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From summertime diurnal cycles to polar winter

Gabls4



Aim

Study the sudden transitions between contrasting SBL regimes

R1: Weak wind, very strong inversion (25 K / 10 m)

R2: Strong wind,     weak inversion (< 5 K / 10 m)

1. Understand the dynamics between wind and temperature

• What explains the strong non-linearity?

2. Assess the performance of an atmospheric model

3. Disentangle underlying mechanisms

Vignon et al. 2017, QJ
Van de Wiel et al. 2017, JAS
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R2



Observations and model

Photograph courtesy of François Lepage

• 6 years of half-hourly Dome C observations

• 2011 - 2016

• Wind, temperature

• 8 (U) / 9 (T) levels along a ~ 45 m measuring tower

• 6 years of SCM simulations

• SCM version of RACMO (KNMI)

• IFS Cy31r1

• But with TKE-ℓ mixing scheme

• ‘Realistic’ turbulence (Lenderink and Holtslag, 2004)

• ~18 levels in the lowest 100 m (GABLS4)

• Forcings from RACMO COREX-Antarctica run 



Approach

Select all relevant transition cases and study composite time-series and profiles

• Extended winter period: April - September

• Jump in T10m – Ts > ± 15 K

• LWd < 100 W / m2

• Define t = 0 h @ t for which ΔT = (ΔTmax + ΔTmin) /2

… or in other words: t = 0 h half-way the inversion jump

Color coding: inversion formation (red)

inversion erosion (blue)



Observed and modeled transition events

Observations Model



Observed and modeled transition events

Observations Model
# cases : 76 106
# cases : 62 110



Composite time series
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Color coding: inversion formation (red)

inversion erosion (blue)



Composite profiles

• At t = -6 h (solid lines) and t = 6 h (dashed lines)

• Inversion formation and erosion

• Weakly stable regime:

• Convex-Concave-Convex T profile

• Wind speed increases continuously with height

• Very stable regime:

• Exponential T profile

• Wind speed constant for z > 10 m

• Model profiles mimic observation really well! 
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Use model output to diagnose mechanisms

• No turbulence observations available

• Utilize good correspondance model and observations

 How does the model ‘do it’?

• Focus on

• Large-scale forcing

• Role of stress divergence

• Heat budget

Color coding: inversion formation (red)

inversion erosion (blue)

What explains the observed dynamics?



 

Turbulent fluxes (@ 10 m)

Color coding: inversion formation (red)

inversion erosion (blue)

H τ

• Weakly stable regime:
• Deep turbulent layer

• Flux divergence at 10 m

• Very stable regime:
• Shallow turbulent layer

• No flux-divergence at 10 m

• Strong cooling at 10 m around t = 0 h

τ H dτ/dz dH/dz

Fluxes and flux divergence at 10 m above the surface



Depth turbulent layer

Courtesy of Igor Petenko

BLH crosses 10-m level



Heat budget at 10 m height during transition

• Erosion of the inversion; cooling at 10 m due to

• Heat flux divergence

• Subsidence heating decreases

• Formation of the inversion; warming at 10 m due to

• Subsidence heating

• Role of radiation divergence and

horizontal advection is small

Erosion

Formation

‘VSBL’  ‘WSBL’

‘WSBL’  ‘VSBL’ 



Subsidence heating

For reference: a dθ/dz = 1 K/m 

and a ω = 0.01 Pa/s (or -0.001 m/s) give a

subsidence heating of 3.6 K/h.

Average wintertime profiles

40 m

8 km

ERAint

RACMO

SCM



Explaining the non-linearity
(inversion erosion case)

1. Geostrophic forcing increases

• 10 m wind increases

• BL depth (<10m) start to increase

• Inversion is in very stable state

2. BL depth crosses 10 m level

• Stress divergence slows down 10m wind    
(effectively counteracting the increase in forcing

• Heat flux divergence cools T10m

3. Geostrophic forcing increases further

• BL depth (> 10m) becomes deeper and deeper

• 10-m wind increases again

• Inversion is in weakly stable state
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What about transitions in the 40-m inversion?

• At 40 m, the same mechanism is in play

• Transitions (> 15 K) occur for stronger forcing

• 10-m inversion already in weakly stable state

 Stronger forcing  deeper turbulent layer  thicker layer coupled to the surface

40 m 10 m



Conclusions

• Regime transitions occur within 6 to 12 h

• Variation is in T10m, not in Ts

• Model results reproduce wind and temperature profiles

• Transitions are driven by large scale (geostrophic) forcing
and subsidence heating

• Non-linearity results from interplay between large-scale
forcings, the depth of the turbulent layer, and turbulent flux 
divergence

• Even at 10 m above the surface subsidence heating plays
important role

 Baas et al. 2018: Transitions in the wintertime near-surface temperature inversion at Dome C, Antarctica. Submitted to QJRMS.


