Improvements to the surface analysis CANARI in the FP7-EURO4M project

C. Soci

GMAP: E. Bazile, F. Bouyssel, J-F. Mahfouf, F.Taillefer

DCLIM: F. Besson

GMME: E. Martin

SMHI: T. Landelius, P. Unden

OUTLINE

EURO4M

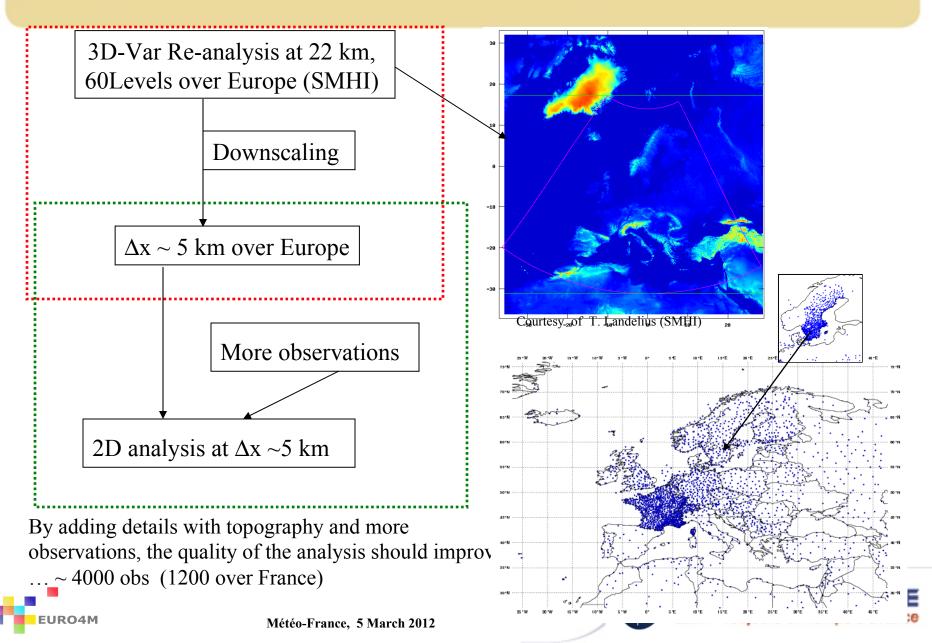
Objectives

Downscaling issues

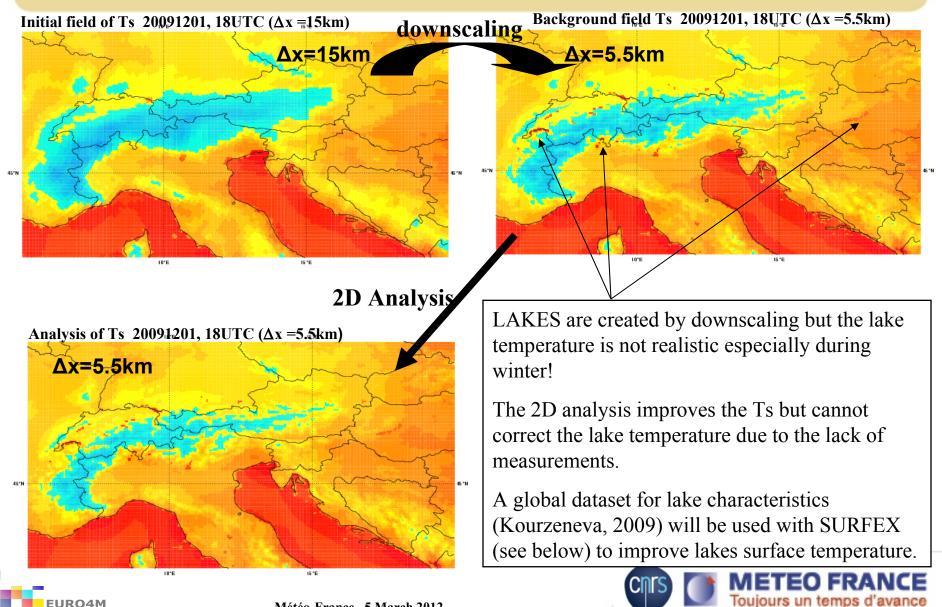
Results

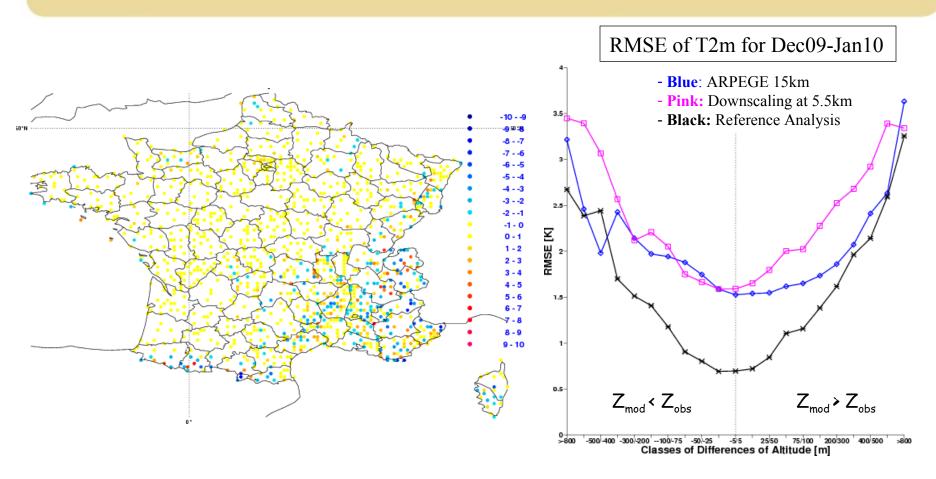
Conclusions and Perspectives

- EURO4M EUropean Reanalysis and Observations For Monitoring
- 4-year Project, starting date: 1 April 2010
- Finance by the EU FP7, Theme 9 "SPACE"
- SCOPE: "To develop the capacity for, and deliver the best possible and most complete (gridded) climate change time series and monitoring services covering all of Europe."
- 9 participant organizations:
 - KNMI (Project Leader A. K. Tank)
 - Météo-France, Met Office, DW, SMHI, Meteo Swiss, NMA
 - Universitat Rovira i Virgili (Espagne), University of East Anglia


Objectives

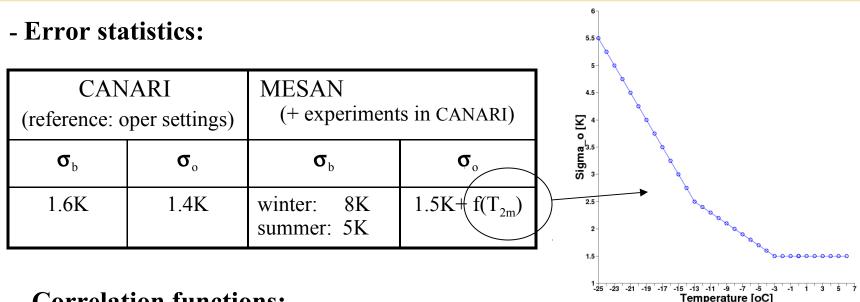
- Downscaling:
 - improvement of the method to better describe the orographic effects on the screen-level and surface variables (e.g. T of the lakes surface, T2m accounting for the model actual temperature laps rate);
- 2D Analysis:
 - introduction of a new structure function to account for the land-sea mask and difference of height;
 - improved error statistics for background and the observations;
 - Development: precipitation analysis, the usage of Tmin and Tmax.
- A 2D reanalysis over Europe for surface variables will be performed at ~5 km scale in order to demonstrate the added value compared with the 3D reanalysis at 22 km done by SMHI under the framework of WP2.2 of EURO4M project.




Dynamical downscaling and reanalysis over Europe

Downscaling issues

Downscaling issues



- Errors of T2m are important over high topography and along the coasts (left Figure);
- Downscaling does not necessarily improve the quality of the first guess (right Figure).

