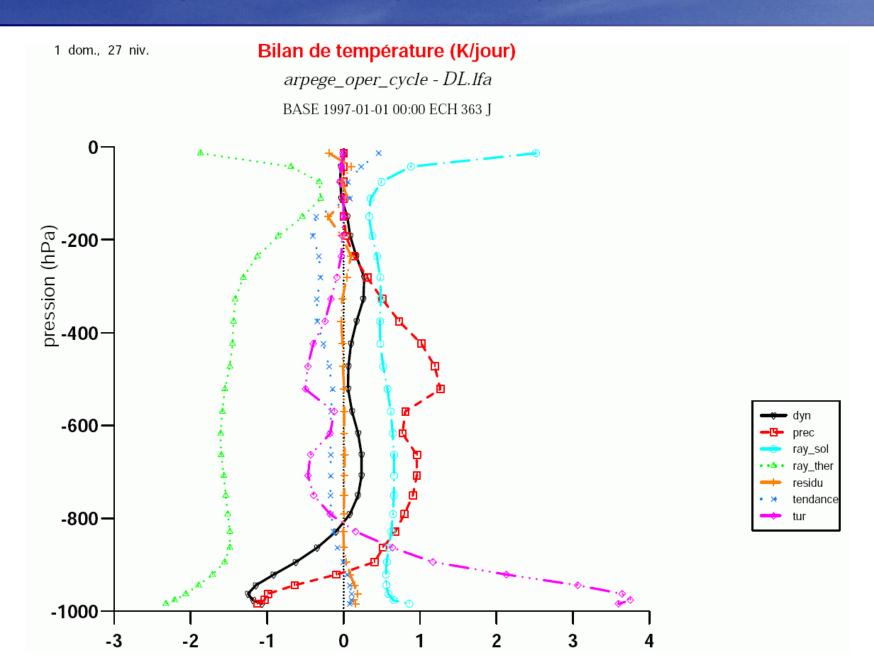

DDH: a physics-dynamics budget tool for ARPEGE, ALADIN and AROME.

Jean-Marcel Piriou and Tomislav Kovacic. Météo-France and IMSC (Croatia). HIRLAM / ALADIN All-Staff Meeting / Workshop, 2007-04-24. DDH: Diagnostics on Horizontal Domains: a generic tool to provide budget of prognostic variables, to develop physics, understand physico-dynamical interactions.


DDH tool: used in ARPEGE and ALADIN since 1992, for research and operations.

Ongoing effort in the ALADIN community to further update and develop: soon available in AROME update to new

DDH: water vapour budget

DDH: temperature budget (K/day)

DDH prognostic variable budgets available

$$\frac{\partial}{\partial t} (r_{\eta}c_{p}T) = -\operatorname{div}_{\eta} (r_{\eta}c_{p}T\vec{v}) - \frac{\partial}{\partial \eta} (r_{\eta}c_{p}T\dot{\eta}) + r_{\eta}RT\frac{\omega}{p}$$

$$+ \frac{\partial}{\partial \eta} \left\{ F_{h} + F_{hp} + F_{p}^{l}T \left[c_{l} - c_{pa}(1 - \delta_{m}) \right] + F_{p}^{n}T \left[c_{n} - c_{pa}(1 - \delta_{m}) \right] \right\}$$

$$+ \delta_{m}F_{p}\frac{\partial(\Phi + \frac{u^{2} + v^{2}}{2})}{\partial \eta} - \vec{v} \cdot \frac{\partial \vec{F}_{v}^{phys}}{\partial n}$$

$$\frac{\partial}{\partial r} \frac{1}{e_{v}T\delta_{p}} (e^{0}) \frac{1}{e_{v}r\delta_{p}} (e^{0}) \frac{1}$$

