NEW PRESENTATION FOR ROUTINE POS.

YESSAD Karim.

March 24, 2009

Version 2.

1 Introduction and purpose.

Routine POS manages the vertical interpolations of the post-processing (now in FULL-POS). This routine has
been written in the end of the 80’s and has been used in the old post-processing software which existed before
the implementation of FULL-POS. Its design is still strongly linked to the type of dynamics which existed in
the early stages of ARPEGE/IFS, i.e. a thin layer hydrostatic formulation of the equations; this design was also
well adapted for a limited amount of post-processable variables, but has reached some limits with the number of
post-processable variables we have currently.

This is not too misleading for off-line uses of FULL-POS: in this case the forecast writes an historical file, and
the external call of FULL-POS is usually done in a hydrostatic frame. Problems start to occur when using in-line
FULL-POS in a model with NH equations or deep-layer equations. There is an increased use of in-line FULL-
POS configurations, not only at ECMWEF (where this is necessary because ECMWEF has no specific historic files:
outputs are always written via FULL-POS), but also now at METEO-FRANCE. The current METEO-FRANCE
operational suite (cy35t1_opl) uses in-line configurations of FULL-POS, NH AROME included. For this reason
having a properly coded POS becomes more and more stringent.

The purpose of this paper is to give a list of problems encountered with the current design of POS, and some
proposals of rewritings to solve them. Rewriting will be extended too some other routines involved in the vertical
interpolator of FULL-POS.

2 Shortcomings with the current design of POS.

The main shortcomings can be listed as follows:

e Dynamics which is in parts 1.2 and 1.3 is too much oriented “thin layer hydrostatic dynamics”, and it is
difficult to introduce NH dynamics and/or deep-layer formulations properly. About NH dynamics, what has
been already done works for a subset of options, and is not very clean: some diagnostics are not consistent
with the NH dynamics (geopotential height and its gradient for example). Deep-layer formulations have
not been properly introduced in these pieces of code. I have also noticed that VFE vertical discretisation
is not always easy to introduce properly, even if some efforts has been done during the last cycles.

e Parts doing dynamics (call of GP.. and GNH.. routines) and parts doing vertical interpolations, are not
enough separated. There are still too many GP.. and GNH.. routines called under some interpolation
routines, and these calls may not see the NH or deep-layer formulations effects. APACHE is a serious
issue about this point.

That can be a serious problem for some deep-layer NH formulations which require a variable change for
the vertical coordinate.

That can forbid implementation of alternate formulations of NH dynamics.

Another consequence is that we do the same calculations several times, via successive calls to GP.. routines
which exactly do the same thing. For example the calls to GPRCP done under FPPS (called three times
in POS) compute exactly the same quantities as the call to GPRCP done in part 1.2 of POS. The same
redundancy occurs for some of the GP... routines called under APACHE.

e Calculations done in parts 1.2 and 1.3 are switched on according to very tricky tests (using
CDCONF and a large number of LL_.. keys), maybe not always safe (for example test
“LL_-VD.OR.LL_VW.AND.(.NOT.LFPART2)” in part 1.2.6 is suspicious, I think this is rather
“(LL_.VD.OR.LL_VW).AND.(.NOT.LFPART2)”). The consequence is that there is a serious risk to use
uninitialised intermediate quantities and to introduce bugs in these tests. New developments (NH alternate
formulations, new post-processed variables) are difficult to implement in this frame.

And we can add the following remarks:

e GFL variables are treated individually: that generates long sequences of code (more than 600 lines only
for the GFL treatment), and POS must be updated each time a new post-processable GFL is introduced.
Introducing new GFL in POS and more generally in the vertical interpolator of FULL-POS becomes
difficult, and I also notice that ill-formulated introduction of GFL variables in routine APACHE leads to
have 5 calls to APACHE in POS (and also in ENDPOS), where the number of calls should be normally
only one.

Individual treatment of GFL variables is also present in some other FULL-POS routines (for example
PHYMFPOS, ENDPOS).

e Although some cleaning has been done in the past, POS remains very long: around 3000 lines in CY35T2.
e There are too many dummy arguments (91 arguments in cycle CY35T2).

e Tests on LECMWF should be avoided in POS (the corresponding piece of code must be moved in a set-
up routine) and more generally in the vertical interpolator of FULL-POS (where I have noticed several
occurrences).

3 Proposals for recoding: POS.

In this section we focus on routine POS. About APACHE and some other routines involved in the vertical
interpolator of FULL-POS, only collateral effects of the POS recoding will be mentioned.

2

3.1

Dynamics and compliancy with NH models and/or deep-layer
formulations.

