Optimisation of cloud initialisation in HARMONIE and verification results

Sibbo van der Veen

KNMI

De Bilt, The Netherlands

Cloud initialisation in Harmonie

Motivation and context

- Use geostationary satellite images (both VIS and IR) for initial clouds
- Better forecasts of clouds (including fog) and precipitation
- Works well in Hirlam RUC: better clouds and precipitation (as well as other parameters)

MSG VIS image

MSG cloud mask

Important issues:

1) Keep dynamical balance

(both hydrostatic and non-hydrostatic)

2) Balance water vapour - microphysics

Procedure

1) Construct initial 3D cloud fields

2) translate 3D cloud fields to Harmonie model fields

Simplest procedure

3D cloud field:

1 cloud top and 1 cloud base

Translation to Harmonie: apply only to water vapour (q)

Define critical relative humidity C above which clouds are supposed to form

$$q_m = q_s.((1-C).\sqrt{N} + C)$$

Tuning C

Min	Max
-----	-----

0.90	0.93
0.00	0.55

Preserve buoyancy when changing humidity (keep virtual T constant)

$$T_v = T(1+0.61q_m - q_l - q_i - q_r - q_s - q_g)$$

Correction:

$$T = T_v / (1 + 0.61q_m - q_l - q_i - q_r - q_s - q_g)$$

Verification of predicted cloud cover (control and MSG run)

2 periods of each 2 weeks:

 Compare mean of 7 x 7 model elements with synoptic observations

March 2012 (ECMWF run)

bias-Harmonie total cloud cover verified with synop (15-30 March 2012)

std-Harmonie total cloud cover verified with synop (15-30 March 2012)

bias-Harmonie total cloud cover verified with synop (15-30 March 2012)

std-Harmonie total cloud cover verified with synop (15-30 March 2012)

bias-Harmonie total cloud cover verified with synop (15-30 March 2012)

std-Harmonie total cloud cover verified with synop (15-30 March 2012)

rms-Harmonie total cloud cover verified with synop (15-30 March 2012)

February 2014 ECMWF run

bias-Harmonie total cloud cover verified with synop (3-17 Febuary 2014)

std12-Harmonie total cloud cover verified with synop (3-17 February 2014)

KNMI Bull run since winter 2014 (control on ECMWF)

No comparison with control yet

Maybe too much moisture added?

Moisture/clouds:

- sometimes too much rainfall

- too high q

- Smaller std cloud cover errors

(very preliminary conclusions!)

If true, this may have been caused by:

Dry layers between clouds are made cloudy

3D cloud observations needed...

Microphysics: medium level clouds are transferred to ice too rapidly

Can be solved...

Plans for near future:

- 1.Study verification results
 - 2. Adapt microphysics
- 3. Improve 3D cloud initialisation
 - 4. Introduce in HarmonEPS
- 5. Merge with Data Assimilation (if beneficial)

CI / DA (1)

Plan to use many more cloud observations, such as:

cloud typeliquid water pathphasedrop effective radius

-use GPS

-different layers from ceilometers

Aim: optimised 3D field of clouds

Possibly also part of SCFIVI project (EU), initiated and led by SMHI (Sweden)

(Solar energy, Water resource management, Arctic clouds)

CI / DA (2)

Need better translation of 3D cloud field to microphysical variables of Harmonie fields. Taken into account:

(sub-grid variability of) water vapour (sub-grid variability of) of temperature (partly) overlapping of clouds

(Complex, but feasible)

Change:
water vapour (and T)
liquid and frozen hydrometeors

Summary CI in Harmonie:

- Verification shows positive impact on cloud cover (duration of impact limited in case of strong winds)
- Other model fields still need to be verified

- Improve initial 3D clouds
- (maybe) Adapt microphysics
- Merge with DA (4DVAR)