FCTPRECCSCON

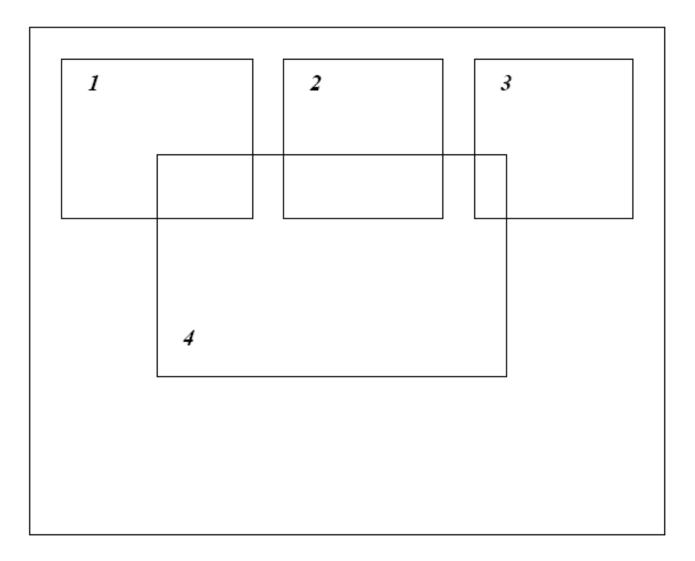
FCTPRECCSSTL

FCTPRECCSSTN

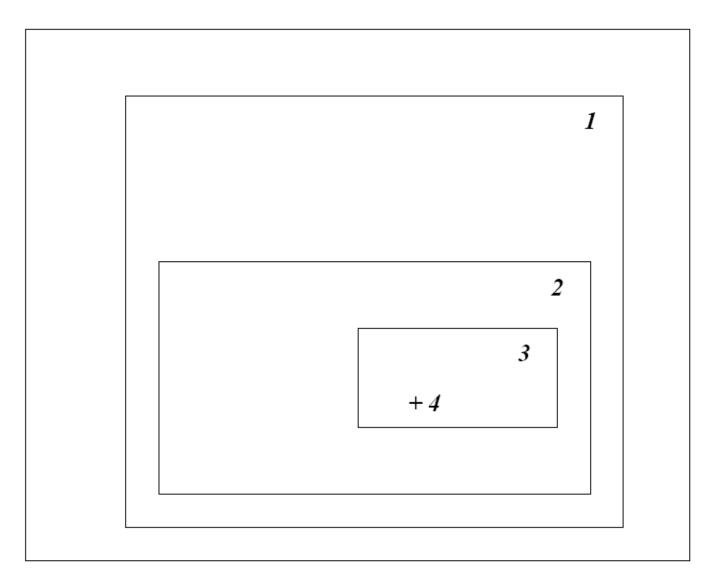
(4.3)

cumul

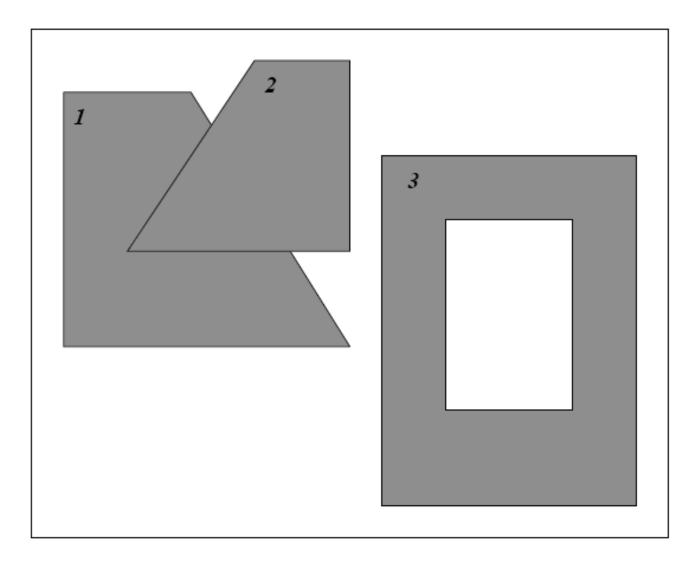
cumul cumul

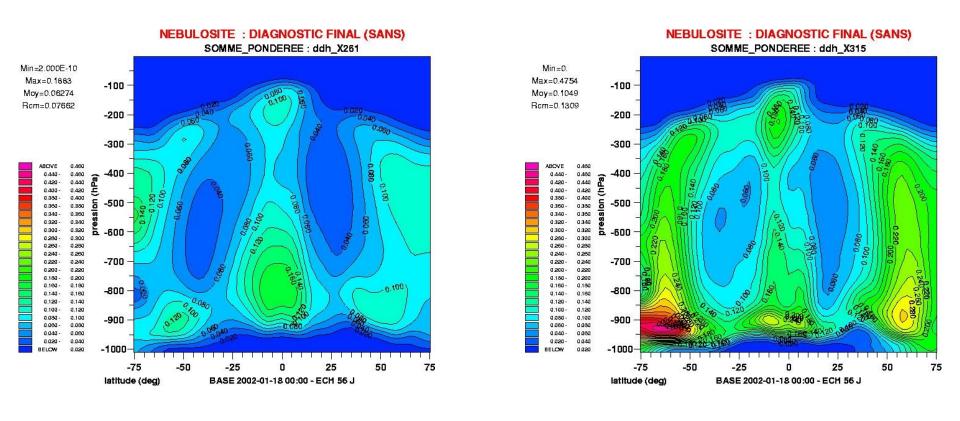

cumul cumul cumul cumul cumul cumul cumul cumul cumul cumul cumul

cumul


cumul

cumul


DDH domains available


DDH domains available

DDH domains available

DDH: cross-sections of variables, fluxes or tendencies

ARPEGE 3D, zonal DDH bands, cloudiness, 2002. LHS: control scheme, RHS: exp scheme after Xu and Randall 1996

OLD

NEW

- Models: ARPEGE and ALADIN.
- User-defined domains: zonal bands, rectangular areas, polygonal areas, single vertical profiles (sampling), crosssections.
- Variables: diagnostic, prognostic (budget).
- Used since 1992.