* Main guidelines: The main guidelines to rewrite parts 1.2 and 1.3 are the following ones:

Have two distinct parts, the first one computing all the dynamical quantities which are also required in the
model (i.e. found in CPG_GP for example), the second one computing pure diagnostic quantities (not
required in the model, like the potential vorticity). Additionally to that, we plan to compute the first set
of dynamical variables in all cases required by the dynamics, even if they are not-processed (no condition
will be admitted other than LFPART2 and dynamical keys such as LNHDYN, NVDVAR, NPDVAR,
LVERCOR, LRWSDLR, LVERTFE). That means for example that calculation of w/Il will be always
done. This first part will be recoded more consistently to what is done in CPG_GP: that will allow in the
future an easier updating of this part of POS according to the modifications brought in CPG_GP.

Gather all the dynamics in parts 1.2 and 1.3, avoid to recall GP.. routines in the part doing interpolations
(for example under PP... routines). If this is not possible, make these additional calls to GP.. routines
consistent with the type of dynamics used (NH vs hydrostatic, VFE vs FD, deep-layer vs thin-layer).

x More details about rewriting the first class of post-processable variables: The first
class of post-processable variables, those which are also computed in the model integrations, includes the following

list:

¢p, R, R/c, (routine GPRCP).
RT and V(RT) (routine GPRT).

IT at full and half levels, §, o and some other quantities linked with the hybrid coordinate (routines
GPPREH, GPXYB, GPPREF).

V6, Va (routine GPGRXYB).

Pressure departure p—II and some other quantities linked with the pressure departure (routine GNHPRE).
V® (routine GPGRGEOQ).

ﬁ‘fi—g and & (routine GPCTY).

Vertical divergence d (routine GPVERDIA or some other routines).

w and —GAw (via routine GPGW).

Geopotential height ® (routine GPGEO).

Most of these calculations are in part 1.2 of POS, but calculation of ® appears at the beginning of part 1.3.

We cannot replace this part by a call to CPG_GP, because CPG_GP computes quantities at two different
instants and does computations which are useless in POS; furthermore POS must take account for the time
being of the case LFPART2, not present in CPG_GP (this case is expected to disappear in the future when
rewritting the 927 configuration but no one is currently available to do this work).

To be more consistent to what is done in CPG_GP, it would be recommended to compute these quantities in
the following order, keeping the following conditions (works at least for model dataflow, to be checked if this is
still valid for file dataflow too):

IT at full and half levels, §, o and some other quantities linked with the hybrid coordinate (routines
GPPREH, GPXYB, GPPREF).

Calculation of ZSPL and ZSPM must be always done.

Calculation of ZRPRESF (under LVERTFE), then calculation of V4, Vo (routine GPGRXYB).
Call to GPGRXYB must be always done.

¢p, R, R/cp (routine GPRCP).

Call to GPRCP must be always done.

RT and V(RT) (routine GPRT).
Call to GPRT must be always done.

LVERCOR=T calculations (at least a/r, r/a, V(r/a)).

— LVERCOR=T: call to GPVCTS, GPVCRS, GPGRVCRS to compute ZVCTSOF, ZVCTSOFL,
ZVCTSOFM (reference profile of temperature and its gradient), ZVCRSSAOF, ZVCRSSAOFL,
ZVCRSSAOFM, ZVCRSSAOH (r/a, V(r/a)), ZVCASRSOF, ZVCASRSOH (a/r).

— LVERCOR=F: ZVCTSOF=0., ZVCTSOFL=0., ZVCTSOFM=0., ZVCRSSAOF=1.,
ZVCRSSAOFL=0., ZVCRSSAOFM=0., ZVCRSSAO0H=1., ZVCASRSOF=1., ZVCASRSOH=1. .

ZVCRSSAOQOF, ZVCRSSAOFL, ZVCRSSAOFM, ZVCRSSAO0H, ZVCASRSOF, ZVCASRSOH are required as
input arguments of GPCTY; ZVCRSSAOF and ZVCASRSOF are required as input arguments of GPPVO.

Calculations must be done according to the value of LVERCOR, but no other condition should appear.

3

e Pressure departure p—II and some other quantities linked with the pressure departure (routine GNHPRE).

— LNHDYN and LEPART?2: transfer ZSPD into ZPDT0; compute ZRREDO (contains R%).

— LNHDYN and .NOT.LFPART?2: call GNHPRE and GNHGRPRE; compute ZRREDO (contains
R,
P

— NOT.LNHDYN: ZPDT0=0., ZNHPPI=1., ZRNHPPI=1., ZNHPREF=ZPRESF, ZQCHAL=0.,
ZQCHAM=0. .

