Energy Estimates and Weak Boundary Procedures for LAM

Marco Kupiainen ${ }^{1,2}$
${ }^{1}$ Department of Computational Mathematics
University of Linköping
${ }^{2}$ SMHI, Rossby Centre marco.kupiainen@smhi.se

ASM 2013 Reykjavik, Iceland

Outline

Introduction/Motivation for this work Motivating examples

Model problem
Why do we impose Boundary Conditions?
Short Description of Boundary methods
Energy estimate for Davies-relaxation
Spectral Radius of operators
Computational results
Conclusion
Conclusion II

Introduction/Motivation for this work

- Boundary conditions are set using ad hoc intuition (Davies relaxation)
- Different effects in e.g. Arctic and Europe
- "The apparent success of spectral nudging for one-way nesting is at least partly an artifact of very bad procedures for windowing and blending" ${ }^{1}$

[^0]
Motivating example

- Europe has "standing waves"
- Similar problems over Arctic (mitigated with Spectral Nudging)

/home/sm_marku/test/Cordextc 198909010000qq

- Analyze boundary procedures!

Model problem

Simplification for purpose of illustration, without loosing generality!

- $\vec{u}_{t}+\sum_{i=1}^{3} \nabla \vec{F}_{i}(\vec{u})=0 \mathrm{~N}-\mathrm{S} /$ Euler/primitive equations

Model problem

Simplification for purpose of illustration, without loosing generality!

- $\vec{u}_{t}+\sum_{i=1}^{3} \nabla \vec{F}_{i}(\vec{u})=0 \mathrm{~N}-\mathrm{S} /$ Euler/primitive equations
- $\Downarrow 1 \mathrm{D}$ system

Model problem

Simplification for purpose of illustration, without loosing generality!

- $\vec{u}_{t}+\sum_{i=1}^{3} \nabla \vec{F}_{i}(\vec{u})=0 \mathrm{~N}-\mathrm{S} /$ Euler/primitive equations
- $\Downarrow 1 \mathrm{D}$ system
- $\vec{u}_{t}+\vec{f}(\vec{u})_{x}=0$

Model problem

Simplification for purpose of illustration, without loosing generality!

- $\vec{u}_{t}+\sum_{i=1}^{3} \nabla \vec{F}_{i}(\vec{u})=0 \mathrm{~N}-\mathrm{S} /$ Euler/primitive equations
- $\Downarrow 1 \mathrm{D}$ system
- $\vec{u}_{t}+\vec{f}(\vec{u})_{x}=0$
- \Downarrow Semi-linear system

Model problem

Simplification for purpose of illustration, without loosing generality!

- $\vec{u}_{t}+\sum_{i=1}^{3} \nabla \vec{F}_{i}(\vec{u})=0 \mathrm{~N}-\mathrm{S} /$ Euler/primitive equations
- $\Downarrow 1 \mathrm{D}$ system
- $\vec{u}_{t}+\vec{f}(\vec{u})_{x}=0$
- \Downarrow Semi-linear system
- $\vec{u}_{t}+A(\vec{u}) \vec{u}_{x}=0$

Model problem

Simplification for purpose of illustration, without loosing generality!

- $\vec{u}_{t}+\sum_{i=1}^{3} \nabla \vec{F}_{i}(\vec{u})=0 \mathrm{~N}-\mathrm{S} /$ Euler/primitive equations
- $\Downarrow 1 \mathrm{D}$ system
- $\vec{u}_{t}+\vec{f}(\vec{u})_{x}=0$
- \Downarrow Semi-linear system
- $\vec{u}_{t}+A(\vec{u}) \vec{u}_{x}=0$
- \Downarrow Linear system

Model problem

Simplification for purpose of illustration, without loosing generality!

