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• Introduction

• Stable boundary layers (SBL) are ubiquitous 
– Typically forming at night and in polar regions  

throughout the day 
• The dynamics of the SBL are poorly  

understood, with implications for night  
forecasts, e.g., of temperature and fog, and  
pollution dispersion  

• LES remains challenging 
– Stable stratification leads to reduction of the energetic scales and large anisotropy 

• LES modeling challenges are often attributed to inadequacies of  
subgrid-scale (SGS) models 
– Most LES investigations employ sophisticated SGS models 
– Simple SGS models, e.g., the constant coefficient Smagorinsky–Lilly, are not 

typically used (in contrast to convective flows) 
• Hypothesis: numerical model error is key for accurate predictions 

– Strong integration between the discrete approximation (order of accuracy or 
resolving power, grid spacing) and the physical model (turbulence closure)
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our knowledge of SBL and 
ability to parameterize a 
collection of SBL processes 
(Fig. 1).

A series of workshops 
on the SBL have reviewed 
the state-of-the-science and 
provided advice on future 
research directions (Nappo 
and Bach 1997; Nappo and 
Johansson 1999). At the 
most recent workshop in 
2006 (in Sedona, Arizona), 
an international group 
of about 40 specia l ists 
strongly expressed need 
for observations taken over 
multiple space–time scales, 
particularly to study the 
interactions of individual processes and phenomena. 
This is a paradigm shift toward studying and param-
eterizing cumulative fluxes of all possible transport 
mechanisms covering dominant scales of a given SBL 
in order to improve numerical weather prediction 
(NWP). This will require simultaneous observations 
over a range of scales, quantifying heat, momentum, 
and mass flux contributions of myriad processes to 
augment the typical study of a single scale or phe-
nomenon (or a few) in isolation. Existing practices, 
which involve painstakingly identifying dominant 
processes from data, need to be shifted toward ag-
gregating the effects of multiple phenomena. We 
anticipate the development of high-fidelity predictive 
models that largely rely on accurate specification 
of f luxes (in terms of eddy diffusivities) through 
computational grid boxes, whereas current practice 

is to use phenomenological models that draw upon 
simplified analytical theories and observations and 
largely ignore the cumulative effects/errors of some 
processes.

Viable simulation of SBL processes depends on the 
type of the boundary layer (e.g., uniform versus com-
plex terrain) and forcing (e.g., radiative divergence or 
pressure gradients). The criteria for the appearance of 
various processes in SBL and their ability to transport 
fluxes are of great interest in modeling. Based on the 
Sedona workshop, we present the overarching sci-
entific issues involved in the coming paradigm shift 
in SBL studies, starting with the simplest SBL (flat 
uniform terrain) followed by more complex SBLs, 
modeling issues, and deployment challenges.

SBL ON FLAT UNIFORM TERRAIN. In gen-
eral, stably stratified parallel shear flows are governed 
by the competing effects of stable stratification (speci-
fied by the buoyancy frequency N) and wind shear 
(∂U/∂z), their ratio being the gradient Richardson 
number Rig = N2/(∂U/∂z)2. For flat terrain SBL either 
Rig or a surrogate z/L is used, where z is the height 
above ground and L the Monin–Obukhov (M–O) 
length. When Rig exceeds a critical value, say Rigc, the 
SBL is sufficiently stable to suppress turbulence and 
confine it to isolated patchy regions of large horizon-
tal extent and small vertical scale that are interspersed 
in otherwise laminar-like motions. This is called the 
very stable boundary layer (VSBL). Conversely, the 
weakly stable boundary layer (WSBL) is character-
ized by Rig < Rigc wherein turbulence is continuous 
and nearly three-dimensional but weaker than that of 
CBL. The WSBL is better understood than the VSBL, 

AFFILIATIONS: FERNANDO—Environmental Fluid Dynamics 
Laboratories, University of Notre Dame, Departments of Civil 
Engineering & Geological Sciences and Aerospace & Mechanical 
Engineering, Notre Dame, Indiana; WEIL—Cooperative Institute 
for Research in Environmental Science, University of Colorado, 
Boulder, Colorado 
CORRESPONDING AUTHOR: H. J. S. Fernando, Civil 
Engineering and Geological Sciences, University of Notre Dame, 
Notre Dame, IN 46556
E-mail: fernando.10@nd.edu

The abstract for this article can be found in this issue, following the 
table of contents.
DOI:10.1175/2010BAMS2770.1

In final form 24 May 2010
©2010 American Meteorological Society

FIG. 1. A fog-ridden, pooled, shallow SBL in a mountain valley 
(Courtesy: Robert Beare, University of Exeter).
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• Problem description

• Moderately stable atmospheric boundary layer case of Beare et al. (2004) 
• Governing equations (anelastic approximation)  

– Mass: 

– Momentum: 

– Potential temperature:  

• Subgrid scale models 
– Smagorinsky–Lilly  
 
          eddy diffusivity:                                  ,  where                    is the SGS eddy scale 

– Buoyancy adjusted stretched vortex model (Chung & Matheou 2014) is used as reference 
• Surface cooling rate of 0.25 K/h 