Calculations must be done according to the values of LNHDYN and LFPART2, but no other condition
should appear.

e LRWSDLR=T calculations: if LNHDYN.AND.LRWSDLR=T, compute a/r, r/a, V(r/a), Gr
(geopotential height) and V(Gr).
Call to GNHDLR to fill the part of ZRDLRO containing r/a and a/r, ZGEOPH (Gr at half levels),
ZGEOPF (Gr at full levels).
Call to GNHGRDLR to fill the part of ZRDLRO containing V(r/a), (ZGPFL,ZGPFM),
(ZGPHL,ZGPHM) (respectively V(Gr) at full and half levels).

ZRDLRO is required as input argument of GPCTY, GPXX, GPGW. It would be useful as input
argument of GPPVO when LRWSDLR will be implemented inside, but for the time being we assume that
GPPVO is called out of the frame of LRWSDLR=T deep-layer NH equations calculations.

No other condition than LNHDYN.AND.LRWSDLR=T should appear.
. 7'7% and § (routine GPCTY), then calculation of ZETADOT (according to the value of LVERTFE).
Call to GPCTY and calculation of ZETADOT must be always done.

e Geopotential height ® (routine GPGEO). Input data ZR0 must be replaced by ZRREDO if LNHDYN=T.

Calculations must be done according to the values of LNHDYN and LRWSDLR (GPGEO should not be
called if LNHDYN.AND.LRWSDLR), but no other condition should appear.

e V® (routine GPGRGEO).
Call to GPGRGEO must be done if (LNHDYN.AND.(.NOT.LRWSDLR)) or (NOT.LNHDYN)). No
other condition should appear.

e Half level horizontal wind, stored in (ZUH,ZVH): routines GPHLWI+GPHLUV.
This calculation must be always done.

e Routine GPUVS with LLDER=.FALSE. .
Call to GPUVS must be always done.

e Calculation of the NHX term (d4 — d) if NOT.LFPART?2., stored in ZX0.

— LSLAG.AND.LNHDYN.AND.(NVDVAR=4).AND.(ND4SYS=2): simple copy from PGMV (cf.
what is done in CPG_GP).

— otherwise: call to GPXX.

No other condition should appear.
e Vertical divergence d if NOT.LFPART?2.

— LNHDYN and NVDVAR=3: ZDVER0=PSVD.

— LNHDYN and NVDVAR=4: ZDVER0=PSVD-ZXO0; remove some obsolete and false comments
saying that this option is not ready.

— .NOT.LNHDYN: compute dpyq. Call to GPVERDIA then ZDVERO=(ZR0/RD)*ZVDTO0. Or
maybe simply ZDVERO(.,.)=-(ZR0(.,.)/RD)*(ZDIVTO(.,.)+ZX0(.,.) +(1.-ZKAPO(.,.))*ZVVEL(.,.))
to match what is done in CPG_GP (in this case routine GPVERDIA becomes useless).

Calculations must be done if NOT.LFPART2, according to the value of LNHDYN and NVDVAR, but no
other condition should appear.
e w (via routine GPGW) and Aw at full levels.

The first difficulty to update this part is that, for VFE (LVERTFE.AND.LVFE_GW=T), GPGW provides
full level Gw, but the following parts of POS wait for half level w. The approximation currently done is
to do computations always in FD and we will keep that for the time being.

The second difficulty is that, for the time being, deep-layer NH equations are not taken into account in
this part of POS.

Recent developments on GPGW, combined with minor developments to be done (possibility to get the
optional dummy argument PGDW also for FD vertical discretisation), would allow to obtain both half
level Gw and full-level GAw, taking properly account of the NH deep-layer equations when relevant. That
will allow to simplify this part of POS.

Finally, the updated code of this part will look like:

4

— If NOT.LFPART2: keeps LLVFE always to F.
Input data: ZDVER (contains d).
Call to GPGW with the right optional dummy arguments (including input LDGDWI=F, output
PGDW): provides Gw at half levels and GAw at full levels.
Divide by G and fill ZWWTO0 by w at half levels; fill ZVDTO by —GAw at full levels.
— If LFPART2: keeps LLVFE always to F.
Input data: PSVD (contains —GAw).
Copy PSVD in ZVDTO.

Call to GPGW with the right optional dummy arguments (including input LDGDWI=T): provides
Guw at half levels.

Divide by G and fill ZWWTO0 by w at half levels.
Additionally to that:
— correct some false comments: output ZVDTO contains —GAw.

