Energy Estimates and Weak Boundary Procedures for LAM

Marco Kupiainen^{1,2}

¹Department of Computational Mathematics University of Linköping ²SMHI, Rossby Centre marco.kupiainen@smhi.se

ASM 2013 Reykjavik, Iceland

Outline

Introduction/Motivation for this work Motivating examples

Model problem

Why do we impose Boundary Conditions?

Short Description of Boundary methods

Energy estimate for Davies-relaxation

Spectral Radius of operators

Computational results

Conclusion

Conclusion II

Introduction/Motivation for this work

- Boundary conditions are set using *ad hoc* intuition (Davies relaxation)
- Different effects in e.g. Arctic and Europe
- "The apparent success of spectral nudging for one-way nesting is at least partly an artifact of very bad procedures for windowing and blending"¹

¹John P. Boyd "Limited-Area Fourier Spectral Models and Data Analysis Schemes: Windows, Fourier Extension, Davies Relaxation and All That", Mon. Weat. Rev. Vol. 133 2005

Motivating example

- Europe has "standing waves"
- Similar problems over Arctic (mitigated with Spectral Nudging)

/home/sm_marku/test/Cordex/fc198909010000qc

Analyze boundary procedures!

Simplification for purpose of illustration, without loosing generality!

• $\vec{u}_t + \sum_{i=1}^{3} \nabla \vec{F}_i(\vec{u}) = 0$ N-S/Euler/primitive equations

Simplification for purpose of illustration, without loosing generality!

• $\vec{u}_t + \sum_{i=1}^3 \nabla \vec{F}_i(\vec{u}) = 0$ N-S/Euler/primitive equations

▶ \Downarrow 1D system

Simplification for purpose of illustration, without loosing generality!

• $\vec{u}_t + \sum_{i=1}^3 \nabla \vec{F}_i(\vec{u}) = 0$ N-S/Euler/primitive equations

- ▶ ↓ 1D system
- $\blacktriangleright \vec{u}_t + \vec{f}(\vec{u})_x = 0$

Simplification for purpose of illustration, without loosing generality!

• $\vec{u}_t + \sum_{i=1}^3 \nabla \vec{F}_i(\vec{u}) = 0$ N-S/Euler/primitive equations

- ▶ \Downarrow 1D system
- $\blacktriangleright \vec{u}_t + \vec{f}(\vec{u})_x = 0$
 - ↓ Semi-linear system

Simplification for purpose of illustration, without loosing generality!

• $\vec{u}_t + \sum_{i=1}^3 \nabla \vec{F}_i(\vec{u}) = 0$ N-S/Euler/primitive equations

- ▶ ↓ 1D system
- $\vec{u}_t + \vec{f}(\vec{u})_x = 0$
- ▶ ↓ Semi-linear system
- $\blacktriangleright \vec{u}_t + A(\vec{u})\vec{u}_x = 0$

Simplification for purpose of illustration, without loosing generality!

• $\vec{u}_t + \sum_{i=1}^3 \nabla \vec{F}_i(\vec{u}) = 0$ N-S/Euler/primitive equations

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

- ▶ \Downarrow 1D system
- $\vec{u}_t + \vec{f}(\vec{u})_x = 0$
- ▶ ↓ Semi-linear system
- $\blacktriangleright \ \vec{u}_t + A(\vec{u})\vec{u}_x = 0$
- ▶ ↓ Linear system

Simplification for purpose of illustration, without loosing generality!

• $\vec{u}_t + \sum_{i=1}^3 \nabla \vec{F}_i(\vec{u}) = 0$ N-S/Euler/primitive equations

- ▶ ↓ 1D system
- $\vec{u}_t + \vec{f}(\vec{u})_x = 0$
- ▶ ↓ Semi-linear system
- $\blacktriangleright \ \vec{u}_t + A(\vec{u})\vec{u}_x = 0$
- ▶ ↓ Linear system
- $\blacktriangleright \vec{u}_t + A\vec{u}_x = 0, \quad \text{e.g.} A = \left(\begin{smallmatrix} 0 & 1 \\ 1 & 0 \end{smallmatrix}\right)$

Simplification for purpose of illustration, without loosing generality!

