

Stratégie d'Observation atmosphérique par Lidar: *Surveillance et réseaux*

Philippe Keckhut

Physicien UVSQ Guyancourt LATMOS-IPSL Keckhut@latmos.ipsl.fr

Plan de l'exposé: des exemples

Contexte
Le NDACC
Discontinuités et tendances
Production semi-opérationnelle
Les nuages
Les aérosols

Contexte

- Les mesures depuis l'espace étaient limitées en résolution et sont toujours limitées en durées de vie.
- Les instruments au sol peuvent servir de référence et accèdent à une échelle plus fine.
- En principe, les instruments sol sont organisés en réseaux pour échantillonner spatialement des scènes géophysiques et fournir une cohérence spatiale.
- En fait aujourd'hui ils permettent de faire des mesures systématiques sur plusieurs sites représentatifs.
- Les principaux challenges sont:
 - Discontinuités temporelles
 - Homogénéité spatiale
 - Production/automatisation du traitement et qualification

GEO and GEOSS... Global Earth Observation System of System

- GEO is an Intergovernmental Organization
 - 65 Nations
 - European Commission
 - 43 Participating Organizations
- With a simple objective: To establish a global, coordinated, comprehensive and sustained system of Earth observing systems, GEOSS
- Contribution de l'expertise scientifique pour la communauté

- Coordination des agences spatiales: CEOS, Sentinelles
- Europe:
 - ESFRI (European Strategy Forum on Research Infrastructures),
 - GMES (Global Monitoring for Environment and Security)
 - MACC (Monitoring Atmospheric Composition and Climate)

Architecture d'ensemble GMES

Research network in Europe construit par des opportunités

Global Earth Observation and Monitoring

Liste des réseaux lidar recherche

- Stratosphere (Ozone, temperature, aerosols, water vapor) NDACC (Network for the Detection of Atmospheric Composition Changes) -> autres instruments
- Aerosols: EARLINET, ARM, NASA Micro-Pulse. Lidar Network (MPLNET), Asian Dust Network (AD-Net), SPALINET (Spanish and Portuguese Aerosol Lidar Network), The German Aerosol Lidar Network, Latin American, GALION, ENAN -> autres mesures

Besoins opérationnels

Difficultés:

• Identifier/Détecter aérosols/nuages

LJUI

6428

2307

2034

3000

- Advecter le panache
 - Extension verticale
 - Taille/sédimentation

Réseaux opérationnels

Cadre climat

Instrumental discontinuity

Main factors de discontinuity :

- Improve accuracy, sensitivity, and sampling
- Reduce some instrumental bias
- Retrieval algorithm changes
- Protocol and operation changes

- Avoid changes
- Record time of changes (Metafile)
- Make redondent independent measurements

۲

Télédétection

Avantages des techniques de télédetection pour la surveillance atmosphérique :

- Réduit les interférences entre atmosphère et instruments
- Requière qu'un seul instrument
- Mesure indépendante des caréctéristiques instrumentales

REMOTE SENSING

: To See and Measure at Distance

Etat des réseaux: En construction

- Réseaux recherche ≠ Réseau opérationnel
- Opérationnel (mission/réglementation, coût):
 - Potentiel (couche limite, H2O, température, vent,....)
 - Demandes (aviation, météo, qualité de l'air,...)
 - Missions ≠ performances: en maturation
 - Pas encore de fortes cohérences internationales
- Recherche:
 - Exploitation des mesures opérationnelles
 - Structuration en cours: Europe
 - Objectifs: climat, pollution/processus-transport, validation satellite
 - Amélioration des techniques et méthodologie

Le Network for the Detection of Stratospheric Changes: NDSC

Objectifs

- Etudier la variabilité de la stratosphère et de l'ozone et détecter d'éventuelle perturbations anthropique
- Assurer la validation satellitaire: UARS (1991)
- Paramètres
 - Ozone et gaz impliqué dans la destruction de l'ozone
 - Température
 - Aérosols (volcaniques)
 - Vapeur d'eau
 - UV au sol

Contribution NDACC Françaises

- Station Alpine (44°N)
 - OHP
 - Lannemezan (Bordeaux)
 - Villeneuve d'Ascq
- Dumont D'Urville (67°S)
- La Réunion (21°S)
- Réseau SAOZ
- ALOMAR (69°N)