No other condition than LFPART2, LVERTFE, LVFE_GW should appear. The upper air w and —GAw
will be always computed.

e At this level we may put the additional pressure variables conversions required for LRWSDLR=T (code
which is currently at the end of part 1.2.2 of POS), and ignore for the time being the LRWSDLR=T
effects for the calculation of purely diagnostic post-processable quantities (see second class below). In
theory, conversions would be also required for ﬁ% and § but I don’t know really how to do them: they
are currently ignored.

Note that the case LNH_GEOGW has been ignored for the time being.
These calculations must be always done, that means that the conditions appearing in parts 1.2.0a and 1.2.0b
must be adapted.

x More details about rewriting the second class of post-processable variables: The
second class of post-processable variables, those which are only diagnosed, includes the following list:

e Potential temperature 6 and potential vorticity PV (routine GPPVO).
e Deformations.

e Equivalent potential temperature (routine GPEPT).

e Isobaric equivalent temperature (routine GPIET).

e Simulated reflectivity (routine GPPRSO0D).

e Virtual temperature (routine PPCVIRT).

All these calculations are in part 1.3 of POS, and we can add the calculation of relative humidity RH (routine
GPRH) which is done later in the code (part 2.2.9).

No significant change has to be expected for these variables, excepted for the call to GPRH which must be in
part 1.3 rather than in part 2.2.9. Conditions to call these calculations may remain unchanged.

* GP.. routines called under interpolations routines:
Here is the list of relevant routines:

e Routine FPPS: when called from POS the only GP.. routines called by FPPS are GPRCP and
GPGEO.

e Routine PPLETA: calls GPPREH, GPXYB, GPPREF. (may generate inconsistencies for deep-layer
NH model, no problem otherwise).

e Routines PPGEOP and PPGEOP_OLD: call GPGEO.
e Routine PPRH: calls GPRH.
e Routine PPVVEL: calls GPCTY.

More remarks and actions to be done about FPPS:

e The first remark we can do is that the calls to GPRCP and GPGEO done under the arborescence POS
— > FPPS do exactly the same calculations as the calls of GPRCP and GPGEO done in parts 1.2 and
1.3 of POS.

e That means that the best thing is to move the calls to GPGEO, GPRCP, and also the calls to GPPREH
and GPXYB, out of FPPS (must be done in the callers of FPPS before calling FPPS).

e The new version of FPPS will keep part 3 of the current FPPS, with the following dummy arguments:

input: KPROMA, KST, KND, KOPLEV, POROG, PGEOP, PT, PR (=air constant), PSP, PST, PRESH,
PLNPR, PALPH, PGEOPH. All these quantities are available once done the call to GPGEO in part 1.3
of POS.

output: PSPPP

e FPPS is also called by APACHE and ENDPOS. That means that we will need to adapt APACHE and
ENDPOS too (add calls to GPGEO, GPRCP, GPPREH and GPXYB before the call to FPPS).
Further optimisation may be expected in APACHE and ENDPOS (potential repetition of calls to
GPGEO, GPRCP, GPPREH and GPXYB which actually compute the same quantities).

More remarks and actions to be done about PPLETA:

e This routine is called in part 1.4.2 of POS only if post-processing is done at n-levels which are not model
levels (FPVALH and FPVBH different from VAH and VBH). This call may generate inconsistencies for
deep-layer NH model, but no problem otherwise.

e No action is planned for PPLETA, but use of configurations which call PPLETA under POS in a
deep-layer NH model (LRWSDLR=T) is forbidden for the time being.

More remarks and actions to be done about PPGEOP and PPGEOP_OLD:

e The call to GPGEQO which is done in PPGEOP is not the same one as the one done in part 1.3 of POS,
because it computes a geopotential increment from a temperature increment (close to a departure from
standard atmosphere temperature?). It is not possible to move this call to GPGEO in part 1.2 of POS,
because it requires the calculation of ZSTTF which is done in part 1.4.5 of POS.

e For thin-layer NH models, the current call to GPGEO in PPGEOP is not correct because in this case
the input dummy argument for air constant must be ZRREDO and not ZR0 (PRO) to take account of the
factor II/p.

e For deep-layer NH models, the current call to GPGEO in PPGEOP must be in theory replaced by a call

to GNHDLR, but in practical this is impossible to do it at this location or even just before the call to
PPGEOP, because at the location where PPGEOP is called in POS, some data linked with apparent
pressure coordinate are no longer known (contrary to part 1.2 of POS). The vertical interpolator only
knows genuine hydrostatic pressure and not features linked with the deep-layer NH model.
The only way to deal with that is to keep the thin-layer approximation to compute the increment of
geopotential to be interpolated, assuming that we have quantities «, J consistent with the genuine
hydrostatic pressure and not something linked with the apparent vertical pressure coordinate. The
conversion which is expected at the end of part 1.2 of POS provides acceptable values for these quantities.
This choice has probably limitations for idealised simulations like “small planet” ones.

