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Introduction /Motivation for this work

» Boundary conditions are set using ad hoc intuition (Davies
relaxation)

» Different effects in e.g. Arctic and Europe

» "The apparent success of spectral nudging for one-way

nesting is at least partly an artifact of very bad procedures for
windowing and blending” !

!John P. Boyd " Limited-Area Fourier Spectral Models and Data Analysis
Schemes: Windows, Fourier Extension, Davies Relaxation and All That”, Mon.
Weat. Rev. Vol. 133 2005



Motivating example

» Europe has "standing waves”

» Similar problems over Arctic (mitigated with Spectral
Nudging)

» Analyze boundary procedures!



Model problem

Simplification for purpose of illustration, without loosing
generality!
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Model problem

Simplification for purpose of illustration, without loosing
generality!

> U+ Z?:l Vl?;(ﬁ) = 0 N-S/Euler/primitive equations
> | 1D system

> G+ F(d)x =0

» || Semi-linear system

> Gy + A(@i)dx = 0

» || Linear system

> G+ Al =0, egA=(} o)

» | A=TAT ! = i + TAT '&G, = 0 Scalar PDE

> up+u,=0



Why do we impose Boundary Conditions?
(Energy point of view)

ur+ux =0, xel0,1]



Why do we impose Boundary Conditions?
(Energy point of view)

ur+u, =0, xe€l0,1]

> Multiply with v and integrate!



Why do we impose Boundary Conditions?
(Energy point of view)

ur+u, =0, xe€l0,1]

> Multiply with v and integrate!
> 2f01 uuydx + 2f01 uu, =0



Why do we impose Boundary Conditions?
(Energy point of view)

ur+u, =0, xe€l0,1]

» Multiply with u and integrate!
> 2f01 uupdx + 2f01 uu, =0
> Use integration by parts!



Why do we impose Boundary Conditions?
(Energy point of view)

ur+u, =0, xe€l0,1]

» Multiply with u and integrate!

> 2f01 uupdx + 2f01 uu, =0

> Use integration by parts!

> glulP+ [Pl =0, ul® = [y v



Why do we impose Boundary Conditions?
(Energy point of view)

ur+u, =0, xe€l0,1]

> Multiply with v and integrate!

> 2f01 uupdx + 2f01 uu, =0

> Use integration by parts!

> GlulP+ [Pl =0, lul? = fy uPdx

> gellul? = (u(0, 1)) —(u(1, 1))
— —

Faster than exponential growth Decay



Why do we impose Boundary Conditions?
(Energy point of view)

ur+u, =0, xe€l0,1]

> Multiply with v and integrate!

> 2f01 uuydx + 2f01 uu, =0

> Use integration by parts!

> gellul? + [P =0, lul? = Jy wdx

> llul® = (u(0, 1)) —(u(1, 1))
Faster than exponential growth Decay

» We must set conditions to bound the energy for u(0, t) with
data: g(t) < C for some constant C € R



Discrete Boundary procedures

CKD : Ur+P1QU=0
U(,t) = — W)U(-, t) + WG(t) W = diag(tanh)
> G is data!

» U= (Up, Us,... UN)T is the solution.

P CKD = Classic K3llberg-Davies Relaxation
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Discrete Boundary procedures

CKD : Ur+P1QU=0
U(,t) = — W)U(-, t) + WG(t) W = diag(tanh)

WKD : U;+ P71QU = PIW(G — U) W = diag(tanh)

SAT : U+ P71QU = P71E(G - U)  Eg = diag(1,0,...,0)

P CKD = Classic K3llberg-Davies Relaxation
P WKD = Weak Kallberg-Davies Relaxation, proven stable

P SAT = Simultaneous Approximation Term (Carpenter et. al.), proven stable



Energy estimate for Davies-

Strong Davies relaxation
Us+P1QU =0

U=U-+ Wgnn(G - U)

» No energy estimate! (For

stability(?) proof use GKS
theory DIFFICULTY)

relaxation

Weak Davies relaxation

U+ P71QU = 7P 1 Wi (G — U)

» Discrete Energy Method to
prove stability

» Multiply with UTP

» Use summation-by-parts
property of difference operator

> In fact there are counterexamples shoving instability for strong

methods.2

2"High Order Difference Methods for Time Dependent PDE”, Bertil
Gustafsson ISBN 978-3-540-74992-9, Springer Verlag 2008



Energy estimate for Davies-relaxation cont.

d
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Energy estimate for Davies-relaxation cont.

d
fHUH% = U]?(]_ — 2W1) +2wy U1 Gp — UIZV(]' —|—2WN) + 2wy Upn Gy

N—-1
= > (@wiU} - 2w U;G) (1)
i=2

Since wy > % and w; > 0 .. Davies Relaxation is proven
energy-stable!

» Stable, BUT imposing conditions where not needed!
» Solution quality is not affected if ||U; — G;l| is "small”.
» Usually we impose time-interpolated G i.e. Gj(t) = menGi(tn)
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Spectral Radius of operators part |
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Spectral Radius of operators part |l

Increasing resolution by a factor of 5:
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Computational results

ur+u,=0
u(0,t) = G(0,t), x €[0,1]
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Exact solution is u(x, t) = sin(2w(x — t — E)) = G(x,t)

We use the exact solution as initial data, i.e. assume perfect
assimilation
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Computational results

ur+u,=0

u(0,t) = G(0,t), x €[0,1]
1
Exact solution is u(x, t) = sin(2w(x — t — E)) = G(x,t)

We use the exact solution as initial data, i.e. assume perfect
assimilation

» Mismatching data on outflow boundary



Conclusion

» Davies relaxation in its weak form is a penalty method

» WKD is proven stable and yields similar results with CKD

» CKD and WKD impose data on all boundaries, even when not
needed.

» SAT is proven stable, imposes data only where needed!

» The WKD operator is much more stiff than SAT by a factor
of ~20!

» When data is not close to the solution on outflow boundaries
(and WKD) vyields unsatisfactory results = horizontal
diffusion mitigates this problem

» The excessive diffusion can be the reason for the poor results
over the Arctic

» Non-matching data causes a "standing wave" on the outflow
boundary with WKD and CKD

» SAT vyields similar results for exact and almost matching data
(time interpolation error is visible), but outperforms CKD and
WKD for non-matching data.



Conclusion 1l

» Theory for penalty-based boundary conditions is considered
mature and ready to be used for NWP and climate

> Results are already extended to non-linear multidimensional
systems, but for purpose of illustration a model problem was
shown here.



Conclusion 11

» THANK YOU FOR LISTENING!
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