2 \rangle_{(p,Z)} = \langle i_{het}^2 \rangle_{(0,Ft)} \cdot \frac{\sigma_B^4(F_t)}{\sigma_B^4(Z)} \cdot \exp(-4 \cdot \frac{p^2}{\sigma_B^2(Z)})$$

$$\langle i_{het}^2 \rangle_{(0,F_t)} = \sigma.2. \ S^2.T_{inst.} \ 4.P_{OL}P_L.\frac{\lambda^2}{\pi^2}.\frac{1}{\sigma_B^4(F_t)}$$

Lidar monoparticule DALAS

MYSTERE XX

Essais en vol de la sonde DALAS (sonde DALHEC modifiée)

L'objectif est de valider l'anémométrie 1.5 µm monoparticule et d'évaluer les caractéristiques de rétrodiffusion de l'atmosphère avec :

- \Rightarrow altitude
- ⇒ météo (ciel clair/nuage)
- \Rightarrow variation journalière (jour/nuit)
- ⇒ zone géographique (mer/terre/montagne)
- \Rightarrow réglages de mesure (focale, vitesse avion)

Moyen d'essais

 \Rightarrow Mystère XX du CEV d'Istres

Lidar monoparticule DALAS

Préparation de la sonde DALAS (sonde DALHEC modifiée)

- ⇒ Modification de la tête optique pour permettre la focalisation aux distances focales retenues
- \Rightarrow Modifications laser : suppression du MAO, augmentation de la puissance optique de l'OL
- ⇒ Nouvelle architecture HF permettant de s'adapter aux fréquences Doppler rencontrées en configuration avion à haute altitude

DALHEC

Distance de mesure : 30m

Pupille : 30mm

DALAS

Distance de mesure : 1m

Pupille : 30mm

Tache focale <100 µm

Lidar monoparticule DALAS

Installation de la sonde DALAS

Le Hublot intégré à l'issue de secours

La tête optique DALAS installée à bord du MYSTERE XX

Le boîtier de commande DALAS

Lidar monoparticule DALAS : essais en vol

Vol n° 4 : Exemple de burst (11000m, ciel clair)

35

Lidar monoparticule : essai en vol de la sonde DALAS

Vol n° 2 : Exemple d'histogramme (6000m, ciel clair)

Valeurs du Nb détections seuil CNR croissantes 0. 100 110 120 130 140 150 160 170 180 190 200 fréquence (MHz)

Histogramme brut_04-12-14_14h01m37

Lidar monoparticule DALAS : essais en vol

Vol n° 2 : Exemple d'histogramme (6000m, nuage)

Histogramme brut_04-12-14_14h05m48

Lidar monoparticule DALAS : essais en vol

NbDétection =f(altitude)

Suite des essais dans les projets UE Neslie et Daniela pour caractériser l'atmosphere

Autre lidar anemo monoparticules

Table 7-2: Characteristics of the Boeing Doppler lidar airspeed system.

Factor	Detail	
anemometer type	reference-beam laser anemometer	
laser	NdYAG	
wavelength	1.064µm	
operating mode	continuous wave (cw)	
power	0.5 Watt	
detection	coherent mode using an indium gallium arsenide detector	
measurement	single component flow velocity at a point	
focal distance	between 1 and 2 m	
velocity range	10 m/s to 400 m/s	
altitude range	tested up to FL 410	
TAS uncertainty	1 m/s	
update rate	dependent upon particle passage rate	
format	RS 232	
physical characteristics		
scanning	none	
size (optical unit)	7.5 x 17.5 x 27.5 cm	
weight (optical unit)	<5 kg	
developed by:	Boeing Information Systems	

Boeing Doppler lidar airspeed system.

Figure 7-4: Continuous-wave Doppler lidar brass board configuration.

