

Verification tools and graphics in the HIRLAM system

Kalle Eerola Finnish Meteorological Institute

Introduction

- Hirlam reference system contains a package to collect basic verification statistics on daily basis as a part of the normal run
 - Verification against observations is done default
 - Field verification if requested
- Many Hirlam institutes use their own verification packages, especially in operational implementations
- Possible reasons?
 - No tools to compute summaries or present results in graphical form
 - Care is needed in interpreting results, for instance
 - Are the same observations used in verifying different experiments
 - Is similar qc-control applied in different experiments
- In Hirlam 7.1 a set of tools is implemented
 - Compute summaries
 - Present them in graphical form

Purpose of this presentation

- Show the basic verification data produced by HIRLAM reference system
- Show the possibilities of the new tools
 - Making summaries
 - Graphical products
- Plans for developments

Purpose of the HIRLAM verification system

- Use synoptical observations
- Verification in synoptic scale
- Routine, long-term monitoring as an indication of progress in Hirlam system
- Model intercomparison
 - Validation in impact/sensitive studies
 - Regular intercomparison between Hirlam systems
- Not planned for
 - Mesoscale studies
 - EPS
 - Process studies

Products of the verification system on daily basis

- Verification against observations
 - Surface observations and sounding observations
 - In principle, any observation type can be verified
 - Verification scores (bias, rms-error, std, no of cases) are computed (vefiles)
 - List of stations
 - Polygon defined by corners
 - Normally a set of different areas are computed at the same time
 - Contingency tables for precipitation (pct-files)
 - 6, 12 and 24 hour precipitation depending on observations

Products of the verification system, continued

- Observed/forecast values on stations (Zobs-files)
 - Simple ASCII files
 - Contains for every observation
 - Station identification
 - Coordinates of the station
 - Observed value
 - Forecast value
 - Forecast error
 - At the moment only for surface parameters, the same as in ve-files

Products of the verification system, continued

- Fields verification (not default but can be required)
 - Every experiment is verified against its own analysis
 - For every parameter in the given GRIB-file
 - Bias, rms-error and mean value ("climate")
 - Surface fields, constant pressure level fields, model level fields
 - Accumulates statistics over the given time period
- All this has been done as a part of the experiment
- Collecting of verification can be run afterwards as a separate job

Everything up till now has been long in the Hirlam reference system

General features of the package for summaries and graphics

- Implemented in the Hirlam 7.1 reference
- Is running using miniSMS
 - Hirlam start DTG=2007010100 DTGEND=2007013118
 PLAYFILE=verif_summary
 - The run is controlled by the file scripts/Env_verif_sum
 - Editing this file the user can select what he/she waants to be computed
- Languages
 - Shell-script
 - Perl
- Graphical packages
 - Gnuplot
 - Grads

Examples of products that can be produced

- Verification against observations
- Verification against observations on station basis
- Time-series of verification scores
- Field verification products

Verification against observations

Surface observations

- Bias and rms-error
- Pmsl, T-2m, Wind speed, Rh-2m
- Several experiments can be compared
- Can be selected, which daily forecasts and forecast lengths are included
- No of observations as a separate figure (will be included in the same figure later)
- Different areas depending what has been produced when computing the daily statistics

Verification against observations EXP: V644 FMI71rc1 Time: 2007010100 - 2007013118 Domain: EWG Forecast from 00

No of obs in verif against obs. EXP: V644 FMI71rc1 Time: 2007010100 - 2007013118 Domain: EWG Forecast from 00

10

Verification against observations (continued)

Precipitation data

- By default eight classes
- The classes are defined in the basic verification run
- Marginal distributions of observations and forecasts
- Contingency tables
- Both in percentages and number of cases
- 6, 12 and 24 hour precipitation as in observations
- Domains as earlier

