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The idea is based on implicit treatment of selected linear terms (those

giving rise to high frequency waves). The remaining part (= residual)

remains explicit.

Formally it means to separate the RHS terms into two groups:
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This leads to Helmholtz equation problem.

Spectral models are well suited for this method (being typically 3-4 times

more efficient with respect to GP methods on a single processor system).
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Semi-Implicit scheme in IFS

Spectral formulation implies:

Linear model assumes horizontally homogenous profiles for the whole

globe (⇒ no orography, no gradients)

To have one structure equation linear model profiles are made also

vertically uniform

Atmosphere at rest ⇒ u = v = 0 m/s, T = 350 K and ps = 1000 hPa

Physics is naturally out of the linear model
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Semi-Implicit scheme in IFS

Spectral formulation implies:

Linear model assumes horizontally homogenous profiles for the whole

globe (⇒ no orography, no gradients)

To have one structure equation linear model profiles are made also

vertically uniform

Atmosphere at rest ⇒ u = v = 0 m/s, T = 350 K and ps = 1000 hPa

Physics is naturally out of the linear model

Known problems:

Simple SI occasionally reported unstable ⇒ iteration is required (near

model top, steep slopes,...)

Convergence issues from areas with stable stratification and/or

adjacent to significant orography

Resolutions higher than TL399 (≈50 km) are prone to a noise

generation in TL/AD
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Known issues in IFS

12 hours adiabatic forecast with TL511
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Known issues in IFS
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Known issues in IFS
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New proposal for the SI scheme design

Without questioning the SI method it is assumed the problem originates from:
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Following the proposal of Diamantakis (2014) the SETTLS method could be
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Can’t be easily inverted: requires an iterative procedure for the implicit term
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Shallow water implementation

Governing equations:
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Shallow water experiment setup

SISL shallow water model with the IFS timestep
organization (GP space only)

Barotropic instability case

Domain 254 x 50 points.

∆x = ∆y = 100 km.

f = f0 + β(y − y0),

with f0 = 0.0001s−1 and β = 1.6× 10−11m−1s−1

ν = 0

Initial condition: zonal jet with geostrophic ballance +
noise.

Formation of cyclones and anticyclones on each side
of a zonal jet.

Forecast range 210000s.
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Shallow water results

Height h
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Shallow water results
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Shallow water results - II.

Longitudinal cross-section from the central area (∆t = 400 s)
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Placing there some orography...
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Methods to speed-up the iterative process

Second order accuracy to define L:

L(X) = M(X0) +M
′(X0)(X −X0) +

1

2
M

′′(X0)(X −X0)2

⇒ Speedup around 8%, not very practical for the full 3D model.

Aladin WS - Hirlam ASM, Helsinki, 3 April, 2017 – p. 11/16



Methods to speed-up the iterative process

Second order accuracy to define L:

L(X) = M(X0) +M
′(X0)(X −X0) +

1

2
M

′′(X0)(X −X0)2

⇒ Speedup around 8%, not very practical for the full 3D model.

Applying the re-linearization technique (Stappers and Barkmeijer (2012)) the M
′ could be

evaluated at X∗ = 1
2

(

X0 +X(i)+
)

rather than at X0.

⇒ Speedup around 8%, allows no timestep extension → gain in accuracy is compensated by

a loss in stability.
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(

X0 +X(i)+
)

rather than at X0.

⇒ Speedup around 8%, allows no timestep extension → gain in accuracy is compensated by

a loss in stability.

Adopt a successive over-relaxation similar to those of Wood et al. (2014):

M
′(X(i)+

−X0) 7→ αM′(X∗)(X(i)+
−X0) + (1− α)M′(X∗)(X(i−1)+

−X0)

⇒ Essential for having the scheme converging.
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−X0) 7→ αM′(X∗)(X(i)+
−X0) + (1− α)M′(X∗)(X(i−1)+

−X0)

⇒ Essential for having the scheme converging.

Incremental approach starting with fractional timestep ∆t0 < ∆t1 < ... < ∆t. Easy to be

done with TL model knowing: M′(X0,∆t)(X(i)+ −X0) = ∆t

∆t′
M

′(X0,∆t′)(X(i)+ −X0)

⇒ Allows time-step extension by 50-100%.
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⇒ Essential for having the scheme converging.