• $\vec{u}_t + \sum_{i=1}^3 \nabla \vec{F}_i(\vec{u}) = 0$ N-S/Euler/primitive equations

- ▶ ↓ 1D system
- $\vec{u}_t + \vec{f}(\vec{u})_x = 0$
- ▶ ↓ Semi-linear system
- $\blacktriangleright \ \vec{u}_t + A(\vec{u})\vec{u}_x = 0$
- ▶ ↓ Linear system
- $\blacktriangleright \vec{u}_t + A\vec{u}_x = 0, \quad \text{e.g.} A = \left(\begin{smallmatrix} 0 & 1 \\ 1 & 0 \end{smallmatrix} \right)$
- $\blacktriangleright \quad \Downarrow \quad A = T\Lambda T^{-1} \Rightarrow \vec{u}_t + T\Lambda T^{-1}\vec{u}_x = 0 \text{ Scalar PDE}$

Simplification for purpose of illustration, without loosing generality!

• $\vec{u}_t + \sum_{i=1}^3 \nabla \vec{F}_i(\vec{u}) = 0$ N-S/Euler/primitive equations

- ▶ ↓ 1D system
- $\vec{u}_t + \vec{f}(\vec{u})_x = 0$
- ▶ ↓ Semi-linear system
- $\blacktriangleright \ \vec{u}_t + A(\vec{u})\vec{u}_x = 0$
- ▶ ↓ Linear system
- $\blacktriangleright \vec{u}_t + A\vec{u}_x = 0, \quad \text{e.g.} A = \left(\begin{smallmatrix} 0 & 1 \\ 1 & 0 \end{smallmatrix} \right)$
- $\blacktriangleright \quad \Downarrow \quad A = T\Lambda T^{-1} \Rightarrow \vec{u}_t + T\Lambda T^{-1}\vec{u}_x = 0 \text{ Scalar PDE}$

• $u_t + u_x = 0$

$$u_t + u_x = 0, \quad x \in [0,1]$$

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 のへぐ

$$u_t+u_x=0, \quad x\in [0,1]$$

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 のへぐ

Multiply with u and integrate!

$$u_t+u_x=0, \quad x\in [0,1]$$

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 のへぐ

Multiply with u and integrate!

•
$$2\int_0^1 uu_t dx + 2\int_0^1 uu_x = 0$$

$$u_t+u_x=0, \quad x\in [0,1]$$

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

- Multiply with u and integrate!
- $2\int_0^1 uu_t dx + 2\int_0^1 uu_x = 0$
- Use integration by parts!

$$u_t+u_x=0, \quad x\in [0,1]$$

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

Multiply with u and integrate!

•
$$2\int_0^1 uu_t dx + 2\int_0^1 uu_x = 0$$

Use integration by parts!

•
$$\frac{d}{dt} \|u\|^2 + [u^2]_0^1 = 0$$
, $\|u\|^2 = \int_0^1 u^2 dx$

$$u_t+u_x=0, \quad x\in [0,1]$$

Multiply with u and integrate!

•
$$2\int_0^1 uu_t dx + 2\int_0^1 uu_x = 0$$

Use integration by parts!

•
$$\frac{d}{dt} \|u\|^2 + [u^2]_0^1 = 0, \quad \|u\|^2 = \int_0^1 u^2 dx$$

$$\bullet \ \frac{d}{dt} \|u\|^2 = \underbrace{(u(0,t))^2} - \underbrace{(u(1,t))^2}$$

Faster than exponential growth

Decay

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

$$u_t+u_x=0, \quad x\in [0,1]$$

Multiply with u and integrate!

•
$$2\int_0^1 uu_t dx + 2\int_0^1 uu_x = 0$$

Use integration by parts!

•
$$\frac{d}{dt} \|u\|^2 + [u^2]_0^1 = 0, \quad \|u\|^2 = \int_0^1 u^2 dx$$

- ► $\frac{d}{dt} \|u\|^2 = \underbrace{(u(0,t))^2}_{Faster \ than \ exponential \ growth} \underbrace{(u(1,t))^2}_{Decay}$
- We must set conditions to bound the energy for u(0, t) with data: g(t) < C for some constant C ∈ R</p>

CKD :
$$U_t + P^{-1}QU = 0$$

 $U(\cdot, t) = (I - W)U(\cdot, t) + WG(t)$ $W = diag(tanh)$
 \blacktriangleright G is data!

•
$$U = (U_0, U_1, \dots, U_N)^T$$
 is the solution.

