University of Connecticut LES (some) GABLS4 results and perspectives on modeling of stable boundary layers

Georgios Matheou & Maria Chinita

Department of Mechanical Engineering, University of Connecticut

GABLS4 Workshop

September 13, 2018

Introduction

- Stable boundary layers (SBL) are ubiquitous
 - Typically forming at night and in polar regions throughout the day
- The dynamics of the SBL are poorly understood, with implications for night forecasts, e.g., of temperature and fog, and pollution dispersion

image by R. Beare from Fernando & Weil (2010)

- Stable stratification leads to reduction of the energetic scales and large anisotropy
- LES modeling challenges are often attributed to inadequacies of subgrid-scale (SGS) models
 - Most LES investigations employ sophisticated SGS models
 - Simple SGS models, e.g., the constant coefficient Smagorinsky–Lilly, are not typically used (in contrast to convective flows)
- Hypothesis: numerical model error is key for accurate predictions
 - Strong integration between the discrete approximation (order of accuracy or resolving power, grid spacing) and the physical model (turbulence closure)

Problem description

- Moderately stable atmospheric boundary layer case of Beare et al. (2004)
- Governing equations (anelastic approximation)

- Mass:
$$\frac{\partial \overline{\rho}_{0} \tilde{u}_{i}}{\partial x_{i}} = 0$$
- Momentum:
$$\frac{\partial \overline{\rho}_{0} \tilde{u}_{i}}{\partial t} + \frac{\partial (\overline{\rho}_{0} \tilde{u}_{i} \tilde{u}_{j})}{\partial x_{j}} = -\theta_{0} \overline{\rho}_{0} \frac{\partial \overline{\pi}_{2}}{\partial x_{i}} + \delta_{i3} g \frac{\overline{\rho}_{0} (\tilde{\theta} - \langle \tilde{\theta} \rangle_{x})}{\theta_{0}} - \epsilon_{ijk} \overline{\rho}_{0} f_{j} (\tilde{u}_{k} - u_{g,k}) - \frac{\partial \tau_{ij}}{\partial x_{j}}$$
- Potential temperature:
$$\frac{\partial \overline{\rho}_{0} \tilde{\theta}}{\partial t} + \frac{\partial \overline{\rho}_{0} \tilde{\theta} \tilde{u}_{j}}{\partial x_{i}} = -\frac{\partial \sigma_{j}}{\partial x_{i}}$$

Subgrid scale models

- Smagorinsky-Lilly
$$\tau_{ij} = -2\overline{\rho}_0 v_t \tilde{D}_{ij}$$
 $\sigma_j = -\overline{\rho}_0 \frac{v_t}{\Pr_t}$

eddy diffusivity: $v_t = \Delta^2 \mid \tilde{D} \mid f_m(\text{Ri})$, where $\Delta = C_s \Delta x$ is the SGS eddy scale

- Buoyancy adjusted stretched vortex model (Chung & Matheou 2014) is used as reference
- Surface cooling rate of 0.25 K/h
 - Surface fluxes computed dynamically using Monin–Obukhov similarity theory (MOST)
- Periodic boundary conditions in the horizontal and sponge layer at domain top
- Flow attains a stationary state after 8 hours

Parametric study

- Smagorinsky model constant
 - $-C_s = 0.10 0.24$, with 0.01 increments
 - − Theoretical value $C_s \approx 0.18$
- Advection scheme
 - Fully conservative non-dissipative family of schemes of Morinishi et al. (1998) adapted to the anelastic approximation
 - Second-, fourth- and sixth-order approximations
- Grid resolution
 - $-\Delta x = 4 8$ m, with 1 m increments (5 values)
 - All runs have 128 \times 128 grid points in the horizontal and 400 m vertical domains

267.

266.

265. 264.

263.

