Execution of the “ALH” RWP2020

numbers and highlights
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F.TEE.

Manpower was committed in the RWP2020 (unit=F.T.E.). Manpower invested in the various
Work Packages was reported (blue part) for the first half of 2020 (January-June 2012).

Manpower (in F.T.E) in 2020 RWP Work Packages
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Prospective R&D activities :
Atmospheric data assimilation, Dynamics, Atmospheric physics parametrizations, Surface analysis and modelling, Probabilistic
forecasting , Quality assessment and monitoring , Technical code and system development, Towards high-resolution modelling
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Manpower reported in 2020 in each domain

breakdown by groupings
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Transversal area: future evolution of
software infrastructures
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Dynamics in LACE (working with current NH spectral core)

Vertical discretization: Design of VFE for NH model

Horizontal diffusion — Tuning and redesign depending on the scale
Dynamic definition of the iterative time schemes

Terms redistribution through new VV variables

Experiments in very high resolution

Optimization of the model code — single precision

Coupling strategy, higher frequency

Reformulation of the NH system as departure from HPE

Nonhydrostatic dynamics was redesigned as pure increment to hydrostatic dynamics.
Moreover, nonhydrostaticity may be introduced partially, depending on given parameters.
Then an equilibrium between accuracy and stability may be found, where the results are
very similar to full nonhydrostatic version and the stability is enhanced. For example, the
corrector may be omitted and only one iteration time scheme may be used (SETTLS) in
some cases where this was not possible with pure nonhydrostatic dynamics. (28th Aug to
23rd Oct 2020 Jozef Vivoda)



Dynamics: a gridpoint solution

Step

Options (LAM vs. global)

Horizontal derivatives (vorticity, divergence and pressure~temperature gradients)
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2. I spectral transform: spectral to grid point PR
Z nverse spectral transform: spectral to grid poin Legendre, FFT
o i P e AROME physics
3 Computation of the physics contributions ALADIN/ALARO physics
4. Calculation of the tendencies of the prognostic variables of the model state INTFLEX

Computation of the explicit grid-point dynamics and

adding it to the total tendencies of the prognostic variables
Computation of the semi-Lagrangian departure points and

Interpolation of the tendencies to these points
Addition of the interpolated tendencies to the model state
Lateral boundary coupling

IF5-ARPEGE-ALADIN hydrostatic
ALADIN-NH

SLHD

bi-periodic LBC conditions

direct spectral transforms

solving the semiimplicit Helmholtz equation

bi-FFT

Legendre. FFT
IFS-ARPEGE-ALADIN hydrostatic
ALADIN NH
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Tackling our biggest model problem: fog
through realistic CCN/aerosol

Several of Harmonie’s most aggravating forecast problems are connected:

- too quickly growing, persistent, cold fog over sea

- radiation (cloudy) bias

- precipitation behavior in coastal zones

Fog behaviour is very sensitive to CCN amount/evolution. The model assumes too much
cloud water. This also affects radiation/coastal precip behavior.

Fundamental solution:

- Use 2d moment LIMA microphysics scheme to describe the evolution of CCN

- Initialize CCN and aerosols through CAMS

- Propagate the impact of CCN/aerosols to radiation/cloud schemes through aerosol
parametrizations.

We have only just started to study LIMA. But we can already improve fog behavior a lot,
using the present ICE3 microphysics and two small changes in the CCN concentration
and LW radiation emissivity!

\\\\\

HC/GA meeting, 20201127



Adjusting LW emissivity and CCN removes most spurious fog...
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... consider adaptation of supersaturation -
parametrization to better activate the CCN

HC/GA meeting, 20201127



TOUCANS Third Order moments (TOMs) Unified Condensation Accounting and N-
dependent Solver (for turbulence and diffusion)

The work on implementation of TKE-based mixing length in TOUCANS continued. In order to
check the computation of BL89 integrals, the code was adapted to diagnose vertical parcel
displacements (L, and L,,) from the ARPEGE subroutine acbigs.F90. TOUCANS values were

slightly smaller which is atributed to the impact of added shear term.
the meaning of L,,. length scale (average of L, and L,,,)

the meaning of L and |, length scales in TOUCANS is not as straightforward as it seemed

The main length scale L, which appears in TOUCANS equations, is equal to the Prandtl type mixing length in the free atmosphere,
but in the surface layer it is increased by the factor v/C; = 6

1, and 1. scales which also appear in TOUCANS equations have the meaning of the Prandtl type mixing length in the surface layer,
while in the free atmosphere they correspond to the Prandtl type mixing length scaled by C,/v = 1/6

set L=L . (or | =L .-C,/v). The smooth transition to L=v/C-k-z in the surface layer is achieved by weightning

The scores for the winter inversion case were better than for the reference (I, mixing length) due to reduced mixing near the surface. However,
during the convection there was not enough mixing above the surface layer and close to the top of the PBL.

Treatment of TTE (total turbulent energy) was improved to remove oscillations that
occasionally appeared in the forecast, the computation is stabilized, leading to
improved 2m temperature forecasts, the report is not available yet, but the researchers
plan to publish the results in MWR.




Left: orographic variance calculate

Physics developments in ALARO and AROME (including SURFEX)

The work on implementation of TKE-based
mixing length in TOUCANS continued. the
meaning of LTKE length scale (average of
Lup and Ldown) the meaning of L and Im
length scales in TOUCANS is not as

straightforward as it seemed The scores for

the winter inversion case were better than
for the reference (Igc mixing length) due to
reduced mixing near the surface.
Treatment of TTE (total turbulent energy)
was improved to remove oscillations that
occasionally appeared in the forecast, the
computation is stabilized, leading to
improved 2m temperature forecasts.
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» Smoothing and reduction of orographic roughness increases naturally
the wind speed a bit, at the same time it reduces the random error.
The old choice of FACZ0 = 0.53 seems somehow unheatable.
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Physics

Physically based stochastic perturbations and applied machine learning (Al)

Nonlin. Processes Geophys., 27, 187-207, 2020
https://doi.org/10.5194/npg-27-187-2020

© Author(s) 2020. This work is distributed under
the Creative Commons Attribution 4.0 License.
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Data assimilation: DAsSKIT
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Milestone: 4D-Var ready for operational use in Cy43h2.1.2

Extensive testing of 4D-Var on three domains, several combinations of observations and
various 4D-Var settings, nearly concluded. Overall: 4D-Var as good as or slightly better
than 3D-Var. Comp. cost ~ 12h forecast
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Tests with 4DenvVA
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Mitigation of reduced aircraft data for data assimilation
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Operational ensembles of RC LACE
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Thank you for your attention!
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