T3161-	- 	wa Hawi	711 00	000001	00 20060	22110 6	77 OO	
Identific				060301	00-20060	33118_0	21_00	
Marginal Limits	distribu <0.1		3 3 <1.0	<3.	0 <10.	0 <30	.0 <100.	0 >100.
Forecast	312	4 1446	5 1541	119	3 712	2 89) 2	. 0
In %		9 18				_	L 0	-
Observed		7 586	5 944 7 12	1 66	3 615 8 8	149	9 2 2 0	
In %	6) 2	2 0	0
Contigenc	y table	in perce	ent: obs	s:> f	orec			
Limits	<0.1	<0.3	<1.0	<3.0	<10.0	<30.0 <	<100.0 >	100.0
<0.1	35	1	1	0	0	0	0	0
<0.3	13	2	2	1	0	0	0	0
<1.0	10	2	4	2	1	0	0	0
<3.0	4	1	3	3	2	0	0	0
<10.0 <30.0	1 0	1 0	1 0	2	3	1	0	0
<100.0	0	0	0	0	0	0	0	0
>100.0	0	0	0	0	0	0	0	0
Contigenc	y table:	obs:>	> forec	1				
Limits	<0.1	<0.3	<1.0	<3.0	<10.0	<30.0	<100.0	>100.0
<0.1	2869	113	89	37	11	4	0	1
<0.3	1049	129	163	70	32	3	0	0
<1.0	783	181	298	158	109	12	0	0
<3.0	346	115	274	231	198	28	1	0
<10.0	91	46	115	156	239	65	0	0
<30.0	9	2	5	11	25	36	1	0
<100.0	0	0	0	0	1	1	0	0
>100.0	0	0	0	0	0	0	0	0

Forecast length: 42 Accumulation period: 12hr Domain: EWG

Verification against observations (continued)

Sounding observations

- Bias and rms-error on selected constant pressure levels
- By default, 850 hPa, 500 hPa and 250 hPa pressure levels
- Geopotential, temperature, wind speed and relative humidity
- Several experiments can be compared
- No of observations as a separate figure (to be included in the same figure)

Verification against observations EXP: V644 FMI71rc1

ASM in Oslo 23-26, April 2007 May 1, 2007

Mean and RMS error (m/s)

Scores on station basis

- Bias and rms-error of surface variables on stations
- Also number of cases available, colored according to bias
- Forecast length and valid time can be selected
- Colors according to the values
- Bias and rms-error separate maps

Time-series of verification scores

- Time-series of verification (bias and rms-error) scores
- Moving averages if required
- Surface parameters and sounding observations
- Separate figures for rms-error and bias
- Several experiments in the same figure

Verif. against obs: RMS of Temperature at level 500 hPa EXP: V644 FMI71rc1

Field verification

- Bias and rms-error of any parameter, which has been accumulated
- Initial time of forecasts can be selected
- Forecast length can be selected

Field verification, climates

- "Climates" of analysis or for instance +48 hours' forecasts
 - Example: mean fraction of ice in +48 hours' forecasts in June 2006
- Differences of "climates" between experiments
 - Example: temperature differences between two experiments on highest model level
 - Limitation at the moment: areas must be the same

Climate diff: Temperature Model level 1 Ident: ECM701-ECM71 NO: 28 First date: 2006060100 Init. time 00 Length +48

Todo-list

- In the verification system
 - Clarify the verification procedure: do things in a more sound way
 - Comparing operational Hirlam implementations
 - Model validation
 - Visibility and cloudiness to be added, contingency tables
- Summaries and graphics
 - WEB interface: easier to study the results
 - Scatter-plots
 - Plots of marginal distributions of precipitation
 - More plots

• ...

ASM in Oslo 23-26, April 2007 May 1, 2007

17

Summary

- Hirlam reference system now contains a set of tools for
 - Making summaries
 - Plotting summaries

of the verifcation scores

- Synoptical scale verification using normal observations
- The verification system will be developed to be more sound and easy to use
 - Operational verification
 - Validation
- After that easier to motivate new development in the graphics and tools
 - New products will added
- At the moment no user manual (an old draft exists)

Yhteystiedot

ERIK PALMÉNIN AUKIO 1
 00560 HELSINKI
 Puh. (09) 192 91
 Faksi (09) 179 581

www.ilmatieteenlaitos.fi