e To sum-up, with the choices of dynamics we currently have, we can stick to adapt the input dataflow of
GPGEO in order to provide ZRREDO instead of ZR0 (PRO in PPGEOP). This can be done keeping the
call to GPGEO in PPGEOP.

e But I don’t guarantee that future possible alternate formulations of NH dynamics (for example dynamics
using the geopotential height as prognostic variable) will not raise new problems, difficult to solve with the
current version of PPGEOP which assumes that the geopotential height is always diagnosed.

e We can notice that PRO is used in other parts of PPGEOP and we must know if it must be replaced by
ZRREDO or not.

— Factor RD/PRO in the RHS of calculation of ZSTTF allows to convert a virtual reference temperature
into a real reference temperature: no change is expected.

— PRO is used after the call to GPGEO to convert the temperature increment into R times the
temperature increment: this RST is required for interpolations or extrapolations below the lowest
full level. It is not clear in my mind if NH effects linked to pressure departure must be taken into
account in this part (and how) but this is an issue. The use of PRO will be provisionally unchanged
in this part.

e [now sum-up the actions to do on PPGEOP and PPGEOP_OLD:

— An additional input dummy argument PRREDO will be passed (containing R if HYD, R% if NH),
just after PRO. PRO will be replaced by PRREDO in the calls to GPGEO.
— The calls to GPGEO remain in PPGEOP and PPGEOP_OLD.

— The callers of PPGEOP must be adapted. In AVAL and PPOBSA the same quantity will be
passed in dummy arguments PRO and PRREDO because the NH dataflow is not ready in these
routines.

— No action is required for the time being in the TL and AD codes because the TL and AD codes of
the NH model are not yet implemented.

More remarks and actions to be done about PPRH:

e There is no difficulty to move the call to GPRH out of PPRH, and this is even desirable for the call
to PPRH done in POS. Additionally we can notice that a call to PPRH is equivalent to a call to
GPRH-+PPQ.

e Call GPRH in part 1.3 of POS; use the output quantity containing relative humidity as input to the
revised version of PPRH.

e PPRH is also called by PPOBSA and AVAL: in these routines call GPRH just before the call to the
revised version of PPRH.

e The revised PPRH becomes identical to PPQ: use PPQ and remove deck pprh.F90.

e The same kind of work must be done on the TL and AD codes: PPRHTL (called by PPOBSATL) and
PPRHAD (called by PPOBSAAD).

More remarks and actions to be done about PPVVEL:

e There is no difficulty to move the call to GPCTY out of PPVVEL, and this is even desirable. GPCTY
does exactly the same calculations as the call to GPCTY done in part 1.2 of POS.

e Call GPCTY in part 1.2 of POS; use the output quantity containing 7'7‘2—“ and § as input to the revised
n
version of PPVVEL.

e The new version of PPVVEL, will have the following dummy arguments:

input: KPROMA, KST, KPROF, KFLEV, KLEVP, KLOLEV, KLEVB, PRPRES, LDBELO, LDBLOW,
PRXP, PRXPD, PRDELP, PEVEL, PVVEL.

output: PVVPP.
optional input: LDETADOT.

e PPVVEL is called only by POS.
e Additionally, remove the obsolete comments in part 2.2.10 (old call to GPCTY).

3.2 Global treatment of GFL and CUF post-processable quantities.

* GFL: It would be desirable to have a global treatment of post-processable GFL variables (introduction of a
specific vertical interpolator GFL structure), as it is already done for the GFL variables in the dynamics. That
will allow to shorten POS and also to have a quasi-automatic update of POS when adding new post-processable
GFL variables. This code evolution would require at least the following features:

e Definition of two GFL structures, the first one for input data of POS (containing derivatives), the second
one for keys LL_[X] and interpolated GFL.

e Replace input dummy PQ, PQL, PQM, PL, PI, PS, PR, PGR, PHL, PTKE, PEXT, PEXTL, PEXTM,
PA, PO3, PUAL, PUOM, PDAL, PDOM, PUEN, PUNEBH, PAERO, PGHG, PTRAC, PGRG, PLRCH4,
PCH4S, PERA40, by PGFL. This PGFL array must be flexible (this is not necessary GFL, that can be
something dimensioned with NFPROMA). Order of storing data in PGFL must be defined in the caller of
POS.

