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Introduction/Motivation for this work

I Boundary conditions are set using ad hoc intuition (Davies
relaxation)

I Different effects in e.g. Arctic and Europe

I ”The apparent success of spectral nudging for one-way
nesting is at least partly an artifact of very bad procedures for
windowing and blending”1

1John P. Boyd ”Limited-Area Fourier Spectral Models and Data Analysis
Schemes: Windows, Fourier Extension, Davies Relaxation and All That”, Mon.
Weat. Rev. Vol. 133 2005



Motivating example

I Europe has ”standing waves”

I Similar problems over Arctic (mitigated with Spectral
Nudging)
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I Analyze boundary procedures!



Model problem

Simplification for purpose of illustration, without loosing
generality!

I ~ut +
∑3

i=1∇~Fi (~u) = 0 N-S/Euler/primitive equations

I ⇓ 1D system

I ~ut + ~f (~u)x = 0

I ⇓ Semi-linear system

I ~ut + A(~u)~ux = 0

I ⇓ Linear system

I ~ut + A~ux = 0, e.g.A =
(

0 1
1 0

)
I ⇓ A = TΛT−1 ⇒ ~ut + TΛT−1~ux = 0 Scalar PDE

I ut + ux = 0
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Why do we impose Boundary Conditions?
(Energy point of view)

ut + ux = 0, x ∈ [0, 1]

I Multiply with u and integrate!

I 2
∫ 1

0 uutdx + 2
∫ 1

0 uux = 0

I Use integration by parts!

I d
dt ‖u‖

2 + [u2]10 = 0, ‖u‖2 =
∫ 1

0 u2dx

I d
dt ‖u‖

2 = (u(0, t))2︸ ︷︷ ︸
Faster than exponential growth

− (u(1, t))2︸ ︷︷ ︸
Decay

I We must set conditions to bound the energy for u(0, t) with
data: g(t) < C for some constant C ∈ R
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Discrete Boundary procedures

CKD : Ut + P−1QU = 0
U(·, t) = (I −W )U(·, t) + WG (t) W = diag(tanh)

I G is data!

WKD : Ut + P−1QU = P−1W (G − U) W = diag(tanh)

I U = (U0,U1, . . .UN)T is the solution.

SAT : Ut + P−1QU = P−1E0(G − U) E0 = diag(1, 0, . . . , 0)

I CKD = Classic Kållberg-Davies Relaxation

I WKD = Weak Kållberg-Davies Relaxation, proven stable

I SAT = Simultaneous Approximation Term (Carpenter et. al.), proven stable
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I CKD = Classic Kållberg-Davies Relaxation
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Energy estimate for Davies-relaxation

Strong Davies relaxation

Ut + P−1QU = 0

U = U + Wtanh(G − U)

I No energy estimate! (For
stability(?) proof use GKS
theory DIFFICULT!)

Weak Davies relaxation

Ut + P−1QU = τP−1Wtanh(G − U)

I Discrete Energy Method to
prove stability

I Multiply with UTP

I Use summation-by-parts
property of difference operator

I In fact there are counterexamples shoving instability for strong
methods.2

2”High Order Difference Methods for Time Dependent PDE”, Bertil
Gustafsson ISBN 978-3-540-74992-9, Springer Verlag 2008



Energy estimate for Davies-relaxation cont.

d

dt
‖U‖2

P = U2
1 (1− 2w1) + 2w1U1G1−U2

N(1 + 2wN) + 2wNUNGN

−
N−1∑
i=2

(2wiU
2
i − 2wiUiGi ) (1)

Since w1 ≥ 1
2 and wi ≥ 0 ∴ Davies Relaxation is proven

energy-stable!

I Stable, BUT imposing conditions where not needed!

I Solution quality is not affected if ‖Ui − Gi‖ is ”small”.

I Usually we impose time-interpolated G i.e. Gi (t) = π6hGi (tn)
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Spectral Radius of operators part I
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Spectral Radius of operators part II

Increasing resolution by a factor of 5:
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ρ(WKD) ≈ 350, ρ(SAT ) ≈ 140



Computational results

ut + ux = 0

u(0, t) = G (0, t), x ∈ [0, 1]

Exact solution is u(x , t) = sin(2π(x − t − 1

2
)) = G (x , t)

We use the exact solution as initial data, i.e. assume perfect
assimilation

I Use exact G (·, t) as boundary data (show movie)

I πG is linear interpolation in time (show movie)

I πG is constant interpolation in time (closest in time) (show
movie)

I πG is P3-Hermite (no new minima or maxima are introduced)

I πG is P3-Spline (new minima, maxima can be introduced)

I Mismatching data on outflow boundary
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Conclusion
I Davies relaxation in its weak form is a penalty method
I WKD is proven stable and yields similar results with CKD
I CKD and WKD impose data on all boundaries, even when not

needed.
I SAT is proven stable, imposes data only where needed!
I The WKD operator is much more stiff than SAT by a factor

of ≈20!
I When data is not close to the solution on outflow boundaries

(and WKD) yields unsatisfactory results ⇒ horizontal
diffusion mitigates this problem

I The excessive diffusion can be the reason for the poor results
over the Arctic

I Non-matching data causes a ”standing wave” on the outflow
boundary with WKD and CKD

I SAT yields similar results for exact and almost matching data
(time interpolation error is visible), but outperforms CKD and
WKD for non-matching data.



Conclusion II

I Theory for penalty-based boundary conditions is considered
mature and ready to be used for NWP and climate

I Results are already extended to non-linear multidimensional
systems, but for purpose of illustration a model problem was
shown here.

I THANK YOU FOR LISTENING!
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