- $\vec{u}_{t}+\sum_{i=1}^{3} \nabla \vec{F}_{i}(\vec{u})=0 \mathrm{~N}-\mathrm{S} /$ Euler/primitive equations
- $\Downarrow 1 \mathrm{D}$ system
- $\vec{u}_{t}+\vec{f}(\vec{u})_{x}=0$
- \Downarrow Semi-linear system
- $\vec{u}_{t}+A(\vec{u}) \vec{u}_{x}=0$
- \Downarrow Linear system
- $\vec{u}_{t}+A \vec{u}_{x}=0, \quad$ e.g. $A=\left(\begin{array}{ll}0 & 1 \\ 1 & 0\end{array}\right)$

Model problem

Simplification for purpose of illustration, without loosing generality!

- $\vec{u}_{t}+\sum_{i=1}^{3} \nabla \vec{F}_{i}(\vec{u})=0 \mathrm{~N}-\mathrm{S} /$ Euler/primitive equations
- $\Downarrow 1 \mathrm{D}$ system
- $\vec{u}_{t}+\vec{f}(\vec{u})_{x}=0$
- \Downarrow Semi-linear system
- $\vec{u}_{t}+A(\vec{u}) \vec{u}_{x}=0$
- \Downarrow Linear system
- $\vec{u}_{t}+A \vec{u}_{x}=0, \quad$ e.g. $A=\left(\begin{array}{ll}0 & 1 \\ 1 & 0\end{array}\right)$
- $\Downarrow A=T \Lambda T^{-1} \Rightarrow \vec{u}_{t}+T \Lambda T^{-1} \vec{u}_{x}=0$ Scalar PDE

Model problem

Simplification for purpose of illustration, without loosing generality!

- $\vec{u}_{t}+\sum_{i=1}^{3} \nabla \vec{F}_{i}(\vec{u})=0 \mathrm{~N}-\mathrm{S} /$ Euler/primitive equations
- $\Downarrow 1 \mathrm{D}$ system
- $\vec{u}_{t}+\vec{f}(\vec{u})_{x}=0$
- \Downarrow Semi-linear system
- $\vec{u}_{t}+A(\vec{u}) \vec{u}_{x}=0$
- \Downarrow Linear system
- $\vec{u}_{t}+A \vec{u}_{x}=0, \quad$ e.g. $A=\left(\begin{array}{ll}0 & 1 \\ 1 & 0\end{array}\right)$
- $\Downarrow A=T \Lambda T^{-1} \Rightarrow \vec{u}_{t}+T \Lambda T^{-1} \vec{u}_{x}=0$ Scalar PDE
- $u_{t}+u_{x}=0$

Why do we impose Boundary Conditions?
(Energy point of view)

$$
u_{t}+u_{x}=0, \quad x \in[0,1]
$$

Why do we impose Boundary Conditions?
(Energy point of view)

$$
u_{t}+u_{x}=0, \quad x \in[0,1]
$$

- Multiply with u and integrate!

Why do we impose Boundary Conditions?
(Energy point of view)

$$
u_{t}+u_{x}=0, \quad x \in[0,1]
$$

- Multiply with u and integrate!
- $2 \int_{0}^{1} u u_{t} d x+2 \int_{0}^{1} u u_{x}=0$

Why do we impose Boundary Conditions?
(Energy point of view)

$$
u_{t}+u_{x}=0, \quad x \in[0,1]
$$

- Multiply with u and integrate!
- $2 \int_{0}^{1} u u_{t} d x+2 \int_{0}^{1} u u_{x}=0$
- Use integration by parts!

Why do we impose Boundary Conditions?
(Energy point of view)

$$
u_{t}+u_{x}=0, \quad x \in[0,1]
$$

- Multiply with u and integrate!
- $2 \int_{0}^{1} u u_{t} d x+2 \int_{0}^{1} u u_{x}=0$
- Use integration by parts!
- $\frac{d}{d t}\|u\|^{2}+\left[u^{2}\right]_{0}^{1}=0, \quad\|u\|^{2}=\int_{0}^{1} u^{2} d x$

Why do we impose Boundary Conditions?