Extension des objectifs et domaines d'intérêt

Network for the Detection of Stratospheric Changes

Rôle de la stratosphère sur le climat

Network for the Detection of Atmospheric Changes

- Echanges tropo-strato
- Lidar vapeur d'eau et ozone troposphérique

Tide issue

- Tides are due to the absorption of solar radiation by O3 and H2O.
- Atmospheric oscillations in phase with the diurnal cycle.
- Large amplitudes in the upper stratosphere and mesosphere.
- Observed with lidars and in satellite data

MLS/UARS 1 hPa

DEA B. Morel Tides observed in the tropics They induce large interferences in data comparisons, trends and satellite validations

Global trends

NCEP analyses at 1 hPa (~50 km)

Keckhut et al., J. Geophys. Res., p546, 2001

Regression analysis: trend least mean square fit

variability

 $\sigma_{\rm T}^2 = \sigma_{\rm R}^2 * F_{\rm c} / \Sigma_{\rm v} (t_{\rm i} - t_{\rm m})^2$

uncertainty on trend

v nb of observtaion time

Climate requirements
Long time series
σ_R optimization when instrumental variance < natural variance
Frequent measurements

Independent observations

Successive observations are not independent because of atmospheric processes

Autocorrelation ϕ

$F_{c} = (1+\phi)/(1-\phi)$

Climate requirements

- Long time series
- σ_R optimization when instrumental
- variance < natural variance
- Frequent measurements

Auto-correlation and independent data

An example of lidar temperature series

Mesospheric mode

Strato-mesospheric mode

Stratospheric warming

Echelle temporelle et signification statistique

Parametres	région	Variabilité résiduelle	Tendance attendue (/ décennie)	Temps nécessai re (années)
Température	Haute strato	3-8 K	1-2 K	8-17
	Mésosphère	8-10 K	1-3 K	15-30
Ozone	Basse strato	20 %	5-20%	7-20
	Haute strato	7%	5-10%	5-10
Vent		5-15 m/s	< 1m/s	20-50

Temps nécessaire pour une détection significative (2σ)

Temperature measurements

- Required pure molecular scattering
- Density and pressure are relative measurements
- Temperature is absolute

$$\varphi(z) = f(N(z))$$

$$dP(z) = -g\varphi(z)dz$$

$$T(z) = \frac{MP(z)}{R\varphi(z)}$$

$$T(z) = \frac{M}{R} \frac{\sum_{0}^{z} g\varphi(\kappa)\Delta z}{\varphi(z)} = \frac{Mg}{R} \frac{\sum_{z}^{top} N(\kappa)\Delta z}{N(z)}$$

SSU/Lidar comparisons

OHP & Hohenpeisenberg, Europe

MLO, Hawaï

TMF, California

mid-latitudes

Temporal and spatial sampling effects

Tendencies of temperature with respect to time (in K/decade) based on simple linear regression for the period 2001-2007

			(b) W Europe		(c) Zonal Average (4 0-45 N) -	
	(a) Lidar OHP		AMSU Lidar dates	AMSU all nights		
32 km	-2.5 ± 2.6	ch 12	-2.8 ± 1.1	-1.6 ± 0.7	-2.0 ± 0.8	-1.4 ± 0.5
36 km	-4.4 ± 3.2	ch 13	-4.6 ± 1.8	-2.5 ± 1.2	-2.6 ± 1.1	-1.8 ± 0.8
40 km	-5.0 ± 3.2	ch 14	-4.8 ± 2.0	-2.5 ± 1.4	-2.1 ± 1.2	-1.5 ± 1.0

Temporal and spatial sampling effects

Tendencies of temperature with respect to time (in K/decade) based on simple linear regression for the period 2001-2007

			(b) W Europe		(c) Zonal Average (40-45°N)	
	(a) Lidar OHP		AMSU Lidar dates	AMSU all nights	AMSU Lidar dates	AMSU all nights
32 km	-2.5 ± 2.6	ch 12	-2.8 ± 1.1	-1.6 ± 0.7	-2.0 ± 0.8	-1.4 ± 0.5
36 km	-4.4 ± 3.2	ch 13	-4.6 ± 1.8	-2.5 ± 1.2	-2.6 ± 1.1	-1.8 ± 0.8
40 km	-5.0 ± 3.2	ch 14	-4.8 ± 2.0	-2.5 ± 1.4	-2.1 ± 1.2	-1.5 ± 1.0

AMSU based tendency is about 40% smaller when using all nights compared to lidar nights only
When considering zonal averages, temporal sampling is less evident (i.e., AMSU all nights vs. AMSU lidar dates), but still present.