e Replace input dummy LDQ, LDQDER, ... , by a new variable LDGFL.
e Use a local array LL_GFL instead of the LL_[X].
e Use a local array ZGFLTO instead of the Z[X]TO0 (may contain derivatives).

e Ordering of GFL variables in PGFL, LDGFL, ZGFLTO0, must be consistent, and defined (or known) in the
caller of POS. To define it in VPOS, we can for example take the same ordering as in GFL.

e Ordering of GFL variables in LL_GFL, ZPPGFL, must be consistent: we can for example take the same
ordering as in GFLT1, or define a specific order for post-processable GFL variables. This order will be
defined in part 1.1.1 of POS.

e In part 1.1.1 fill LL_GFL, and also some other GFL conditions to do interpolations in part 2.1.1 and calls
to FILL_PP3 in part 3.1.

e In part 1.2.0a fill ZGFLTO.

e In part 1.2.8 fill ZPPGFL with zeros.

e Use ZGFLTO where GFL variables are used (input to GP.., GNH.., PP.., FPPS, APACHE).

e Rewrite part 2.1.1 with a global treatment of GFL (one loop on JGFL, one call to PPQ), fill ZPPGFL).
e Rewrite part 3.1 with a global treatment of GFL (one loop on JGFL, one call to FILL_PP3)

Additional modifications are expected in VPOS (call to POS), SCAN2M (call to VPOS). Globalisation of
GFL may be later extended to other FULLPOS routines.

* CUF: It would be desirable to have a global treatment of post-processable CUF variables. The maximum
number of CUF is JPMFNR (in PARMCUF). This code evolution would require at least the following features:

e Replace input dummy PRMCUFGP1, PRMCUFGP2, PRMCUFGP3, PRMCUFGP4, PRMCUFGP5 by
PRMCUFGP, dimensioned with JPMFNR.

e Replace TFP_CUF1 to TFP_CUF5 in YOMAFN (and all other routines where such variables are used)
by TFP_CUF dimensioned with JPMFNR, or use TFP_DYNDS.

e Replace LL_.CUF1 to LL_.CUF5 by LL_CUF dimensioned with JPMFNR.
e Replace ZPPCUF1 to ZPPCUF5 by ZPPCUF dimensioned with JPMFNR.

7

e Part 1.1.2: CUF code becomes a loop on JCUF from 1 to JPMFNR filling LL_.CUF from
QFPTYPE%LL(TFP_CUF%ICOD).

e Part 1.2.8: CUF code becomes a loop on JCUF from 1 to JPMFNR filling ZPPCUF with zeros.

e Part 2.2.14: CUF code becomes a loop on JCUF from 1 to JPMFNR filling ZPPCUF(.,JCUF) from
PRMCUFGP(.,JCUF).

e Part 3.2: CUF code becomes a loop on JCUF from 1 to JPMFNR calling FILL_PP2.

Additional modifications are expected in VPOS (call to POS), SCAN2M (call to VPOS). Globalisation of
CUF may be later extended to other FULLPOS routines.

3.3 Reduction of the number of dummy arguments.

POS has 91 dummy arguments in CY35T2. Global treatment of GFL and CUF (see above) would allow a
significant reduction of this number, but some other groups of dummy arguments may be shortened (for example
pass PGMV and PGMVS as dummy arguments instead of the individual GMV and GMVS variables and their
derivatives). It is desirable to have the dummy argument KPROMA instead of NPROMA because future uses of
POS may use something different (for example NFPROMA, like in ENDPOS).

Additional modifications are expected in VPOS (call to POS), SCAN2M (call to VPOS).

3.4 Miscellaneous features.

e Tests on LECMWFEF should not appear in POS. The only location where it appears is to set-up a local
variable ZRHMAX (equal to 1. or 2. according to LECMWF). I recommend instead to have a module
variable VRHMAX in YOMDYN, set-up in SUDYN (for example in part 1.17), or several versions of
this variable. Some PP.. routines called under POS also use LECMWF.

Some occurrences of ZRHMAX are present elsewhere in the code, with the same meaning (maximum relative
humidity), but not always the same value: example ZRHMAX=1 in SURBOUND, ZRHMAX=1.2 in
HRETR and PPOBSA. This variable is often used as input variable of GPRH.

e Correct false comments (array ZVDTO which contains —GAw, array PSVD which contains the vertical
divergence variable if LFPART2=F and —GAw if LFPART2=T).

4 Proposals for recoding: APACHE+AVAL.

The same kinds of recodings described for POS can be extended to APACHE+AVAL.