- Reference run: $\Delta x = 2$ m, sixth-order advection, buoyancy adjusted stretched vortex model
 - Grid resolution independent results
- Total of 485 LES runs

Reference model grid convergence

• Buoyancy adjusted stretched vortex SGS model (figure from Matheou & Chung 2014)

Smagorinsky results – Overview

- Range of LES results is large
- Spurious turbulence collapse observed in some runs
- --- $\Delta x = 4$ $C_s = 0.18$ o = 6 --- $\Delta x = 7$ $C_s = 0.22$ o = 4 --- $\Delta x = 8$ $C_s = 0.10$ o = 6 --- $\Delta x = 8$ $C_s = 0.23$ o = 2 --- Reference

Spurious turbulence collapse

- Turbulence collapse flags
 - Global collapse, entire boundary layer laminarization (black rectangles)
 - Collapse during model spin-up: negligible TKE in 0 < t < 0.5 h, and subsequent recovery (gray rectangles)
- Spurious turbulence collapse depends on advection scheme order

"Error" norms with respect to reference LES

- Define error (or distance) between parametric study runs and reference LES
 - l^2 -norm for mean profiles (i.e., wind and temperature)
 - Difference of time-mean values for surface fluxes
- Error does not converge
- Large differences in surface heat flux (~ 20% difference)

only fourth-order advection shown

Prescribed heat flux simulations

- The time-dependent heat flux from the reference run is used uniformly in all surface grid cells of the Smagorinsky runs
- The momentum flux is computed dynamically using MOST
- Spurious turbulence collapse regime expands
- Error increases when heat flux is not dynamically computed

Black: Global collapse **Gray:** Collapse during model spin-up

Spectra

- Energy accumulation at small scales as model constant is reduced
- Runs with $\Delta x = 4$ m, sixth-order advection at t = 9 h (end of the run)

Distributions of near-surface temperature difference

- Probability density functions (PDF) of temperature difference, $\Delta\theta$, between surface and first grid cell
- PDFs become broader as model constant, C_s , decreases
- Surface heat flux depends on $\Delta\theta^3$
- Broader PDFs result in larger in magnitude mean surface fluxes (increased cooling)

A posteriori comparison with reference

- Smagorinsky can accurately capture the boundary layer structure
- ...but the value of the constant is not know a priori and may be flow dependent

Part 1: Summary and conclusions

- Aspects of a large-eddy simulation model are studied in simulations of a moderately stable atmospheric boundary layer
- Three model parameters are considered: the grid spacing, the value of the SGS model constant, and the order of accuracy (resolving power) of the advection discretization
- Two main error-producing mechanisms are identified:
 - For high values of the model constant spurious turbulence collapse is observed
 - For low values of the model constant, numerical discretization errors dominate, leading to accumulation of energy at the small scales and over-prediction of the magnitude of the surface heat flux
- The constant coefficient Smagorinsky–Lilly model can accurately capture moderately stable flows, in contrast to the conclusions of previous studies
 - Judicious choice of parameters is necessary (but not known a priory)
- Surface fluxes depend on model constant
 - The observed differences are relatively large given that the flow and model configuration is identical
 - The feedback between boundary-layer turbulence and surface flux is important

Part 2: GABLS4 LES results

- LES model of Matheou & Chung (2014)
- Buoyancy adjusted stretched-vortex model (Chung & Matheou 2014)
- Advection scheme
 - Same for momentum and temperature
 - Fully conservative non-dissipative family of schemes of Morinishi et al. (1998)
 adapted to the anelastic approximation
 - Sixth-order approximation
 - No numerical dissipation

GABLS4: Grid convergence, diurnal LES, daytime t = 6 h

• Small differences with respect to grid resolution, fluxes are converged

GABLS4: Grid convergence, diurnal LES, "nighttime" t = 16 h

- Mean profiles somewhat change decreasing Δx
- Fluxes exhibit larger differences, model is more energetic at coarse resolution

Spectra: convective and stable conditions $\Delta x = 1$ m

Grid convergence, "nighttime" LES t = 18 h

• Grid converged results at $\Delta x = 0.5$ m

Backup

Homogeneous stratified sheared turbulence

Convective boundary layer

- Quality assessment of LES predictions: comparison to measurements and grid convergence (and theory not shown here)
- Grid convergence is prerequisite for any predictive model

Potential temperature field at two grid resolutions

Monin-Obukhov local scaling