(Energy point of view)

$$
u_{t}+u_{x}=0, \quad x \in[0,1]
$$

- Multiply with u and integrate!
- $2 \int_{0}^{1} u u_{t} d x+2 \int_{0}^{1} u u_{x}=0$
- Use integration by parts!
- $\frac{d}{d t}\|u\|^{2}+\left[u^{2}\right]_{0}^{1}=0, \quad\|u\|^{2}=\int_{0}^{1} u^{2} d x$
- $\frac{d}{d t}\|u\|^{2}=\underbrace{(u(0, t))^{2}}_{\text {Faster than exponential growth }}-\underbrace{(u(1, t))^{2}}_{\text {Decay }}$

Why do we impose Boundary Conditions?

(Energy point of view)

$$
u_{t}+u_{x}=0, \quad x \in[0,1]
$$

- Multiply with u and integrate!
- $2 \int_{0}^{1} u u_{t} d x+2 \int_{0}^{1} u u_{x}=0$
- Use integration by parts!
- $\frac{d}{d t}\|u\|^{2}+\left[u^{2}\right]_{0}^{1}=0, \quad\|u\|^{2}=\int_{0}^{1} u^{2} d x$
- $\frac{d}{d t}\|u\|^{2}=\underbrace{(u(0, t))^{2}}_{\text {Faster than exponential growth }}-\underbrace{(u(1, t))^{2}}_{\text {Decay }}$
- We must set conditions to bound the energy for $u(0, t)$ with data: $g(t)<C$ for some constant $C \in \mathcal{R}$

Discrete Boundary procedures

CKD : $U_{t}+P^{-1} Q U=0$

$$
U(\cdot, t)=(I-W) U(\cdot, t)+W G(t) \quad W=\operatorname{diag}(\tanh)
$$

- G is data!
- $U=\left(U_{0}, U_{1}, \ldots U_{N}\right)^{T}$ is the solution.
- CKD $=$ Classic Kållberg-Davies Relaxation

Discrete Boundary procedures

WKD: $U_{t}+P^{-1} Q U=P^{-1} W(G-U) \quad W=\operatorname{diag}(\tanh)$

- WKD $=$ Weak Kållberg-Davies Relaxation, proven stable

Discrete Boundary procedures

SAT : $U_{t}+P^{-1} Q U=P^{-1} E_{0}(G-U) \quad E_{0}=\operatorname{diag}(1,0, \ldots, 0)$

- SAT $=$ Simultaneous Approximation Term (Carpenter et. al.), proven stable

Discrete Boundary procedures

CKD : $U_{t}+P^{-1} Q U=0$

$$
U(\cdot, t)=(I-W) U(\cdot, t)+W G(t) \quad W=\operatorname{diag}(\tanh)
$$

WKD : $U_{t}+P^{-1} Q U=P^{-1} W(G-U) \quad W=\operatorname{diag}(\tanh)$

SAT : $U_{t}+P^{-1} Q U=P^{-1} E_{0}(G-U) \quad E_{0}=\operatorname{diag}(1,0, \ldots, 0)$

- CKD $=$ Classic Kållberg-Davies Relaxation
- WKD $=$ Weak Kållberg-Davies Relaxation, proven stable
- SAT $=$ Simultaneous Approximation Term (Carpenter et. al.), proven stable

Energy estimate for Davies-relaxation

Strong Davies relaxation

$$
\begin{gathered}
U_{t}+P^{-1} Q U=0 \\
U=U+W_{\tanh }(G-U)
\end{gathered}
$$

- No energy estimate! (For stability(?) proof use GKS theory DIFFICULT!)