Incremental approach starting with fractional timestep ∆t0 < ∆t1 < ... < ∆t. Easy to be

done with TL model knowing: M′(X0,∆t)(X(i)+ −X0) = ∆t

∆t′
M

′(X0,∆t′)(X(i)+ −X0)

⇒ Allows time-step extension by 50-100%.

2TL method vs SETTLS

⇒ Minimum speedup (around 6%), still 2TL is used as the new default.
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IFS implementation

New SI scheme implemented to IFS (profiting from the existing TL code)
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IFS implementation

New SI scheme implemented to IFS (profiting from the existing TL code)

The need for derivatives update during the iterative process makes the scheme

very expensive for spectral model (multiple transforms per single timestep)
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IFS implementation

New SI scheme implemented to IFS (profiting from the existing TL code)

The need for derivatives update during the iterative process makes the scheme

very expensive for spectral model (multiple transforms per single timestep)

Atlas library offers 2nd order accuracy grid-point derivatives → SI scheme adapted

to evaluate derivatives with Atlas
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IFS implementation

New SI scheme implemented to IFS (profiting from the existing TL code)

The need for derivatives update during the iterative process makes the scheme

very expensive for spectral model (multiple transforms per single timestep)

Atlas library offers 2nd order accuracy grid-point derivatives → SI scheme adapted

to evaluate derivatives with Atlas

Derivatives must be consistent ⇒ all derivatives have to be computed with Atlas

Having the SI and derivatives computed in grid-point space there is only little point

to keep spectral space computation (I/O, filtering)

Exclusively grid-pont version of IFS was designed with local communications only

(SL comms and Atlas).

Fairly general linear model (extensible to any set of prognostic variables)

Iterative procedure is inexpensive provided the scheme is converging

Quality and stability strongly depends on derivatives computation (with 2nd

derivatives it allows ≈ 50-70% of the original timestep)
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Convergence issues

Some fundamental understanding of this method’s convergence is still missing.
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Some fundamental understanding of this method’s convergence is still missing.

Smoother fields implies the better convergence.

To further speed up the convergence the derivatives of increments are computed

from smoothed (using multiplicative Laplace operator filtering) quantities. However

this could lead to an instability if over-used. (Smoothing of δDIV only seems to be

generally harmless.)
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Convergence issues

Some fundamental understanding of this method’s convergence is still missing.

Smoother fields implies the better convergence.

To further speed up the convergence the derivatives of increments are computed

from smoothed (using multiplicative Laplace operator filtering) quantities. However

this could lead to an instability if over-used. (Smoothing of δDIV only seems to be

generally harmless.)

The use of multiplicative filtering indicates a stencil for 4-6th order accurate

derivatives might be better suited for faster convergence.
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Convergence issues

Some fundamental understanding of this method’s convergence is still missing.

Smoother fields implies the better convergence.

To further speed up the convergence the derivatives of increments are computed

from smoothed (using multiplicative Laplace operator filtering) quantities. However

this could lead to an instability if over-used. (Smoothing of δDIV only seems to be

generally harmless.)

The use of multiplicative filtering indicates a stencil for 4-6th order accurate

derivatives might be better suited for faster convergence.

Using derivatives of δT results in systematic cooling (better results obtained with

derivatives of δΘ or δ(T − α log ps)

→ indicates there are probably better alternatives for the temperature related

prognostic variable.
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Baroclinic wave test
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Grid-point IFS with 2nd order derivatives
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Summary

Alternative SI method was proposed and is being implemented to IFS (CY42R1).
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Adopting a grid-point filter to control 2∆x noise, this method combined with

grid-point derivatives allows to drop spectral space and maintain only local

communications.
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Summary

Alternative SI method was proposed and is being implemented to IFS (CY42R1).

Global Helmholtz solver is replaced by local iterative computation in grid-point

space requiring horizontal derivatives.

Offers more flexibility to phys-dyn coupling.

Linear model is fairly general:

Implies no special restriction for a choice of prognostic variables or model

coordinates.

Is extensible by physics (or subset of physical processes) accepting the

M0 6= L0

Adopting a grid-point filter to control 2∆x noise, this method combined with

grid-point derivatives allows to drop spectral space and maintain only local

communications.

TL/AD extension challenging but perfectly doable.
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