Funatsu et al., JGR 2008

DIAL Differential Absorption Lidar

Series lidar d'ozone

S. Godin-Beekmann

Ozone profile

S. Godin-Beekmann

- Ozone measurements performed during the night
- Temporal resolution 3 4 hours
- Require clear skies

Intercomparaisons NDACC avec lidar mobile NASA 1992, 1997

Vortex evolution in December 1997

Study of polar filaments

Example of polar filament simulated by the high-resolution transport model MIMOSA (Hauchecorne et al., 2002, Godin et al., 2002)

Comptage de photons

Measurement = Histogram

$$\Delta = \frac{1}{\sqrt{NbPhotons}}$$

Improvements = increase the number of collected photons

- Size of the telescope
- Laser power
- Vertical resolution
- Temporal resolution

Sommation

 $X(z) = \sum_{i=1}^{n} S_i(z,t) - b_i(t) \neq \sum_{i=1}^{n} S_i(z,t) - \sum_{i=1}^{n} b_i(z,t)$

Paramètres avec une forte variabilité: H2O

$$X(z) = \sum_{i=1}^{n} \frac{SH_2O_i(z,t) - bH_2O_i(t)}{SN_{2i}(z,t) - bN_{2i}(t)} \neq \frac{\sum_{i=1}^{n} SH_2O_i(z,t) - \sum_{i=1}^{n} bH_2O_i(z,t)}{\sum_{i=1}^{n} SN_{2i}(z,t) - \sum_{i=1}^{n} bN_{2i}(z,t)}$$

Data sampling

• The method consists of adjusting the integration time with the discontinuities of the flow sounded

Reasonable compromise between accuracy and atmospheric variability

Hoareau et al., J. Atmos. Ocean. Technol., 2009

Observation des Cirrus

Haeffelin, Morille, 2008

Tests des biais de la statistique de cirrus

Dupont et al, 2009

Cirrus types

Distribution des anomalies

Cirrus clusters

Class	Ι	II	III
Occurrence (%)	36	27	35
Height (km)	8.6 ± 0.9	9.8 ± 0.7	11.5 ± 0.9
Altitude relative to tropopause	-7±8	-0.5±13	+7±16
Thickness (km)	0.9 ± 0.6	3.2 ± 0.9	0.9 ± 0.6
Temperature (°C)	-41 ± 6	-50 ± 6	-58 ± 6

Keckhut et al., J. Appl. Meteo., 2005 (in press)

Long term trends according to clusters

Classe III: Círrus clouds at the vicinity of the tropopause

Keckhut et al., *Atmos. Chem. Phys.*, 2005

Montoux et al., J. Geophys. Res., 2009 MIMOSA trajectories: $\theta \le 340$ K: midlatitudes

 $\theta \ge 342$ K: subtropics (24-30°N)

16 January 2006 12:00 UTC - 200 hPa - ECMWF analysis:

Simulation of the cirrus cloud

4-day simulation supersaturation threshold = 130% Fall speed = 4 mm/s (very small ice particles ~5 μm)

Altitude of the cirrus cloud well-reproduced

Great spatial and temporal variability similar to that seen by lidar Maximum ice water content ~5.3 mg/m³ ⇒ small, hardly detectable from space

Influence of the fall speed

 V_{sed} **◄**, cloud top altitude **>**, geometrical thickness **◄** Vsed > 30 cm/s ⇒ cloud disappearance **Cirrus cloud quite well reproduced for V_{sed}~1 cm/s**

Particle fall velocity estimates with lidar MATCH approaches

Dionisi et al., to be submitted

Círrus cluster attribution through case studies

Distribution en taille à partir du lidar

Distribution log-normale caractérisée par

- Concentration des particules
- Le rayon médian
- Dispersion du rayon

Size distribution -> Aerosol surface and volume

Assimilation Caliop du volcan Merapi *avec* Mimosa *Case on 20 Nov at 00 Mi MERAPI Eruption 3 Nov 2010 Lameler*

Conclusions

- Les lidar sont des instruments idéaux pour la surveillance atmosphériques et complémentaires des mesures depuis l'espace.
- Assurer cette surveillance nécessite d'éviter ou de documenter les discontinuités et d'étudier leurs effets à long terme.
- L'analyse des tendances est d'autant plus performante que l'on sépare les différents processus.
- Les réseaux permettent de sonder plusieurs sites différents et offrir un dispositif efficace pour la validation satellitale et l'estimation de tendances globale à long-terme.
- Les réseaux actuels restent avec une géométrie dictée par les opportunités plus que par des questions scientifiques et il existe peu de recouvrement. Ils n'exploitent donc pas toujours les synergies instrumentales. Ces r éseaux sont en construction.