Weak Davies relaxation

$$
U_{t}+P^{-1} Q U=\tau P^{-1} W_{\tanh }(G-U)
$$

- Discrete Energy Method to prove stability
- Multiply with $U^{T} P$
- Use summation-by-parts property of difference operator
- In fact there are counterexamples shoving instability for strong methods. ${ }^{2}$

[^1]
Energy estimate for Davies-relaxation cont.

$$
\begin{align*}
\frac{d}{d t}\|U\|_{P}^{2}=U_{1}^{2}\left(1-2 w_{1}\right)+2 w_{1} U_{1} G_{1} & -U_{N}^{2}\left(1+2 w_{N}\right)+2 w_{N} U_{N} G_{N} \\
& -\sum_{i=2}^{N-1}\left(2 w_{i} U_{i}^{2}-2 w_{i} U_{i} G_{i}\right) \tag{1}
\end{align*}
$$

Since $w_{1} \geq \frac{1}{2}$ and $w_{i} \geq 0 \therefore$ Davies Relaxation is proven energy-stable!

Energy estimate for Davies-relaxation cont.

$$
\begin{align*}
\frac{d}{d t}\|U\|_{P}^{2}=U_{1}^{2}\left(1-2 w_{1}\right)+2 w_{1} U_{1} G_{1} & -U_{N}^{2}\left(1+2 w_{N}\right)+2 w_{N} U_{N} G_{N} \\
& -\sum_{i=2}^{N-1}\left(2 w_{i} U_{i}^{2}-2 w_{i} U_{i} G_{i}\right) \tag{1}
\end{align*}
$$

Since $w_{1} \geq \frac{1}{2}$ and $w_{i} \geq 0 \therefore$ Davies Relaxation is proven energy-stable!

- Stable, BUT imposing conditions where not needed!

Energy estimate for Davies-relaxation cont.

$$
\begin{align*}
\frac{d}{d t}\|U\|_{P}^{2}=U_{1}^{2}\left(1-2 w_{1}\right)+2 w_{1} U_{1} G_{1} & -U_{N}^{2}\left(1+2 w_{N}\right)+2 w_{N} U_{N} G_{N} \\
& -\sum_{i=2}^{N-1}\left(2 w_{i} U_{i}^{2}-2 w_{i} U_{i} G_{i}\right) \tag{1}
\end{align*}
$$

Since $w_{1} \geq \frac{1}{2}$ and $w_{i} \geq 0 \therefore$ Davies Relaxation is proven energy-stable!

- Stable, BUT imposing conditions where not needed!
- Solution quality is not affected if $\left\|U_{i}-G_{i}\right\|$ is "small".

Energy estimate for Davies-relaxation cont.

$$
\begin{align*}
\frac{d}{d t}\|U\|_{P}^{2}=U_{1}^{2}\left(1-2 w_{1}\right)+2 w_{1} U_{1} G_{1} & -U_{N}^{2}\left(1+2 w_{N}\right)+2 w_{N} U_{N} G_{N} \\
& -\sum_{i=2}^{N-1}\left(2 w_{i} U_{i}^{2}-2 w_{i} U_{i} G_{i}\right) \tag{1}
\end{align*}
$$

Since $w_{1} \geq \frac{1}{2}$ and $w_{i} \geq 0 \therefore$ Davies Relaxation is proven energy-stable!

- Stable, BUT imposing conditions where not needed!
- Solution quality is not affected if $\left\|U_{i}-G_{i}\right\|$ is "small".
- Usually we impose time-interpolated G i.e. $G_{i}(t)=\pi_{6 h} G_{i}\left(t_{n}\right)$

Spectral Radius of operators part I

(a) Operator without boundary conditions

(b) WKD

(c) SAT

Spectral Radius of operators part II

Increasing resolution by a factor of 5 :

Computational results

$$
\begin{gathered}
u_{t}+u_{x}=0 \\
u(0, t)=G(0, t), \quad x \in[0,1]
\end{gathered}
$$

Exact solution is $u(x, t)=\sin \left(2 \pi\left(x-t-\frac{1}{2}\right)\right)=G(x, t)$
We use the exact solution as initial data, i.e. assume perfect assimilation

Computational results

$$
\begin{gathered}
u_{t}+u_{x}=0 \\
u(0, t)=G(0, t), \quad x \in[0,1]
\end{gathered}
$$