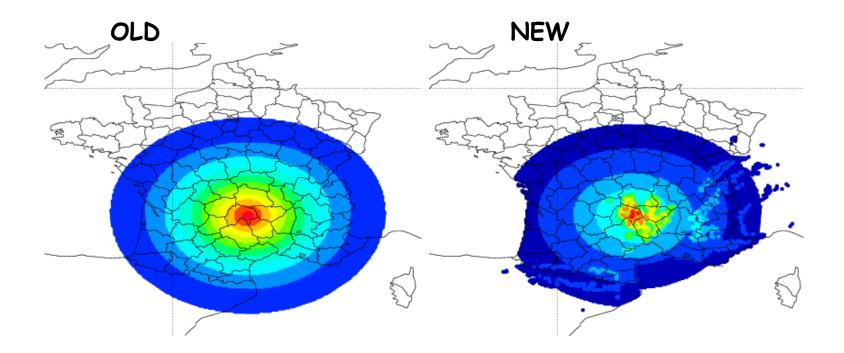
New features in CANARI (MESCAN ?)

- Correlation functions:

Old:

 $Corr_{CAN}(r) = e^{-0.5\frac{r}{d_1}}$

New:


$$Corr_{MES}(r, d_p, d_z) = 0.5 \left[e^{-\frac{r}{d_2}} + \left(1 + \frac{2r}{d_2} \right) e^{-2\frac{r}{d_2}} \right] \cdot F_p(d_p) F_z(d_z)$$

after Häggmark et al, 2000, Tellus, 52A, 2-20.

T2m analysis increments for a single obs experiment

The new anisotropic correlation function creates more realistic analysis increments (right Figure) by accounting for height difference and land-sea mask.

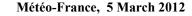
Evaluation and improvements of CANARI

- Available tools:
 - M-F: CANARI (OI) used in ARPEGE/ALADIN/AROME for surface analysis (T2m, RH2m, SST; 10-m wind, snow height not

in oper).

- SAFRAN (OI) uses climatologically homogenous zones over France. System developed for relevant variables affecting snow pack evolution (T2m, RH2m, 10-m wind, RR, cloudiness, radiation). Not easy portable for other domains.
- SMHI: MESAN (OI) used at SMHI for operational analysis (T2m, RH2m, 10-m wind, RR, cloudiness, visibility, and has more elaborated structure functions)
- An inter-comparison of the 3 analysis systems was performed over France.

General conclusion: SAFRAN provides good results over complex terrain, but in average over France, MESAN is slightly better.


Inter-comparison of SAFRAN, MESAN, CANARI

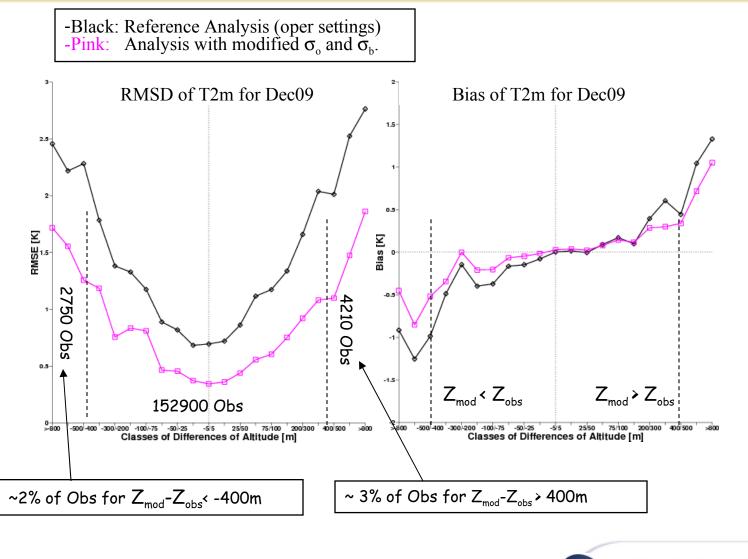
T2m: Bias and RMSD computed for 3 months (Dec 2009-Jan2010, June 2010)

	BIAS [K]	RMSD [K]	Remarks
CANARI reference	-0.01	1.08	σ_{b} =1.6K and σ_{o} =1.4K (operational settings)
CANARI	0.03	<u>0.67</u>	modified σ_{o} and σ_{b} + old corr fct
SAFRAN (projected on 5.5 km grid)	0.03	1.17	$\sigma_b = 3.5 K$ $\sigma_o = 1.5 K$
SAFRAN (projected on the obs.)	0.001	0.84	
MES1c	0.07	0.87	$\sigma_{b} = 8K (5K),$ $\sigma_{o} = 1.5K + f(T_{2m})$