CKD = Classic Kållberg-Davies Relaxation

WKD :
$$U_t + P^{-1}QU = P^{-1}W(G - U)$$
 $W = diag(tanh)$

WKD = Weak Kållberg-Davies Relaxation, proven stable

SAT : $U_t + P^{-1}QU = P^{-1}E_0(G - U)$ $E_0 = diag(1, 0, ..., 0)$

SAT = Simultaneous Approximation Term (Carpenter et. al.), proven stable

$$\begin{array}{l} \mathsf{CKD} : \ U_t + P^{-1}QU = 0 \\ U(\cdot, t) = (I - W)U(\cdot, t) + WG(t) \qquad W = diag(tanh) \end{array}$$

$$\mathsf{WKD}$$
 : $U_t + \mathsf{P}^{-1}\mathsf{Q}U = \mathsf{P}^{-1}W(\mathsf{G}-U)$ $W = \mathsf{diag}(\mathsf{tanh})$

SAT :
$$U_t + P^{-1}QU = P^{-1}E_0(G - U)$$
 $E_0 = diag(1, 0, ..., 0)$

▲□▶▲□▶▲□▶▲□▶ □ のQ@

- CKD = Classic Kållberg-Davies Relaxation
- WKD = Weak Kållberg-Davies Relaxation, proven stable
- SAT = Simultaneous Approximation Term (Carpenter et. al.), proven stable

Strong Davies relaxation

$$U_t + P^{-1}QU = 0$$

$$U = U + W_{tanh}(G - U)$$

 No energy estimate! (For stability(?) proof use GKS theory DIFFICULT!) Weak Davies relaxation

$$U_t + P^{-1}QU = \tau P^{-1}W_{tanh}(G - U)$$

- Discrete Energy Method to prove stability
- Multiply with $U^T P$
- Use summation-by-parts property of difference operator
- In fact there are counterexamples shoving instability for strong methods.²

²" High Order Difference Methods for Time Dependent PDE", Bertil Gustafsson ISBN 978-3-540-74992-9, Springer Verlag 2008 (2008) (2008

$$\begin{aligned} \frac{d}{dt} \|U\|_{P}^{2} &= U_{1}^{2}(1-2w_{1}) + 2w_{1}U_{1}G_{1} - U_{N}^{2}(1+2w_{N}) + 2w_{N}U_{N}G_{N} \\ &- \sum_{i=2}^{N-1} (2w_{i}U_{i}^{2} - 2w_{i}U_{i}G_{i}) \end{aligned}$$
(1)

Since $w_1 \ge \frac{1}{2}$ and $w_i \ge 0$. Davies Relaxation is proven energy-stable!

・ロト・日本・モト・モート ヨー うへで

$$\begin{aligned} \frac{d}{dt} \|U\|_{P}^{2} &= U_{1}^{2}(1-2w_{1}) + 2w_{1}U_{1}G_{1} - U_{N}^{2}(1+2w_{N}) + 2w_{N}U_{N}G_{N} \\ &- \sum_{i=2}^{N-1} (2w_{i}U_{i}^{2} - 2w_{i}U_{i}G_{i}) \quad (1) \end{aligned}$$

Since $w_1 \ge \frac{1}{2}$ and $w_i \ge 0$. Davies Relaxation is proven energy-stable!

・ロト・日本・モート モー うへぐ

Stable, BUT imposing conditions where not needed!

$$\begin{aligned} \frac{d}{dt} \|U\|_{P}^{2} &= U_{1}^{2}(1-2w_{1}) + 2w_{1}U_{1}G_{1} - U_{N}^{2}(1+2w_{N}) + 2w_{N}U_{N}G_{N} \\ &- \sum_{i=2}^{N-1} (2w_{i}U_{i}^{2} - 2w_{i}U_{i}G_{i}) \quad (1) \end{aligned}$$

Since $w_1 \ge \frac{1}{2}$ and $w_i \ge 0$. Davies Relaxation is proven energy-stable!

- Stable, BUT imposing conditions where not needed!
- ▶ Solution quality is not affected if $||U_i G_i||$ is "small".

$$\begin{aligned} \frac{d}{dt} \|U\|_{P}^{2} &= U_{1}^{2}(1-2w_{1}) + 2w_{1}U_{1}G_{1} - U_{N}^{2}(1+2w_{N}) + 2w_{N}U_{N}G_{N} \\ &- \sum_{i=2}^{N-1} (2w_{i}U_{i}^{2} - 2w_{i}U_{i}G_{i}) \quad (1) \end{aligned}$$

Since $w_1 \ge \frac{1}{2}$ and $w_i \ge 0$. Davies Relaxation is proven energy-stable!