Source : "optical air flow measurement" (OTAN)

Ecole d'été Lidar – 24 juin au 3 juillet 2013

39

Applications aéronautiques des lidars vent

Applications aéronautiques des lidars vent

Senseurs de navigation

- mesure de vitesse air 1 point 3 composantes
 - Wie multiparticules
 - Mie monoparticules
 - Rayleigh

Senseurs d'alertes

- Au sol
 - Turbulence de sillage / wake vortex
 - Cisaillements (« wind hazard »)
- Embarqués
 - Turbulence de sillage /wake vortex
 - Cisaillements / Turbulence en air clair

Applications éoliens des lidars vent

ONERA

THE FRENCH ARROSPACE LAB

- Caracterisation de site
- Optimisation des turbines
 - Ecole d'été Lidar 24 juin au 3 juillet 2013

40

Lidar Rayleigh – Mie Detection directe

En haute altitude, la presence d'aerosol peut être faible \rightarrow

mesure sur la diffusion par les molécules (diffussion Rayleigh)

Longueur d'onde UV plus favorable

Spectre Rayleigh très large (due à l'agitation thermique) \rightarrow

detection heterodyne impossible

Determination du Doppler par Interferometrie optique + detection directe ou imageur

lidar Rayleigh : optical air data sensor MOADS

Table 7-3: Characteristics of Michigan Aerospace Molecular Optical Air Data Sensor (MOADS).

Factor	Actual Detail (as tested in the laboratory)	Projected Detail
anemometer type	spectrometric anemometer, bistatic configuration	
laser	NdYAG laser quadrupled	
wavelength	1.064 mm quadrupled to 0.266 mm	
operating mode	continuous wave or pulsed	continuous wave or pulsed
oower	.5 W (dependent on update rate)	.5 W
etection	direct mode detection by a high-finesse etalon using a charge-coupled-device (CCD) detector	
neasurements	vector true airspeed (TAS, AoA, and AoS), static pressure, and temperature. Derived measurements include: Mach and Pressure Altitude	
neasurement distance	2m. and 10m.	2m. and 15 m
elocity range	0 to 25 m/s	0 m/s to 1200 m/s
titude range	Sea level (SL)	SL to FL 1000
AS uncertainty	± 0.57 m/s (1 sec. integration) (1W laser power)	±.2 m/s (80 Hz update) (2 W laser power)
odate rate	1 Hz	80 Hz for AoA and AoS 20 Hz for others
essure uncertainty	± 700 Pa (127mW laser power)	± 63 Pa (80 Hz update) (2 W laser power)
emperature uncertainty	none quoted	± .9 °C (10 Hz update)
rmat	RS 232	MIL-1553
sical characteristics		
scanning	none (measurements from 3 separate axes)	
size	0.127 m ³ (not including laser)	.04 m ²
weight	42 kg	20 kg
eveloped by	Michigan Aerospace Corporation, Ann Arbor, MI and University of Michigan, Ann Arbor, MI	
inded by	US Navy and US Air Force (AFRL)	

Source : "optical air flow measurement" (OTAN)

020152

ONERA

THE FRENCH ARROSPACE LAB

Les senseurs d'alertes

• Au sol

- Turbulence de sillage /wake vortex
- Cisaillement / rafale (Wind hazard)

• Embarqués

- Turbulence de sillage /wake vortex
- Turbulence en air clair
- Cisaillement / rafale (Wind hazard)

Menaces liées au champ de vent en aéronautique downdraft and Distances 100 heady Sea Breeze Shear **Microburst Wind Shear Gust Front Shear** Turbulence headwind and na incodered to a housand meters Hills Airport Low-Level Jets Turbulence **Terrain-Induced Shear** and Other Vertical Shear and Turbulence WTDS 3/29/2010 23

Les turbulences de sillage (« wake vortex »)

@ Joseph P.Willems, 2002

Courtesy from S. Wolf, IFALPA

Contexte général

Conception des voilures / reduction des trainées :

- mesures sur maquettes
- mesures sur site aeroportuaire

Sécurité du vol :

- mesures embarquées
- mesures sur site aéroportuaire

→ Augmentation du trafic aéroportuaire : Réduction des espacements entre les décollages et entre les atterrissages

origine aérodynamique la turbulence de sillage

Anti- vortex : « winglets »

Reduction de la trainée de 5 à 7 %

Ecole d'été Lidar – 24 juin au 3 juillet 2013

49

Les espacements à l'atterrissage

ICAO aircraft separation distances to avoid wake vortex encounters during approach: (a)standards, (b) provisional values for the A380 (2008).

→ SESAR : Single European Sky Air traffic management Research

Mesure des « wake vortex » par lidar

Détection transversale Sol

Détection axiale Embarquée ou sol

Mesure des « wake vortex » par lidar

Détection transversale sol :

- mesures sur maquettes
- mesures sur site aeroportuaire

Détection axiale Embarquée ou sol

Lidar Doppler wake vortex : Mesure transverse

Lidar Doppler wake vortex : Mesure transverse

Lidar Doppler wake vortex : Mesure transverse

Wake vortex de maquettes d'avions : Mesures au B20

Wake vortex de maquettes d'avions : Mesures au B20

l'atmosphère est ensemencée avec de fines gouttelettes d'huile d'olive.