4.1 Global treatment of GFL post-processable quantities.

The POS GFL structure must be extended to APACHE and AVAL. After that, APACHE and AVAL will
also treat qere, qrrRAC, QAERO, 4GRG, qexT (this is currently not the case). This work will allow to replace 5
calls to APACHE in POS (and also in ENDPOS) by one.

AVAL will be in-lined in APACHE. If there is no objection for that, APACHE will be in-lined in its callers
(POS, ENDPOS and PPOBSAP).

In parts 1, 2 and 3 of AVAL, GFL treatment must be done in separate subsections.

4.2 Gathering dynamics.
When possible, dynamics (call to GP.. and GNH.. routines) must be done in the caller of APACHE+AVAL
and not in APACHE-+AVAL. This is possible at least for the following calls:

e Calls to GPPREH+GPXYB+GPPREF done in part 1.3 of APACHE must be done in the caller.
They are identical to those done in part 1.2 of POS.

e Call to GPRCP done in part 1.6 of APACHE must be done in the caller. It is identical to the one done
in part 1.2 of POS.

e Dynamics done in FPPS (part 2.1 of APACHE) must go out of FPPS, and be done by the caller of
APACHE,; re-use for example calculations done in part 1.2 of POS.

e The call to GPPRE in part 3.1 is not identical to what is done in part 1.2 of POS (use of a different
surface pressure) but this call can be moved just after the call to FPPS.

e There are also dynamics recalculation in AVAL which must be moved in the callers of APACHE (for
example re-use calculations already done in part 1.2 of POS).

4.3 More remarks about AVAL.

AVAL has a structure similar to POS: it must be reorganised like in POS (memory transfers, then dynamics,
then preparation of interpolations, then interpolations, with separated subsections for GFL). Use of LECMWF
in AVAL, forbidden at this level of the code, must be replaced by something else: introduce a key LFPESCALE
and replace NOT.LECMWF by LFPESCALE.

Additionally, in-lining APACHE+AVAL in POS would allow to merge some parts:
e part 1 of AVAL and part 1.2 of POS (memory transfers and dynamics).
e part 2.1 of AVAL and part 1.4 of POS (preparation of interpolations).

e parts 2.2 to 2.13 of AVAL and parts 2.1 to 2.5 of POS (interpolations). All GFL treatment must be put
in part 2.1 of POS.

e Additional interpolations under LFPESCALE: preparation of interpolations must go in part 1.4 of POS;
interpolations must go in part 2.1 of POS for GFL, 2.2 to 2.5 of POS for other quantities.

5 Proposals for recoding: ENDPOS, PHYMFPOS, PPOBSAP
and some other miscellaneous features.

5.1 ENDPOS.

ENDPOS has a structure similar to POS (but it is simpler) and we propose to rewrite them according to the
rewritings done in POS:

e The order of calculations will be: memory transfers, then dynamics (consistent with NH and deep-layer
formulations), then preparation of interpolations, then interpolations, then store data in PFP.

o If agreed, APACHE+AVAL will be in-lined in ENDPOS.

e The GFL structure will be introduced in ENDPOS, and GFL treatment will be done in separated sub-
sections.

e Sections and subsections numbering will be done consistent between POS and ENDPOS to allow a future
merge of these two routines.

e The number of dummy arguments will be reduced: pass PGMV and PGFL instead of the individual
variables.

5.2 PHYMFPOS.

PHYMFPOS does not perform interpolations, but we retrieve structures similar to parts 1 and 3 of POS. Like
in POS, it is desirable to have the following rewritings:

e Global GFL treatment.
e Part 1: memory transfers in part 1.1, with a separated sub-paragraph for GFL variables.

e Part 1: dynamics in part 1.2, including the dynamics currently done in FPACHMT which must go out
of FPACHMT. Make this dynamics “NH and deep-layer formulations” consistent.

e The number of dummy arguments will be reduced: pass PGMV and PGFL instead of the individual
variables.

5.3 PPOBSAP.

In-lining APACHE+AVAL in PPOBSAP will allow PPOBSAP to have a structure similar to POS and
ENDPOS (but simpler).

e The order of calculations will be: memory transfers, then dynamics (consistent with NH and deep-
layer formulations), then preparation of interpolations, then interpolations, then store data in PXPP and
optionally in ROBODY.

e The GFL structure will be introduced in PPOBSAP, and GFL treatment will be done in separated
sub-sections.

e Sections and subsections numbering will be done consistent between POS and PPOBSAP.

e The number of dummy arguments will be reduced: pass PGMV and PGFL instead of the individual
variables.

54 FPACHMT.

Parts 1 to 3 (dynamics) will go out of FPACHMT (these calculations are generally already done in the callers);
only part 4 will remain in FPACHMT.

