

Large-eddy simulations in GABLS4: The role of the Land-surface and Radiation

GABLS4 Workshop, Toulouse, Sept. 2018

J. M. Edwards

Motivation

• To investigate the interaction of turbulence with full physics including the surface and radiation

To examine the impact of surface heterogeneity

Technical Background

^{™Met Office} The Met Office Large-Eddy Model

- Basic model is now almost 30 years old!
 - Boussinesq or anelastic options
 - Smagorinsky subgrid diffusion scheme
 - · Reduction of mixing length near the wall
 - · Stability dependence of mixing length included
 - Advection: Piacsek-Williams or TVD
 - Stochastic back-scatter can be included
 - Simple surface boundary conditions: prescribed surface temperature or flux
- Recently main application has been as a cloud-resolving model
 - Microphysics and radiation schemes introduced
- Was used in GABLS3

Met Office MONC

- Coding of the original model restricts options for MPP to assigning one vertical slice to a PE – increasingly inefficient as computing power grows
- Decided to recode large-eddy model with the same science in collaboration with academic partners, funded by NERC
 - Work mainly carried out at Edinburgh Parallel Computing Centre in 2014 & 2015
 - Highly scalable (aimed principally at cloud & aerosol modelling at 10s of m)
 - Modern programming style
 - Flexible architecture based on components with callbacks
 - Diagnostic output from an IO-server
- Original project did not cover full functionality of LES
 - Microphysics and radiation only recently added
 - Diagnostics originally very limited still being worked on
 - · Back scatter is not available

MPP aspects

Domain

- MONC supports 2D domain decomposition in the horizontal
- One PE as an IO server for a group of computing nodes (around 10)
- Asynchronous IO
- NetCDF output controlled by .xml files

MPI_COMM_WORLD

Boundary Conditions and the Land Surface

Boundary Conditions

- Most LES have been done with prescribed temperature or fluxes
- Land Surface Models (LSMs) are increasingly complicated, but surface interactions can be important
- Options:
 - Implement bespoke land-surface component in LES
 - Possible, but it is another code to maintain
 - Exchange fields through a coupler
 - Processes are too fast for this to work well
 - Use an existing land-surface scheme
 - "Deep coupling:" All IO through LES: a significant amount of technical work
 - "Shallow coupling:" Use as much of LSM as possible including IO and control

Standalone Land Surface Models

- Land-surface models represent
 - Vegetative canopy
 - Lying snow
 - Underlying soil or ice
- Still largely column-based, though increasing interest in lateral flows for hydrology
- Standalone runs for process studies

- Long history of studies at single points eg. FLUXNET sites
- Increasing use of standalone runs at the global scale within CMIP eg. GSWP3
- ...So LSMs may already have sophisticated capabilities for setting options, netCDF and even MPP
 - Making use of this functionality may be easier than coupling everything through the large-eddy model

Example of forcing from GSWP3

Coupling MONC to JULES

- JULES = Joint UK Land Environment Simulator -- used in UM
- Main task is just to replace top-level program
- Inherit MPP decomposition from MONC: redefine MPI_COMM_WORLD for JULES as just computing group
- Call JULES initialization during MONC initialization on each PE
- Use JULES diagnostic system for JULES output
- Replicate calling to JULES routines within MONC

CALL MPI_INIT
CALL init(nml_dir)
DO! Timesteps
CALL update_forcing
CALL control(timestep)
CALL output_data()
CALL next_time(timestep)
IF (end_of_run) EXIT
END DO

- JULES is forced using u, v, T and q on level 1 and radiative fluxes (either from interactive radiation or from prescribed data in netCDF files)
- Need to write a component in MONC a set of callbacks
- Controlling options can come from operational namelists
- Making netCDF input is relatively easy in python
- A few irritations like subroutines with the same name in MONC and JULES!

GABLS4: Stage 2

- Main LES cases in GABLS4 are in Stages 3 and 4, but are quite idealized
 - Would like interactive water vapour for radiation & surface
- Base simulations on Stage 2
 - Standard: Prescribed surface temperature, interactive q + Radiation
 - NoRad: As Std, but without radiative heating in the atmosphere
 - JULES: Fully coupled JULES (effectively Stage 1b)
 - TJL: As Std but with prescribed (uniform) surface temperature taken as grid-box mean from JULES

Land Surface Coupling

Met Office

Configuration of JULES -- Snow

• JULES:

- Scientifically as for NWP/Climate model, except
 - Grain size fixed at 69 µm to give average albedo of 0.81
 - 19 layers from Stage 2 configuration, not just 3: top layer 1.2 cm thick
 - Timestep: 60 s
 - $z_0 = 0.001 \text{ m}, z_{0h} = 0.0001 \text{ m}$

MONC:

- Scientifically as for Stage 3
- 200 x 200 x 500 points, 5 x 5 x 2 m
- Timestep: 0.1 s

Radiation:

- SOCRATES code, as in UM and SCM GABLS4
- Timestep 60 s

Surface Flux Budget

Surface radiative fluxes

Surface Temperature & Humidity

Heterogeneity in surface temperature

At T_{max}: STD=0.04 K

At T_{min}: STD=0.08 K

Heterogeneity in Sensible Heat Flux

At T_{max}: STD=0.21 Wm⁻²

At T_{min} : STD=0.49 Wm⁻²

Heterogeneity in Latent Heat Flux

At T_{max}: STD=0.13 Wm⁻²

At T_{min} : STD=0.05 Wm⁻²

Profiles and Radiation

Potential Temperature

At T_{min}

Radiative Heating Rates

Turbulence

Variances from run with JULES

Variance of θ

Variance on lowest level (mainly subgrid) consistent with Tsrf. Spike on next level (resolved) needs investigation.

Variance of w

Weak turbulence persists, even with cols surface.

Conclusions

- Although full land surface schemes are complicated, "shallow coupling" to LES may not be too hard
 - In this case it was technically easier than coupling radiation
- The main impact of the land surface is on the mean state through the surface energy budget
 - This can be very sensitive to surface properties
- Radiative heating in the atmosphere alters temperature profile by a couple of K: cooler at top of surface inversion