-10

-15

-20

-25

-30

-35

-40

-45

-50

Comparaison de configurations de voilure

Mesure des « wake vortex » par lidar

Détection transversale sol :

- mesures sur maquettes
- mesures sur site aeroportuaire

Détection axiale Embarquée ou sol

Mesures sur site aéroportuaire

Mesures sur site aéroportuaire Campagne AWIATOR à Tarbes

Mesures sur site aéroportuaire Campagne AWIATOR à Tarbes

30 cm diameter aperture6W CO2 CW laser+ heterodyne detectionvelocity resolution5 dvelocity range:

5 cm/s +/-50m/s

Maximum speed :35° / sMax acceleration :200° /s2Position accuracy :0.04°

airport measurements

Ecole d'été Lidar – 24 juin au 3 juillet 2013

66

Influence de l'atmosphère sur la durée de vie des vortex

EDR mesurés par le lidar pulsé 2 µm

Comparison des mesures échelle réduite / aéroport

Détection des vortex par lidar impulsionnel

Etat de l'art : techno laser solide à $2\mu m$

Sytème lidar du DLR avec source laser Lookeed Martin Coherent Technologie (LMCT)

Détection des vortex par lidar impulsionnel

Technical details of DLR's Lidar

pulsed Doppler, heterodyne light backscattered by aerosols

Transceiver MAG-1	(prototype CTI -> LM):
Tm:LuAG laser wavelength repetition rate pulse energy pulse length	2.022 μm 500 Hz 2 mJ 0.5 μs
Off-axis telescope: aperture	10 cm
Scanner (2 prisms): elevation sector scan speed	0 - 30° 2 °/s
Data acquisition: early digitising with quick-look	500 MHz
Signal processing: four-stage algorit	thm
DLR Deutsches Zentrum für Luft- und Raumfahrt e	e.M

in der Helmholtz-Gemeinschaft

ysik der Atmosphäre es R&D in Palaiseau, 4

WakeNet-3 / GreenWake WS

Détection des vortex par lidar impulsionnel

Etat de l'art : techno laser solide à 2µm

Windtracer (LMCT)

Techno chère

Alternative : laser à fibre impulsionnel 1.5 µm Utilisation de composants optiques telecom

Description du lidar SWAN réalisé pour la campagne de mesures CREDOS à Francfort (Février-Mars 2007)

Caractéristiques du lidar

- Longueur d'onde:
- 1.55 µm
- Energie laser: 60µJ
- Durée pulse laser : 200ns
- Cadence laser: 15kHz
- largeur spectrale laser: <0.5MHz
- M2=**1.3**
- Maintien de polarisation

- Portée : **50m** à **400m**
- Résolution en vitesse: < 1 m/s
- Cadence image : 0.25Hz

Tests CREDOS à l'aéroport de Francfort (Février-Mars 2007)

CREDOS : Affichage temps réel du champ de vitesses

Développement d'un traitement et affichage temps reel du champ de vitesse

Résolution spatiale longitudinale : 2.4 m Résolution spatiale latérale : 35 cm@200m(0,1 $^{\circ}$)

Résolution vitesse: < 1 m/s

Temps 1 balayage=4s Nombres cases distance=185

CREDOS : Affichage temps réel du champ de vitesses

Résolution spatiale longitudinale : 2.4 m

Echantillonage 500 MHz,

FFT sur des portes de de 512 points, et décalage de 8 points

 \rightarrow resolution spatiale = c * (8 / 500E6) / 2 = 2.4 m

Résolution spatiale latérale : $35 \text{ cm}@200 \text{m}(0,1^{\circ})$

laser 15 kHz + balayage 15 $^{\circ}\,$ /s : un tir laser tout les 0.001 $^{\circ}\,$

Ecole d'été Lidar – 24 juin au 3 juillet 2013

Traitement du signal pour le lidar vortex

Les paramètres des vortex à mesurer sont :

- La position des cœurs des tourbillons
- Les profils de vitesse des tourbillons
- La circulation

Traitement du signal pour le lidar Doppler vortex pulsé (1/6)