DDH usage

Develop and tune physics: based on case studies, DDH is a tool to understand what the model does:

- Interaction between parameterizations, between physics and dynamics.
- Study steady state, or transitory state, instabilities, etc.
- Difference between a control and a modified run.
- Monitor biases (differences between guess and analysis, spin-up studies, etc).

DDH: ongoing effort

Interface AROME physics with DDH (Tomislav Kovacic).

Microphysical process	vapour	cloud	rain	cloud	snow	graupe	enthalpy
		wa-		ice			
		ter					
water vapour adjustment		$F_{q_l}^{cdepi}$		$F_{q_i}^{cdepi}$			F_h^{cdepi}
heterogeneous nucleation	$F_{q_v}^{henu}$			$F_{q_i}^{henu}$			F_h^{henuv}
homogeneous nucleation		$F_{q_l}^{hon}$		$\frac{F_{q_i}}{F_{q_i}^{henu}}$ $\frac{F_{q_i}^{henu}}{F_{q_i}^{hon}}$			F_h^{honl}
spontaneous freezing			$F_{q_r}^{sfrz}$			$F_{q_g}^{sfr}$	F_h^{sfr}
deposition on snow	$F_{q_v}^{deps}$				$\frac{F_{q_s}^{dep}}{F_{q_s}^{agg}}$		F_h^{deps}
collection of ice on snow				$F^{agg}_{q_i}$	$F^{agg}_{q_s}$		
auto-conversion of ice to				$F_{q_i}^{autor}$	$F_{q_s}^{autor}$		
snow							
deposition on graupel	$F_{q_v}^{depg}$					$F_{q_g}^{dep}$	F_h^{depg}
auto-conversion of cloud		$F_{q_l}^{autor}$	$F_{q_r}^{autor}$	3			
water							
accretion		$F_{q_l}^{accr}$	$F_{q_r}^{accr}$				
rain evaporation	$F_{q_v}^{reva}$		$\frac{F_{q_r}^{accr}}{F_{q_r}^{reva}}$				F_h^{reva}
riming by cloud droplets		F_{ql}^{rim}			$F_{q_s}^{rim}$	$F_{q_q}^{rim}$	F_h^{rim}
collection of raindrops			$F_{q_r}^{accs}$		$F_{q_s}^{accs}$	$\frac{F_{q_g}}{F_{q_g}^{accs}}$	F_h^{accs}
melting of aggregates					$F_{q_s}^{cmel}$	$\frac{F_{q_q}^{accs}}{F_{q_g}^{cmel}}$	
contact freezing			$F_{q_r}^{cfrz}$	$F_{q_i}^{cfrz}$		$F_{q_g}^{cfrz}$	F_h^{cfrz}
wet growth		$F_{q_l}^{wetg}$	$F_{q_r}^{wetg}$	$\frac{F_{q_i}^{cfrz}}{F_{q_i}^{wetg}}$	$F_{q_o}^{wetg}$	$F_{q_q}^{wetq}$	F_h^{wetg}
dry growth		$F_{q_l}^{dryg}$	$F_{q_r}^{dryg}$	$F_{q_i}^{dryg}$	$F_{q_s}^{dryg}$	$F_{q_a}^{dryg}$	F_{h}^{dryg}
melting of graupel			$F_{q_r}^{mltg}$			$F_{q_g}^{mltg}$	F_h^{mltg}
melting of cloud ice		$F_{q_l}^{mlti}$		$F_{q_i}^{mlti}$			F_{\cdot}^{mlti}
Bergeron-Findeisen effect		$F_{q_l}^{berfi}$		$F_{q_i}^{berfi}$			F_h^{berfi}

DDH: ongoing effort

- DDH diagnose the Catry-Geleyn interface's pseudo fluxes (TK).
- Validate how accurate the budgets are (residuals) in AROME, if current CPTEND used for temporal integration (TK, JMP).
- Make model temporal integration from the Catry-Geleyn pseudo-fluxes
 smaller residuals (JMP).
- Translate to English present DDH documentation, write doc new features (TK, JMP).
- Develop PostDDH tools (accumulate, differenciate, interpolate, budgetise, etc) to provide ready-to-plot budgets from DDH files, for the new AROME diagnostics.

DDH: conclusion, perspectives

- DDH: an efficient tool to develop and validate physics, used in ARPEGE – ALADIN since 1992.
- A significant effort still to be done in order:
 - To have the same level of diagnostics in AROME as in ARPEGE ALADIN.
 - To generate a complete English documentation, and a portable PostDDH software (improve install process), so that the whole ALADIN community could use the DDH software, from generating DDH files up to ready-to-plot budget profiles.