- Stable, BUT imposing conditions where not needed!
- ▶ Solution quality is not affected if $||U_i G_i||$ is "small".
- ▶ Usually we impose time-interpolated G i.e. $G_i(t) = \pi_{6h}G_i(t_n)$

Spectral Radius of operators part I

Spectral Radius of operators part II

Increasing resolution by a factor of 5:

 $\rho(WKD) \approx 350, \ \rho(SAT) \approx 140$

$$u_t + u_x = 0$$

 $u(0,t) = G(0,t), x \in [0,1]$
Exact solution is $u(x,t) = sin(2\pi(x-t-\frac{1}{2})) = G(x,t)$

◆□ ▶ < 圖 ▶ < 圖 ▶ < 圖 ▶ < 圖 • 의 Q @</p>

We use the exact solution as initial data, i.e. assume perfect assimilation

$$u_t + u_x = 0$$

$$u(0, t) = G(0, t), \quad x \in [0, 1]$$

Exact solution is $u(x, t) = sin(2\pi(x - t - \frac{1}{2})) = G(x, t)$

・ロト・日本・モト・モート ヨー うへで

We use the exact solution as initial data, i.e. assume perfect assimilation

• Use exact $G(\cdot, t)$ as boundary data (show movie)

$$u_t + u_x = 0$$

$$u(0, t) = G(0, t), \quad x \in [0, 1]$$
Exact solution is $u(x, t) = sin(2\pi(x - t - \frac{1}{2})) = G(x, t)$

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□▶

We use the exact solution as initial data, i.e. assume perfect assimilation

• πG is linear interpolation in time (show movie)

$$u_t + u_x = 0$$

$$u(0, t) = G(0, t), \quad x \in [0, 1]$$
Exact solution is $u(x, t) = sin(2\pi(x - t - \frac{1}{2})) = G(x, t)$

We use the exact solution as initial data, i.e. assume perfect assimilation

πG is constant interpolation in time (closest in time) (show movie)

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□▶

$$u_t + u_x = 0$$

$$u(0, t) = G(0, t), \quad x \in [0, 1]$$

Exact solution is $u(x, t) = sin(2\pi(x - t - \frac{1}{2})) = G(x, t)$

We use the exact solution as initial data, i.e. assume perfect assimilation

• πG is P_3 -Hermite (no new minima or maxima are introduced)

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 のへぐ

$$u_t + u_x = 0$$

 $u(0,t) = G(0,t), x \in [0,1]$
Exact solution is $u(x,t) = sin(2\pi(x-t-\frac{1}{2})) = G(x,t)$

We use the exact solution as initial data, i.e. assume perfect assimilation

• πG is P_3 -Spline (new minima, maxima can be introduced)

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□▶

$$u_t + u_x = 0$$

 $u(0,t) = G(0,t), \ x \in [0,1]$
Exact solution is $u(x,t) = sin(2\pi(x-t-rac{1}{2})) = G(x,t)$

We use the exact solution as initial data, i.e. assume perfect assimilation

Mismatching data on outflow boundary

Conclusion

- Davies relaxation in its weak form is a penalty method
- WKD is proven stable and yields similar results with CKD
- CKD and WKD impose data on all boundaries, even when not needed.
- SAT is proven stable, imposes data only where needed!
- ► The WKD operator is much more stiff than SAT by a factor of ≈20!
- ▶ When data is not close to the solution on outflow boundaries (and WKD) yields unsatisfactory results ⇒ horizontal diffusion mitigates this problem
- The excessive diffusion can be the reason for the poor results over the Arctic
- Non-matching data causes a "standing wave" on the outflow boundary with WKD and CKD
- SAT yields similar results for exact and almost matching data (time interpolation error is visible), but outperforms CKD and WKD for non-matching data.

Conclusion II

- Theory for penalty-based boundary conditions is considered mature and ready to be used for NWP and climate
- Results are already extended to non-linear multidimensional systems, but for purpose of illustration a model problem was shown here.

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

Conclusion II

THANK YOU FOR LISTENING!

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 めへぐ