Traitement du signal pour le lidar Doppler vortex pulsé

Ecole d'été Lidar – 24 juin au 3 juillet 2013

Traitement du signal pour le lidar Doppler vortex pulsé (2/6)

Traitement du signal pour le lidar Doppler vortex pulsé (4/6)

Traitement du signal pour le lidar Doppler vortex pulsé (5/6)

Traitement du signal pour le lidar Doppler vortex pulsé (6/6)

Stage 4: compute circulation

82

CREDOS CAMPAIGN Orly/Francfort 2007 B744

Données vortex

84

Lidar deployment during SESAR XP1 Campaign

Objectives for the lidar deployment

- Proof of concept of the WV detection in real time
- Perform a statistical analysis on the WV detection
- Evaluate the performances in terms of detection rate and circulation

CDG Airport – France September/October 2012

Parameters	Settings
Scanning mode	Vertical RHI
Scanner Speed	10° /s
Angular res.	0.2° (3,4m at 1km)
Spatial res.	5m (with overlap)
Time res.	20ms
Max range	~1km

Lidar deployment during XP1 Campaign

Ecole d'été Lidar – 24 juin au 3 juillet 2013

Development and process of the real-time WV algorithm

WV detection algorithm

Developed and tested in CREDOS Eu project Improved and evaluated during SESAR XP0 experiment in 2011 Very encouraging results For the WVAS, need to have a real-time detection

Some improvements realized for the real time detection Increase CPU power for reducing the computation time of spectra Focus on the region above the landings runway to quickly detect the first plot Take into account cross-winds

to quickly detect the WV knowing a previous position

Take into accound "turbulence level"

to adjust detection thresholds

Development and process of the real-time WV algorithm

On ground effect illustration (2/3)

On ground effect illustration (3/3)

B772

Statistical analysis of XP1 lidar measurements (2/4) CNR values when vortex detection

THE FRENCH AEROSPACE LAB

Ecole d'été Lidar – 24 juin au 3 juillet 2013

91

Mesure des « wake vortex » par lidar

Détection transversale sol

Détection axiale Embarquée ou sol

Détection axiale des wake vortex wind vecto 000000 800 m 21 range gates 2375 m 1.5° 4.5° 75 columns à 33 shots 3°

• Faisabilité de la détection axiale démontrée dans projets MFLAME and IWAKE Projets européens (Thales, DLR, UCL ...) Source laser solide 2 µm , 5mJ , 500 Hz

Ecole d'été Lidar – 24 juin au 3 juillet 2013

+120 m

2

Velocity width (m/s)

90 m 30 m

0 s

12 s

24

36 s

48 s

60 s

2

0 LOS Velocity (m/s)

-2

-120 m

0.7

Detection axiale des tourbillons de sillage

FIDELIO : architecture lidar

Acquisition and real time display

Caractéristiques du lidar

- Longueur d'onde: 1.55 µm
- Energie laser: 0.1mJ
- Durée pulse laser: 800ns
- Cadence laser: 10kHz
- M2=1.3
- Maintien de polarisation
- Portée :
- résolution : : 1 m/s

0.5 à 1.6 km

- Cadence image : 0.2Hz

FIDELIO :Field tests

FIDELIO Ground Tests

9

FIDELIO :Field tests

- 3D representation of wake vortex detection
- two successive scans a few seconds after a B747 landing.
- each rectangle corresponds to a range gate

Les senseurs d'alertes

• Au sol

- Turbulence de sillage /wake vortex
- Cisaillement / rafale (Wind hazard)

• Embarqués

- Turbulence de sillage /wake vortex
- Turbulence en air clair
- Cisaillement / rafale (Wind hazard)

Detecting Clear Air Turbulence Research Deveropment on Airborne Doppler _LIDAR_hd720.mp4

Senseur d'alerte : turbulence en air Clair

Détection longue portée : > 10 km

Mid-range WARNING systems

lidar DELICAT
lidar Ravleigh densité

Detection courte portée : 50 à 100 m

Shorter range systems with high depth resolution suitable for CONTROL (feed-back into flight control

lidar Rayleigh doppler

Method of AWIATOR

Illustrations extraites de la présentationà CLRC 2009 de N.Schmitt EADS

Ecole d'été Lidar – 24 juin au 3 juillet 2013

Lidar AWIATOR

Forward looking turbulence/gust UV LIDAR beneath A340-300 cockpit

24.6.2009

Illustrations extraites de la présentationà CLRC 2009 de N.Schmitt EADS

Ecole d'été Lidar – 24 juin au 3 juillet 2013

CAT detection with lidar

Relationship between vertical wind speed w and air density r:

 $\frac{\Delta\rho}{\rho}=-\frac{\Delta T}{T}=w\frac{N}{g}$

N: Brunt-Väisälä-frequency (stratification stability), measured in-situ Outer scale of turbulence (largest eddy size): some hundred meters Characteristic rotation time (given by N): 5 to 10 minutes Measurement of air density r by molecular backscatter coefficient βmol Separation from spurious aerosol contribution by spectral filter

- Need to measure $\Delta \rho / \rho$ on 1% level, thus need high SNR
- Airborne, front looking lidar: Measurement integration along line of sight
 - → Averaging to achieve needed SNR

Principle / Experiment

NLR Cessna Citation II research aircraft equipped with DELICAT lidar Front looking fairing 5-probe nose boom for in-situ measurement of turbulence

Flight campaign in 2013

Transmitter

Nd:YAG passively Q-switched MOPA laser, 7 ns FWHM, frep = 100 Hz, E = 400 mJ (IR) Intrinsically single mode, stabilised to I2 Third harmonic generation, E \approx 100 mJ (UV)

Coaxial transmission (w/ receiver telescope) Proven system (based on DLR WALES DIAL)

Beam steering

Insuring continuous tracking of aircraft horizontal flight path Compensation of change in angle-of-attack and attitude fluctuations due to turbulence

Receiver system

Ø 140 mm telescope

EOM for detector protection during laser shot Etalon filter assembly for Mie-Rayleigh backscatter spectrum separation (HSRL)

Analogue and photon counting detection on Rayleigh (air density) and Mie (aerosols) channels

Expected performance - Simulations

3-D atmospheric parameters including turbulenceAircraft position and lidar line of sight angleAtmospheric parameters projectionSignal processing for turbulence signal recovery

Ecole d'été Lidar – 24 juin au 3 juillet 2013
Besoins :

- Mesure des turbulences (fluctuations rapides de vitesse) pour estimer la charge sur les pales
- Vérification de la courbe de puissance, en fonction de la vitesse du vent.

Ecole d'été Lidar – 24 juin au 3 juillet 2013

110

111

Ecole d'été Lidar – 24 juin au 3 juillet 2013

Ecole d'été Lidar – 24 juin au 3 juillet 2013

112

Lidar avent

Résumé : Senseurs lidar pour les applications aéronautiques (1)

Type de senseurs	Type de mesure	Principe de la Type de lidar mesure		exemple
Senseurs de navigation : mesure la vitesse vraie de l'avion Étalonnage des sondes pitots / mesure primaire				
	1 point , 3 composantes Quelques mètres à une 50 mètres devant l'avion	Doppler Mie multiparticules	Hétérodyne continu ou pulsé 10.6 µm, 1.5 µm	ALEV DALHEC DALEV
	1 point , 3 composantes Quelques centimètres/mètres devant l'avion	Doppler Mie monoparticule	continu Hétérodyne 1.5µm 1.06 µm	DALAS Boeing Doppler lidar
	1 point , 3 composantes Quelques mètres à une 50 mètres devant l'avion	Doppler Rayleigh	pulsé détection directe 266 nm	MOADS

Résumé : Senseurs lidar pour les applications aeronautiques (2)

Type de senseurs	Type de mesure	Principe de la mesure	Type de lidar	Exemple
Senseurs d'alerte d'evènements dangereux				
Turbulence de sillage Wake vortex	Cartographie vitesses projetées (2D transverse / 3D axial)	Doppler Mie (Rayleigh directe)	Pulsé hétérodyne 1.5 µm , 2 µm Pulsé directe 355 nm	CREDOS, FIDELIO MFLAME/ IWAKE Greenwake (nouveau projet)
Cisaillement / turbulence	Multipoint différentiel 50 /150 m devant l'avion	Doppler Rayleigh Doppler Mie heterodyne	Pulsé directe 355 nm Pulsé hétérodyne	AWIATOR
Turbulence en air clair	Le long de l'axe 10 km devant l'avion	Rayleigh densité	Détection directe Pulsé , 355 nm	DELICAT (nouveau projet)

Merci de votre attention