– Surface fluxes computed dynamically using Monin–Obukhov similarity theory (MOST) 
• Periodic boundary conditions in the horizontal and sponge layer at domain top 
• Flow attains a stationary state after 8 hours
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• Parametric study

• Smagorinsky model constant  
– Cs = 0.10 – 0.24,  

with 0.01 increments 
– Theoretical value Cs ≈ 0.18 

• Advection scheme 
– Fully conservative non-dissipative  

family of schemes of Morinishi et al. (1998)  
adapted to the anelastic approximation 

– Second-, fourth- and sixth-order approximations 
• Grid resolution 

– Δx = 4 – 8 m, with 1 m increments (5 values) 
– All runs have 128 ✕ 128 grid points in the horizontal and 400 m vertical domains 

• Reference run: Δx = 2 m, sixth-order advection, buoyancy adjusted 
stretched vortex model 
– Grid resolution independent results 

• Total of 485 LES runs
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Potential temperature



• Reference model grid convergence
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• Buoyancy adjusted stretched vortex SGS model (figure from Matheou & Chung 2014)



• Smagorinsky results – Overview
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• Range of LES results is large  
• Spurious turbulence collapse observed in some runs Reference
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• Spurious turbulence collapse

• Turbulence collapse flags 
– Global collapse, entire boundary layer laminarization (black rectangles) 
– Collapse during model spin-up: negligible TKE in 0 < t < 0.5 h, and subsequent 

recovery (gray rectangles)  
• Spurious turbulence collapse depends on advection scheme order
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• “Error” norms with respect to reference LES

• Define error (or distance) between parametric study runs and reference LES 
– l2-norm for mean profiles (i.e., wind and temperature) 
– Difference of time-mean values for surface fluxes 

• Error does not converge 
• Large differences in surface heat flux (~ 20% difference)
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• Prescribed heat flux simulations

• The time-dependent heat flux from the reference run is used uniformly in 
all surface grid cells of the Smagorinsky runs 

• The momentum flux is computed dynamically using MOST 
• Spurious turbulence collapse regime expands 
• Error increases when heat flux is not dynamically computed
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• Spectra

• Energy accumulation at small scales as model constant is reduced  
• Runs with Δx = 4 m, sixth-order advection at t = 9 h (end of the run)
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• Distributions of near-surface temperature difference

• Probability density functions (PDF) of temperature difference, Δθ, between 
surface and first grid cell 

• PDFs become broader as model constant, Cs, decreases 
• Surface heat flux depends on Δθ3 

• Broader PDFs result in larger in magnitude mean surface fluxes (increased 
cooling)
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• A posteriori comparison with reference 

• Smagorinsky can accurately capture the boundary layer structure 
• …but the value of the constant is not know a priori and may be flow 

dependent
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• Part 1: Summary and conclusions 

• Aspects of a large-eddy simulation model are studied in simulations of a 
moderately stable atmospheric boundary layer 

• Three model parameters are considered: the grid spacing, the value of the 
SGS model constant, and the order of accuracy (resolving power) of the 
advection discretization  

• Two main error-producing mechanisms are identified: 
– For high values of the model constant spurious turbulence collapse is observed 
– For low values of the model constant, numerical discretization errors dominate, leading 

to accumulation of energy at the small scales and over-prediction of the magnitude of 
the surface heat flux 

• The constant coefficient Smagorinsky–Lilly model can accurately capture 
moderately stable flows, in contrast to the conclusions of previous studies 
– Judicious choice of parameters is necessary (but not known a priory) 

• Surface fluxes depend on model constant 
– The observed differences are relatively large given that the flow and model 

configuration is identical 
– The feedback between boundary-layer turbulence and surface flux is important 
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• Part 2: GABLS4 LES results
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• LES model of Matheou & Chung (2014) 

• Buoyancy adjusted stretched-vortex model (Chung & Matheou 2014) 

• Advection scheme 
– Same for momentum and temperature 
– Fully conservative non-dissipative family of schemes of Morinishi et al. (1998) 

adapted to the anelastic approximation 
– Sixth-order approximation  
– No numerical dissipation



• GABLS4: Grid convergence, diurnal LES, daytime t = 6 h

• Small differences with respect to grid resolution, fluxes are converged
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• GABLS4: Grid convergence, diurnal LES, “nighttime” t = 16 h
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• Mean profiles somewhat change decreasing Δx 
• Fluxes exhibit larger differences, model is more energetic at coarse resolution



• Spectra: convective and stable conditions Δx = 1 m
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• Grid convergence, “nighttime” LES t = 18 h
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• Grid converged results at Δx = 0.5 m



• Backup
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• Convective boundary layer

• Quality assessment of LES predictions: comparison to measurements and 
grid convergence (and theory – not shown here) 

• Grid convergence is prerequisite for any predictive model
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Fig. 1. Convergence of the vertical profiles and comparison with observations for the dry free
convection case using the stretched-vortex SGS model. The mean field (θ and q) profiles are
horizontal averages at t = 8 h, whereas the turbulence profiles are horizontal–time averages
in t = 6–8 h. Circles correspond to the observations reported in Lenschow et al. (1980).
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Circles: Measurements of  
Lenschow et al. (1980)
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• Potential temperature field at two grid resolutions
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• Monin-Obukhov local scaling
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