Exact solution is $u(x, t)=\sin \left(2 \pi\left(x-t-\frac{1}{2}\right)\right)=G(x, t)$
We use the exact solution as initial data, i.e. assume perfect assimilation

- Use exact $G(\cdot, t)$ as boundary data (show movie)

Computational results

$$
\begin{gathered}
u_{t}+u_{x}=0 \\
u(0, t)=G(0, t), \quad x \in[0,1]
\end{gathered}
$$

Exact solution is $u(x, t)=\sin \left(2 \pi\left(x-t-\frac{1}{2}\right)\right)=G(x, t)$
We use the exact solution as initial data, i.e. assume perfect assimilation

- πG is linear interpolation in time (show movie)

Computational results

$$
\begin{gathered}
u_{t}+u_{x}=0 \\
u(0, t)=G(0, t), \quad x \in[0,1]
\end{gathered}
$$

Exact solution is $u(x, t)=\sin \left(2 \pi\left(x-t-\frac{1}{2}\right)\right)=G(x, t)$
We use the exact solution as initial data, i.e. assume perfect assimilation

- πG is constant interpolation in time (closest in time) (show movie)

Computational results

$$
\begin{gathered}
u_{t}+u_{x}=0 \\
u(0, t)=G(0, t), \quad x \in[0,1]
\end{gathered}
$$

Exact solution is $u(x, t)=\sin \left(2 \pi\left(x-t-\frac{1}{2}\right)\right)=G(x, t)$
We use the exact solution as initial data, i.e. assume perfect assimilation

- πG is P_{3}-Hermite (no new minima or maxima are introduced)

Computational results

$$
\begin{gathered}
u_{t}+u_{x}=0 \\
u(0, t)=G(0, t), \quad x \in[0,1]
\end{gathered}
$$

Exact solution is $u(x, t)=\sin \left(2 \pi\left(x-t-\frac{1}{2}\right)\right)=G(x, t)$
We use the exact solution as initial data, i.e. assume perfect assimilation

- πG is P_{3}-Spline (new minima, maxima can be introduced)

Computational results

$$
\begin{gathered}
u_{t}+u_{x}=0 \\
u(0, t)=G(0, t), \quad x \in[0,1]
\end{gathered}
$$

Exact solution is $u(x, t)=\sin \left(2 \pi\left(x-t-\frac{1}{2}\right)\right)=G(x, t)$
We use the exact solution as initial data, i.e. assume perfect assimilation

- Mismatching data on outflow boundary

Conclusion

- Davies relaxation in its weak form is a penalty method
- WKD is proven stable and yields similar results with CKD
- CKD and WKD impose data on all boundaries, even when not needed.
- SAT is proven stable, imposes data only where needed!
- The WKD operator is much more stiff than SAT by a factor of ≈ 20 !
- When data is not close to the solution on outflow boundaries (and WKD) yields unsatisfactory results \Rightarrow horizontal diffusion mitigates this problem
- The excessive diffusion can be the reason for the poor results over the Arctic
- Non-matching data causes a "standing wave" on the outflow boundary with WKD and CKD
- SAT yields similar results for exact and almost matching data (time interpolation error is visible), but outperforms CKD and WKD for non-matching data.

Conclusion II

- Theory for penalty-based boundary conditions is considered mature and ready to be used for NWP and climate
- Results are already extended to non-linear multidimensional systems, but for purpose of illustration a model problem was shown here.

Conclusion II

- THANK YOU FOR LISTENING!

[^0]: ${ }^{1}$ John P. Boyd "Limited-Area Fourier Spectral Models and Data Analysis Schemes: Windows, Fourier Extension, Davies Relaxation and All That", Mon. Weat. Rev. Vol. 1332005

[^1]: ${ }^{2}$ "High Order Difference Methods for Time Dependent PDE", Bertil Gustafsson ISBN 978-3-540-74992-9, Springer Verlag 2008