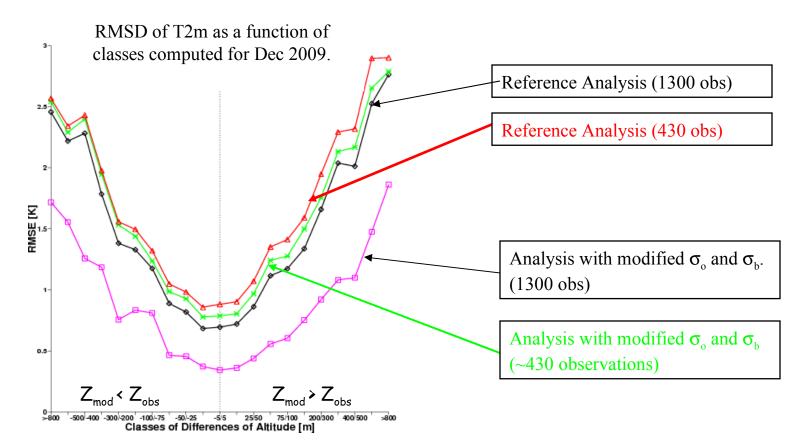
- analyses performed with 1300 observations.

Inter-comparison of SAFRAN, MESAN, CANARI

RH2m: Bias and RMSD computed for 3 months (Dec 2009-Jan2010, June 2010)


	BIAS [%]	RMSD [%]	Remarks
CANARI reference	0.09	5.94	$\sigma_{b} = 18\%$ and $\sigma_{o} = 10\%$ (operational settings)
SAFRAN (projected on 5.5 km grid)	0.27	6.58	$\sigma_b = 20\%$ $\sigma_o = 15\%$
MESAN	0.02	5.65	$\sigma_b = 30\%$ $\sigma_o = 20\%$

- analyses performed with 930 observations.


Impact of $\sigma_{\rm b}$ and $\sigma_{\rm o}$ on the T2m analysis

Toujours un temps d'avance

The impact of the observations number on analysis

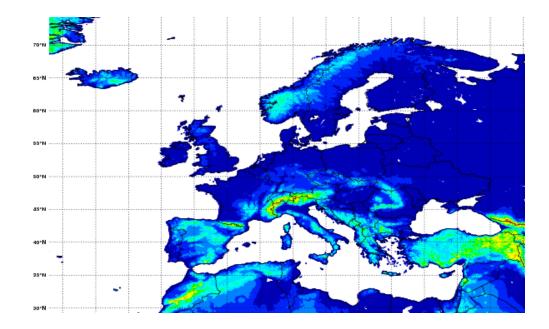
- the quality of the analysis depends on both the density of observations and the settings of the background and observation error statistics.

loujours un temps d'avance

- the errors are larger over complex topography

Conclusions

- The new anisotropic correlation function gives more realistic analysis increments, and the subsequent analyses have better scores than those performed with CANARI operational settings.
- A proper tuning of error statistics is important and necessary for reanalysis, taking into account that there are more observations and already validated compared to an operational NWP data assimilation system.
- It is therefore possible to have a CANARI producing a better surface analysis over France than CANARI oper, SAFRAN, and MESAN.
- Preliminary tests performed (by F. Besson) with (S)IM and the hydrological model using reanalyses data from MESAN (RR24h) and CANARI (T2m, Rh2m), and ALADIN forecasted fields of radiation and 10-m wind are encouraging. The objective is to propose a system to replace SAFRAN at MF, and MESAN at SMHI.



Perspectives

- Improvement of the downscaling method:
 - vertical interpolation of T2m particularly over the mountainous areas;
 - usage of a lake climatology.
- Work on the development of precipitation analysis in CANARI and the usage of Tmin and Tmax for reanalysis.
- Before April 2014 we must deliver in EURO4M surface analyses over EUROPE at ~ 5km grid and for 5 years.
 - some technical problems to be worked out:
 - To create a reanalysis domain (Lambert conformal) that best fit SMHI domain (rotated lat-lon);
 - GRIB reanalysis from SMHI converted to FA files (use of GL or c903);
 - implementation of CANARI at ECMWF;
 - Usage of additional observations not available in the classical observations files (e.g. OBSOUL), in GTS etc.

Thank you for your attention!

