Sub-km grid NWP for regions with complex orography

- Challenges with station forecast
- Experimental 750-metre HARMONIE-AROME @ DMI

Since late 2016, DMI and IMO operate jointly IGA-2.5 km with HARMONIE-AROME 40h1.1 On a 2500 km x 2000 km domain covering South Greenland and Iceland

Since late 2016, DMI and IMO operate jointly IGA-2.5 km with HARMONIE-AROME 40h1.1 On a 2500 km x 2000 km domain covering South Greenland and Iceland

(almost) All measurement stations (residential areas) in Greenland are at the coastal regions with complex orography

Statement of problems: Pros& Cons with HARMONIE-IGA (2.5 km)

While ECMWF HiRES (9 km) and HIRLAM K05 (5.5 km) fail to predict wind over storm (24.5 m/s) for winter Greenland, HARMONIE-IGA (2.5 km) can

There is many incidence of over-prediction compared to observations.

24h wind forecast with IGA for Ikermiit: extradinarily good

For Qaanaaq, IGA & other models under-forecast storms.

Scatterplot for 45 stations Selection: ALL

1. Some of the over-prediction are associated with intensity and phase error

2. Some 'over-forecast' cases were associated with strong local variability

On 17/11 2016, while TASIILAQ wind measurement reads 6 m/s, it measured 15-22 m/s from the ship mast offshore the TASIILAQ harbour a few km away.

(Courtesy Ship Captain Eyðun Simonsen, M/V Arina Arctica)

"Strong local variability"

<==

Complex orography

==>

Needs very high resolution to resolve!!

5 km

CALLUSTIC AIRPORT

2.5 km

750 m

Aspect ratio ~1

HIRLAM-K05 5 km

HARMONIE IGA 2.5 km

HARMONIE TAS 750 m

—— Bor.Wind 10 m.

Wind forecast from a 750 m HARMONIE-AROME Centered in Tasiilaq, East Greenland, Jan 31 2017

5 km

"Seeing a storm"

Faroe Islands Orography as seen with 750 m HARMONIE

Christmas hurrican/ storm in Faroe lii Islands as simulated by 0.75 km-grid HARMONIE-arome

Dec 25 2016

5 KM

--- Possible supplementary NWP setup focusing on local storms @DMI@2018

Domains: 400x400x65, 0.75 km Cubic grid, LUNBC=T, VESL=0.1 DT=30s

Blending, 24 fcst/6 h

Peak use of CPU capacity on DMI's current operational Cray clustre: 3%

Additional domains "on-demand"

Harmonie-arome 0.75 km Harmonie-arome 2.5 km ECMWF Hires 9 km

Summary

- Coastal Greenland/Iceland/Faroe Islands feature extreme weather situations associated with complex orography of very small scales.
 - Aspect ratio (DX/DZ) approaches 1 ==> nonhydrostatic
 - Weather extremes at km scales => 2.5 km grid resolution not sufficient
- While IGA in general is superior to coarser resolution models for wind forecast in Greenland, it deviates significantly from validating observations for some stations
- Single point deterministic forecast ("station forecast") needs to consider spatial variability (upscaling; probabilistic information)
- Preliminary results with HARMONIE-AROME on sub-km grid-scale NWP appear promising
 - Simulated flow appear realistic
 - Satisfactory stability and affordability (DT=30s for cubic grid, VESL=0.1, LUNBC)
 - Verification statistics on wind parameters look superior to coarser resolution
- Near future outlook: "HARMONIE-lite" at DMI: reliable and affordable
 - Several configuration options to be checked further
 - Optimal horizontal resolution (1 km? 750 m? 500m?)
 - domain size (720x720, 400x400)
 - Vertical resolution (L90?)
 - Nesting and data assimilation
 - Physical parameterisation and diagnosis