1 year of optimizations on the first scalar supercomputer of Meteo-France

P. Marguinaud & R. El Khatib (Météo-France)

24th Aladin Workshop – Hirlam All Staff Meeting 2014 Bucharest 07-10/04/2014

- Main changes in the software configurations
- Specific optimizations for ARPEGE
- Parallelization of FESTAT
- FULLPOS-2
 - Optimizations
 - The Boyd biperiodicization
- Other enhancements
 - post-processing server
 - FA-LFI
 - IO server

Main changes in the software configurations

Feature	On NEC at M-F	On Bull at M-F
NPROMA	Large value (~3582)	Small value (~50)
MPI gridpoint distribution	North-South only	North-South and East-West
MPI spectral distribution	On waves only	On waves and on vertical levels
LEQ_REGIONS (ARPEGE)	.FALSE.	.TRUE. (except for AROME couplers)
MPI « I/O » distribution (NSTRIN,NSTROUT)	Small values	Maximum values unless I/O server
LOPT_SCALAR	.FALSE.	.TRUE. (to be revisited)
Open-MP	Not used	Used (but not yet in 3DVar)

Specific optimizations for ARPEGE

Computation of Gaussian reduced grids :

- Merged with ECMWF program
- Optimized even more for Open-MP

Computation of filtering matrixes for the post-processing :

- Calculation of dilatation/contraction matrixes :
 - fully recoded to use the algorithm of Strassauber for Legendre polynomial computation
 - Distributed/parallelized
 - Modular
- Calculation of filtering matrixes themselves
 - Distributed/parallelized
 - Interfaced with the modular calculation of dilatation/contraction matrixes
- => On-line recomputation of filtering matrixes is fast.

No need anymore for huge matrixes on files.

FESTAT : Forecast Error STATistics :

a mono-task program developped during the years 1993-1997 which reads a lot of files and makes a lot of summations

- Substantial re-write and cleaning, DrHook instrumentation
- Optimizations by inverting loops and re-organization of calculations in order to limit repeated computations
- Memory savings
- Development of an « in-core » option to read the files only once
- MPI distribution on the files => needs to re-order the summation independently of the members for bitwise reproducibility
- MPI distribution + Open-MP parallelization on the k* wave numbers
- MPI distribution on the *m* waves is possible but not coded yet

Parallelization of FESTAT (2)

108 members, 90 levels, truncation 719 x 767 72 nodes (54 tasks x 12 threads) => 11 min.

Parallelization of FESTAT (3)

Getting started with parallel FESTAT :

OMP_NUM_THREADS=\$(number of threads) Namelist file NAMFESTAT in fort.4 mpirun -np \$(number of mpi tasks) FESTAT

=> read festat_guidelines.pdf for more

&NAMFESTAT NFLEV=60, NCASES=72, LSTABAL=.true., LANAFBAL=.true., OUTBAL='stabbal'. OUTCVT='stabcvt', OUTCVU='stabcv'. ELON1=351.613266296832. ELAT1=37.33305050. ELON2=15.74536410, ELAT2=53.02364987. ELON0=2.0000000, ELAT0=45.8000000, NMSMAX=374, NSMAX=359. NDGL=720. NDLON=750, NDGUX=709. NDLUX=739, EDELY=2500.0000000, EDELX=2500.0000000, LELAM=.TRUE.,

Optimization of Fullpos-2

CE

Toujours un temps d'avance

The Boyd biperiodicization in Fullpos-2 (1)

- In New developments have been added :
 - The interpolation grid and the target grid can be different
 - => Needs to move the biperiodicization immediately after the horizontal interpolation
 - => Makes less MPI communications
 - => Biperiodicization code is easier to maintain
 - => Switching from splines to Boyd biperiodicization becomes easy :

just set in namelist NAMFPC:

NFPBOYD=1

The Boyd biperiodicization in Fullpos-2 (2)

Difference Splines/Boyd on the U-wind at the lowest level

The Boyd biperiodicization in Fullpos-2 (3)

Difference of the biperiodicization Before/After the vertical interpolations on the U-wind at the lowest level

11

Fullpos-927 will no longer be supported in cycle 41

Difference between NFPOS=927 and NFPOS=2 on surface pressure

Post-processing server

- Start the model once, post-process multiple files (same geometry)
 - \rightarrow save the setup time
- Simple design (loop in cnt2)
- Simple to use (test case available ask P. Marguinaud)
- Savings ~ 20 %

FA - LFI

- FA and LFI have a thread safe interface
 - \rightarrow possible to read/write multiple files using OpenMP
 - OK with GRIB Edition 0
 - Not yet with GRIB Edition 1 (aka Gribex)

IO server

- Field transposition is now performed by the IO server tasks (no more GATH_GRID/GATH_SPEC in the model)
- Synchronization tools (retrieve model data as soon as produced); test case available – ask P. Marguinaud
- The IO server creates several files for each forecast term
 - \rightarrow make the LFI library handle this transparently, no need to concatenate files (an index is created over multiple LFI files)
- Read coupling files with the IO server ; saves 2.5 % of time on AROME 1.3 km

Summary / Conclusion

Ready for higher resolutions :

- Arome 1.3 km L90
- Arpege T1198L105

Among next plans :

- Toward higher scalability
 - Fullpos-2 in a single 4DVar binary for OOPS
 - •
- Continuing porting
 - Parallelization of FESTAT-Arpege
 - Conf. 903 including the « PP-server » facility to replace the monotask conf. 901 (« IFS-to-FA » file transformation)

Thank you for your attention !