6 Miscellaneous actions.

I recommend to merge PPGEOP with PPGEOP_OLD, PPT with PPT_OLD, PPUV with PPUV_OLD:
both versions are not very different, and the key LOLDPP must act on the relevant differences only and not of
the whole code. Use LECMWF under the OLD versions (forbidden at this level of the code) must be replaced
by something else (specific key to be updated in CN'T0 and CPREP4 just after LFPART2). TL and AD codes
must be updated according to the direct code.

BOB (called by AVAL) is very close to PPQ; it must be replaced by PPQ (with a minor adaptation of PPQ).

7 Conclusion and perspectives.

7.1 Conclusion.

At a first glance, rewrite the dynamics in order to have a proper consistency with NH/deep-layer dynamics
when relevant, and introduce a GFL structure, in the vertical interpolator, can be seen as two independent tasks.
Indeed, the above mentioned work leads to recommend the following order for the different phases of the recoding:

e Introduce a GFL structure in FPOS, ENDPOS, APACHE+AVAL, and also in PHYMFPOS and
PPOBSAP.

e Use this structure to have a global treatment of GFL.

e Put GFL treatment in separate sub-sections.

e Replace 5 calls to APACHE by one in POS and ENDPOS (treating all GFL).
e In-line AVAL into APACHE.

e If agreed, in-line APACHE into POS, ENDPOS and PPOBSAP.

e Global treatment of CUF in POS.

e Reduce the number of dummy arguments in POS, ENDPOS, PPOBSAP and PHYMFPOS. Replace
NPROMA by KPROMA in POS.

e Make consistent the calculations ordering and paragraph numbering in the following routines: POS,
ENDPOS, PPOBSAP, PHYMFPOS.

e Take out GP.. routines from FPPS, PPRH, PPVVEL, FPACHMT.

e Gather all the GP.. and GNH.. calls which can be gathered at the beginning of routines FPPS, PPRH,
PPVVEL, FPACHMT.

e Make these calls to GP.. and GNH.. routines consistent with the NH or the deep-layer dynamics
formulations; in particuliar in POS re-order the dynamics calculations as mentioned above. For calls
to GPGRP it would be desirable to take account of the same list of hydrometeores everywhere in the
vertical interpolator.

e Try to take properly account of NH dynamics in the GP.. routines which remain spread in the code (in
particuliar GPGEO).

e Miscellaneous actions: merge PP... routines with their “old” versions when relevant, replace forbidden use
of LECMWF by appropriate keys.

This is a huge task which must be a target for CY37 (CY36T1 on MF side).

An alternate choice would be to keep the introduction of a GFL structure at the end of the work, but that
means in this case that we will have a very long version of POS between in-lining APACHE+AVAL and before
introduction of a GFL structure.

7.2 Perspectives and other remarks.

Further actions can be studied: in POS, ENDPOS and PPOBSAP, gather interpolations variable by variable
(interpolations coming from POS, interpolations coming from AVAL and specific LFPESCALE interpolations
coming from AVAL); unification of POS and ENDPOS.

Rewriting conf 927 of FULL-POS in order to use modular spectral transforms and to remove case LFPART2=T
case is another task which becomes stringent, but we have to find someone which has time to do that. A
consequence of this action may be the call of POS with NFPROMA-dimensioned arrays.

Similar inconsistencies between dynamics and interpolators using GP.. routines may exist in the observation
interpolator (example PPGEOP called by PPOBSA): for the time being consistency is ensured when the
observation interpolator is called in a thin-layer hydrostatic model but I don’t guarantee full consistency in NH
models.

10

Appendix A: Current use of GFL variables in POS, PHYMFPOS,
APACHE+AVAL, ENDPOS.

	POS	PHYMFPOS	APACHE+AVAL	ENDPOS
Variable				
q	yes	yes	yes	yes
-1	yes	yes	yes	yes
q_i	yes	yes	yes	yes
g_a	yes	yes	yes	yes
q_03	yes		yes	yes
q_UAL	yes			
q_UOM	yes			
q_DAL	yes			
q_DOM	yes			
q_UEN	yes			
q_UNEBH	yes			
a_s	yes	yes	yes	yes
q_r	yes	yes	yes	yes
a_g	yes	yes	yes	yes
g_h	yes		yes	yes
q_TKE	yes		yes	yes
q_LRCH4	yes			
q_CH4S	yes			
q_GHG	yes		missing	yes
q_TRAC	yes		missing	
q_AERO0	yes		missing	yes
q_GRG	yes		missing	yes
q_EXT	yes		missing	yes
q_ERA40	yes			
q_EZDIAG	yes [I [

11

